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PREFACE

This is the first International Conference on Analysis of Discontinuous
Deformation. Due to anomalies including constituents, chemical reactions, voids and
flaws, thermal treatments during manufacturing process or damage formed in service,
there might be discontinuities existed inside the material or the physical field of
engineering system. Complicated behaviors due to these discontinuities lead to
difficulties of interpretation and analysis. In the past few years, a number of researchers
and engineers have worked very hard on the topics containing discontinuities like the
behaviors of jointed rocks, ice plates, granular materials, delamination of layered
medium, blasting fragmentation and damage /fracture progression of material etc.. High
quality and outstanding works have been produced. Those methods or algorithms have
been developed offer powerful approaches to analyze complex engineering problems
which can not be solved comprehensively by classical continwum analyses alone.

In order to gathering the most important development and improvement of the
analysis of discontinuous deformation up to now and to provide an opportunity for
interactions of researchers working on this important area, the first international
conference on analysis of discontinuous deformation was planned and then be held in
Taiwan, Republic of China.

These proceedings contain mach of the recent research work performed in the
field of discontinuous deformation, with contributions from many areas. A total of 25
papers from 5 different countries interweaves an interesting mix of sessions on rock
mechanics, structural dynamics, fragmentation/ failure analysis, granular mechanics and
some genetic theorems for the discontinuous deformation analysis. It is our hope that
every attendant will gain some useful information to continue his further research on this
new trend of engineering analysis

A conference of this topic would not be possible without the help of many
institutes and individuals. The main sponsors of the conference are National Science
Council, Ministry of Education, Sinotech Engineering Consultants Inc. and National
Central University of R. O. C., their supports are deeply appreciated. We would also like
to thank all, who have devoted their work to the conference and made it possible to
present this volume.

John C. Li, Conference Chairman
Vice Chairman of Public Construction Commission
Taiwan, R. 0. C.

Chung-Yue Wang and Jopan Sheng
Conference Secretaries

Department of Civil Engineering
National Central University
Taiwan, R. O. C.
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Simplex Integration for Manifold Method and
Discontinuous Deformation Analysis

Gen=-hua Shi

Geotechnical Lab, US Army Engineer Waterways Experiment Station, Vicksburg,
MS 39180-6199

ABSTRACT: At least every engineer has to compute the volume of generally shaped
blocks. Isthere a formula where the volume is precisely represented by the coordinates
of boundary vertices? If block movements are considered, center of gravity have to
be computed. Is there a formula where the center of gravity is also represented by
the coordinates of boundary vertices? The Simplex integration developed for DDA
computation can also solve these questions. The convergency and accuracy of DDA
and manifold method algorithms depend upon mainly the analytical integrations
on complex shapes. Simplex integrations are accurate solution on n-dimensional
generally shaped domains. The integrand could be any n-dimensional polynomials.

The computations of three rock and structure failure cases are presented.

1 SIMPLEX INTEGRATION ON A SIMPLEX

Simplex bas the most simple shape in 1,2, 3, .. .,n dimensional space. Different from
the ordinary integration, simplex integration with only simplex as integral domain.
Simplex also has positive or negative orientations. Positive or negative orientations

define positive or negative volumes respectively.

One dimensional simplex Py P, is a oriented segment, its volume is

1 o
J==

1$1

The volume of simplex P, P, is the negative volume of the simplex FyP;. Ordinary

1-d integrations are simplex integrations:

P1 PO

[(z)dz = ~/ f(z)dz

P
#@D@) = [ fe)de
Py J Py J Py

J PP

Therefore, for any co-line point Qq, with the order Q. Py, Py,

3 \ N b —y —
Qo+ QoP1 = FRQy+ Qoo+ Ry = Pyl
1



Po P Po P

Figure 1. 0,1,2,3 ;iimensional simplex

Iigure 2. Addition of plus or minus area of simplex




Qo P
f(z)dz + 0 f(z)dz

ngo ‘ Fy P P
= flz)dz + flz)dz + flz)dz = F(z)dz
By Qo Py P
F(@)D(z) + f f(z)D(=)
PyQo Qo Py
) PoQo f(m)D(m) " /C;OPu f(m)D(-'E) N -/I;oP1 f(E)D(:E) N -/PnP1 f(x)D(:E)

The 1-d integration addition is the same as vector addition. The integrations on
negative vectors and positive vectors can be nullified.

Unfortunately, two dimensional, three dimensional and higher dimensional ordinary
integrations are volume integration, where the volume is always positive. For the 2 or
higher dimensional ordinary integration, the integration domain has no orientation,
therefore the integration has no algebraic addition of oriented domains. It is then
necessary to introduce simplex integration on a simplex, which is a simple oriented
domain.

'Two dimensional simplex Py P, P; is a oriented triangle, its volume is

1 =2y yo

1
J = BT 1 =1y
1 z2 o

The volume of simplex P; Py P, is the negative volume of simplex Py P P;.
PIRP, = —RP P,

The two dimensional simplex integration is defined by

| f@nDEy)=sign() [ [ so,)dady
PPy PoPL P

Giving a polygon P, PyP3PyPsPs with Py = Py, such that P; rotate at the same
direction as from or to oy. For any point Py, the algebraic addition of the 2-d
simplex volume (area) PoP Py, PaPy P, PyP3 Py, PoPyPs and PyF5P is the area 4
of the polygon.

In Figure 2, the area of simplex Py Py P, PyP3 Py, PyPyPs and PyPs P, are positive;
the area of simplex Py P, P, is negative. The algebraic sum is exactly the area of poly-
gon PLPy P3Py PsPs. The area A is then represented by the coordinates of boundary



vertices.
PPPPPsPs = PP\ Py + PoPy Py + PP Py + ByPyPs + PyPs Py

Let Py = (0, 0),

s |1 0 0
1

1 ;41 yin

x g Yi

[ N-R

T+l Yitl

For a general integrand f(z,y), the normal integration on polygon Py Py P3Py PsF; is
the algebraic addition of the simplex integrations:

/fplpzpapdpspe e, y)dudy = Zf f(z,9)D(z,y)

0‘-.+1

Three dimensional simplex PyPy P2 P is a oriented tetrahedron, its volume is

1 2 yo 20
11 = oy =%
1 2 yy 2

1 z3 y3 23

The volume of simplex P Fy P, P; is the negative volume of simplex Py P, P, P;.
PR PP = —Py PP P

The three dimensional simplex integration is defined by

/ f(a:,y,z)D(as,y,z)=sz‘gn(.])//f flz,y, 2)dzdydz
FPoP PPy PoP PPy

The simplex integfation is not intended to do integrations on simplex only. Obviously
a complex shape always can be subdivided into simplex, so simplex integration can
be computed in each simplex, the summation of simplex integrations is the ordinary
integration over the complex shape. However this is also not the way of using simplex
integration. |



In general, simplex integration can compute ordinary integrations without sub-
dividing 2-d domains to triangles and 3-d volumes to tetrahedrons. FEM mesh is
unnecessary for simplex integration. Using simplex integration, the integration of
any n-dimensional polynomials can be represented by the coordinates of boundary
vertices of generally shaped polyhedrons.

The definition of simplex integration can be extended to n dimensional space. The
domains of simplex integrations can be extended from a n dimensional simplex to any
n dimensional oriented domain. The n dimensional oriented domain (V) is a normal
n dimensional polyhedron with a positive or negative orientation.

/(V) f($1:$21$3) .. -:mn)D($13$29$37 . -:xn,)

=sign(J)f//.../(V)f(a:l,a;z,a:g,...,xn) d:vld:nzd:r:g...dm_n (1)

The term sign(J) is the sign of a determinant J representing the orientation of the
oriented domain V. The simplex integrations over a general oriented domain V have
the following two important properties.

(1) If as oriented domains, V' = V] 4 V4 then

/(V) f($13$2:$3: . -,mn)D(CEl,sz, I3y ,mn)

= ) f($17$2)$31 .. ':mn)D($11$21$31 s 13:11)
1 .

+_/ f(z1, 22,23, .., @n) D1, 22, 23, . . ., Ty) (2)
(1a) ' '

This is the generalization of the algebraic addition of the one dimensional normal
integrations to multi-dimensional integrations.

(2) If (z1,x9,23,...,%,) are functions of (uy, ug, us, . . .yUp), and oriented domain
V corresponds to oriented domain U then

/(V) f($1:m2:$31“'1mn)D($1:$2)$31“°:mH)

D($11$21$31---:$n)
= P PR D 3 W2, UFy e ey 3
/(U)f(-’ﬁl,:rz 3 _$”)D(u1,u2,ua,...,un) (u, ug, ug Un) (3)
where
D($1:$21$31---:$n) = J
D(ulauzxufn"':un)

is a Jacobian, not a absolute value |J|. Simplex integration generalized the mean-



ing of “Leibniz” symbol “dz” of the normal one dimensional integration to multi-

dimensional integrations.

2 TWO DIMENSIONAL SIMPLEX INTEGRATIONS

The two dimensional integrations here in this section are used for two dimensional
DDA and manifold algorithm. A 2 dimensional simplex has 3 vertices Py, P;, P, and
the 2 dimensional coordinate simplex has 3 vertices Uy, Uy, Us.

Fo: (zo, wo) Up: (0, 0)
P (21, n) Ur: (1, 0)
Py: (z2, 12) Uz: (0, 1)

The following coordinate transformation (u1,us) — (z,y) transfers coordinate sim-
plex UpUL Uy to normal simplex Py P Py '

r = z (1—2%1@)—!— Ty U 4+ Tg U
Y w 1-tu)+ v ow + oy ow

The Jacobi determinant is

1 =y yo
J= D(z, y) _ a%g; a% _{T1— %0 Z2—Zo| )
- D(U1 ug) | By By T — 1 U
i duy Bus Yi—¥% ¥2—Yo 1 ”
2 2

Since Py.P Ps is a 2-dimensional simplex with non-zero volume, J is non-zero. Trans-

lation can be rewritten as (ug, u1, us) = (1, z,%)

1 = %y + U] + Uy
T = Tg Uy + @z uy + T U9
Yy = Y uw + oy ouwr + y2 up

Two dimensional simplex integration

/ ™y Dz, y)
PoPy Py

on a two dimenstonal simplex PPy P; is defined as normal integration times the sign

of determinant J.

/ z™y™ D(z,y) = sign(J) ]f ™y™ drdy
PP P PyPi Py

6



=sign(.])[-/ ™M y™ | J|duyduy = J]/ ™M y™ duydusg
Uy Uy Ualh 17y

Here z[" = (Zi:o zgkuk)mt, then the two dimensional simplex integration can be
represented by the following basic forms of simplex integration:

ug+uy+uga=1
Sy =/f uo ul u2 Fduydug = f/ uo ul u2 duydug
Ul Us ug, 1,22 >0

1 1—1&2 1— —1Ua ,
1
=£ [} 'u,z;‘u?il‘uo duidus = -/(; u2 (/(; 1’(1 —ug — uy) Ddul) diug

After i1 times of integration by parts, the inner integration can be computed.

tm i1 ip e 1 ir$1 ip
up' (1 — ug — ug)°du; = d(——u? 7)1 — u2 —uy)
0 0 i1+ 1

1

1_
=-_uil+1 (1 — g — ul)iu 1—us _/‘ ] _.1_ ”-Hd((]. — g — 'Ul) )
i1+ 1 0 0 i1+ 1

/1—u2 1 uz’1+1d((1 ” )iﬂ) fl“uz iq z1+1(1 u )io—ld
= — [ — —u — - _ )
o i+l l 2T o G+l 2T !

T (i — 1) w2 )
= - 1—us —u ) “du
/0 G+ 1) +2) 1 ( 1) 1

B =2 4o(dp — 1) (40 — 2) it o
_fﬂ G+ 1) +2)(0 +3) (1 - g — uy)* Py

1—u to(to — 1)(Go — 2)...2 i
= ; - - . : U 1+i0—1 11—y —u Idu
_/0 (31 + DG + 2)(41 + 3) ... (@1 Fig—1) 1 ( 2 1) duy

_ fl—tbz ig(20 — 1) {49 — 2) .. uitingy
0 (i1 + 1)(31 + 2) (i1 + 3) .. ('&1 Fig) 1 !

1—us NN 1—~us
_—;f _otit 1 ia oy = f Gl ! d(uil+i°+1
0 (i1 + ip)! 0 (i1 +1g + 1)!

ipliy! ig+i1-+1 I —uz ipley! (1 —u )i1+iu+1
(?,g +1i; + 1)! 1 0 (i1 + %0 + 1)!

1 . 1_u2 . .
51 =f u’fdugf ul (1 — ug — 1) duy
0 0

Y ig-+i oliy! a1 lio!
= u2(1l — u 10+21+1du : 7'0: 1- = — 0 1: .2-
/E" 2( 2) 2(7'0+7'1+1)! (’50+11+%2+2)!

Based on the previous formula of Sj, the two dimensional integrations of polynomials
of degree 0, 1, 2 can be computed.

: 0! 1
1D(z,y) = szgn(.])/f drdy = J/f dujdug = J—t==J
/PuPle PoPy P vvus 0+ 2

7



f zD(z,y) = sign(J) ff zdzdy
PoPi P - : EyPy Py

= J/f (zouo + z1u1 + Taug)duidus
UsUn U,

1
=J $0+$1+$2)=€J($0+.’I31+$2)

1!
T+

. 1
/ yD(z,y) = sign(J) f/ ydzdy = EJ(yo +y1 +y2)
PoAP; PP Py

/ 2D(x,y) = sign(l)/f zldzdy
PoP Py PP Py
= J// (zoug + T1uy + Toup)iduidug
UslhUs )

51;1:.] (2.’30:!:0 +Tgx1 +ZoZa
= +z1T0 +211117 T30

+zawy  +zory  +2z279)

_/ y*D(z,y) = sign(J) f / y*dzdy
PoP Py PP Py

=J (Cyowo +yovr  +uowe
= +vye 2y e
+yayo a1 +2y0y2)

f zyD(z,y) = sz‘gn(J)/f zydzdy
By P Ps PPy Py

=J / / (zotp + T1u1 + Tauz)(Youo + y1u1 + youg)duidusg
DU Uy
=J  (Czoyo +moyn  +zowe
= +z1yo +27191 Ty
+oayo oy +2ma3)

3 TRANSFER A NORMAL N DIMENSIONAL SIMPLEX TO THE COORDINATE
SIMPLEX

A n dimensional simplex has n+1 vertices Py, P, Ps,. .., P,. The n dimensional co-
ordinate simplex has n+1 vertices Up, Uy, Us, ..., Up.

Po: (w0, =0, Z30, -.., zno) Uo: (0, 0, 0, ..., 0 )

P (m11, 1, 231, -.., Zn1) v: (1, 0, 0, ..., 0 )

Py (212, a2, %32, ..., zp2) Ua: (0, 1, 0, ..., 0 )

P (mlm Ta2ny, T3ny ..., mnn) Uy : ( 0, 0, 0, ..., 1 )



The following coordinate transformation

(UO,UlaUZ,'Ua:S: .. .,Un) — (1::81:3:21333: e :mn)

transfers coordinate simplex UglU1 Uz . .. Uy, to normal simplex PoPl By Py

( 1 \ ( 1 1 1 ... 1 \ / uo\
| g ZT11 T12 ... Tin Uy
) Tonp T3l T3 Tan Ug (4)
I3 T30 T3t T32 Z3n Us
\En} \$n0 Inl ITn2 wnn/ \un/
The determinant is
Bzy  Jm B 9z
Puy T Jus Sin,
Ozs  Ozo Bz dza
duy Oug Jug My
J = D(:I}l, L2y LZy - oy In) — g_:ra_ %:123_ g_:r;a gza
D(ula Uz, Usz, .. " un) e b us tin
8cn Oxzq Ozs O,
gul Dz Dus “t Dun
11 — 10 ZTi12 -~ T10 13 — 210 Tin — Z10
To1 — Tan XT3 — L0 $23 — I20 T2n — T20
T31 — T30 32 — T30 L33 — T30 Tan — T30
Tnl —Tnot Tn2 — ZTpd Tnp3 — Tnd Tnn — Lo
i 1 1 1
1 z0 T T3 Tno
Tip T11 ZTi1z Tin
1 z11 791 Z31 Tni
Typ To1 T2 Lan
=|1 =z =z =3 Tn2 (5)
T3p T3l L33 Lin
1 Zi1n Zon Z3n Tnn
IZnd Tnl Tn2 Tnn

4 DEFINITION OF N DIMENSIONAL SIMPLEX INTEGRATION

Simplex integration on a n dimensional simplex PyP1P; ... P, is defined as normal

integration times the sign of determinant J.

ey T m. Mn .
/ 7 zyxg? . opD(z, T2, T3, - - ., Tn)
PoP1 P Py



Il

sign(.])ff/---[opp . M alel? . znt dzidzedry ... dey
(\F o IF g TP Y
:sign(J)///---_/UUU . 2y ey x| J|durduzdus . . . dug
pL1va...Un
Jf/f/ zMalal® - gl dudugdus ... du,  (6)
Dol Uy Uy

In order to compute the integration and the coefficients of invariants u}, in

T = (E i)

of formula (6), the following formula (7) is useful.

n m Lo . . . . .
Jotirtizttin=m (fo +J1+ Ja + ...+ Jn)! .
Qo) =) “~aafad ol (7)

Lo . TR T an Gy &
k=0 30!311.72)"'1.7!120 30!31132! .. .!Jn! 071 ™2

A brief derivation is given here for convenience. In case of n = 0 and n = 1, formula

(7) is correct:

0 m . . ) . )
= Jo=m -7_01 Jo _ m _ Zju+j1=m (30 +_71) ju it
(g ak) B ZJ'GZO jolao — % (Z O‘.k) - Jo,d120 jG!JI' ay &

Assuming formula (7) is correct for n:

n m . . . .
jotditdattin=m (Jo+ j1+ J2 + ...+ Jn)! i
e =3 apaial o

.. . Ty e 1. B s a7 &
k=0 Jo,d1,4240,Jn 20 30131!32! . .!Jnl 0 ™1 ™2

then the following computation shows formula (7) is correct for n+1

n+1 m n m i +J +3=TM (‘1‘, +J 1)
_ . nTint+1= + Jn+1

ag) =(O_ar)+ann) =), == Za

(Z ) ((k_o n i G120 'J +1 (k-o ) Op+1
_ Zln+_]‘n+l —m Tvn + Jn+1)l
indnt120  iplipp!
+i1+g . F i =in

ZJO 1+72 (Jo+d1i+de+...+7a)! af)"a{’ a%"’ . ajna'gb’::-ll

Jo.J1,J20 0030 =0 jolgilda!. . .!j !
Zin+jn+1=m Zju+j1+j2+---+jn=in
T Lty G >0 30231 2,001 Jn 20
(intint)! ot +dat .+ 50 5 5

.?n+1
an A7 4

. . . - . . 0 1

tn!fnt1! Jolgrlzal. . Agn! 2

Jn.
R |

10



. Zin‘i'jﬂ-!-l =m Zj0+j1+j2+"'+jn=in (Zn + jn—|—1)l

in!jﬂ+l _>.0

jﬂ:jl ,j‘21"';jn20 ju!jl !j2! .. .!jn!jn+1!

aq ‘CLI

JotiitfateAintinir=m (Jo + J1 + Ja + .. .+ fu + Jnga)! Jo g1 _J2
=2 : %o 01 %2

0113251 20 Jotjtlgat. . Ldntdngt

Denote ug = 1 — >_7 u;, from the previous algebraic

!

formula,

Jo Ji J2
a3z

n

ceead
alra

ajn aJ n+1

n+1

Jn+t
n+1

140+811,802, 002810 20

iglinlig! . . i)

n m L 3 . . . .
m . fo-kiny His .. i =my ('Lm +igF it i)!
o = () wpay) >
k=0

TR SO T SN TN 1 N 15 GO T S | 5%
Ug Up U™ = U Ly Ty Ty - Ty

Substituting (8) into (6), integral (9) is obtained.

™1, Mma_ M -
f oM xy?zg? .z D(zy, 72, T3, .
PAP..FP,

ST i

ey Zp) =

.-.+?:]_n)!

Zim+i11+i12+...'+i1n=m1 (7;10 + 411 + 419 +
110,811,812 4000) 310 20 t104111410!

uBm

- -!?‘rln!

110,811,012

111,312 Tin
Uy Ug™ == Up™  Tyg 11 Ty3

Z£20+i21 +izzt...Hizn=ma2 (igg +i91 +dp + ...+ ign)l
120,021,822, 020 20 ta0liartiog! . . gy !

20,421,822 ., 00n 120,821 .22
Up Uy Uy Un~  TgpToy Tay

Ziao-i-iaz +izot.tisn=ms (igg + 431 + 439 + ...+ ian)!
130,831,132,.--, 80 20 13012311830} . . Jigy,!

i31, 132 lan 130 immiaz

iap
Uy U™ - Upy™  TggTay T3

Uy

L I I S R ar e aew

(Zin0+inl+fn2+---+inn=mn ('ln[] + 'I,n]_ + 1’112 + PR + ?:nn)!

Ta0sint iaseenyinn 20 10101102l . . !
ind,,inl,, in2 e inn inD inl in2 .
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5 FORMULA OF N DIMENSIONAL SIMPLEX INTEGRATIONS

The coordinate simplex integration in (10) is another form of well known Dirichlet
integration in classical analysis. The direct computation of the integration is given

51= f// / uf)"ul u? - - utrduy dugdus . . . duy,
UDU1U)_
1.L0+1L1+1L2+...+un=]_ S .
- f ./ f o / ugu Uy« Uy duy dusdug . . duy
U0, U1, U2 eney Un 20

/4 /l—uu /1—un—un_1 1=ty ity 1 ===
/0

‘;'.n_ 3,—,_
un U U "”'1 uo P duydusdus . .. dun

1—un 11—ty ~tp.1 1—Up—Un—1—-—Us . .
e P fne1 3n.r~2 TS
f / f /0 Uy Up qUp g Uy

1=ty —tno g == " o
(/g. 1 (]. - Zk:l uk) dul) dusz3 NN dun (11)

below.

After 7; times of integration by parts, the inner integration of (11) can be computed.
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Substituting equation (13) into (11), the integrals of a n dimensional simplex is ob-

tained.
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6 SIMPLEX INTEGRATIONS ON GENERAL TWO-DIMENSIONAL BLOCKS

Since simplex integrations always have the Jacobian J as factor and J is an oriented
area, the integrations on positive area and negative area can be neutralized. Denote
P PP P, Po+1 = P with B
(18) on PiPoPs--- P, are computed by summations. (15)-(18) are the integrations
of DDA method. Here Py can be any point, Py = (0,0) are chosen in order to have

(z;,y:) as a polygon, the integrations (15)-

simpler formulae.

Tk Yk

Y e

1 n
ZJ’c=1

FPoPr Py

(15)

dady = *
/ (A) Zk=1

L k41
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Figure 3.  equal-lateral of 2-dimensional polygons
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Figure 4. QOriented polygons of a 3-d block
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‘ Tk Yi
zdrdy = / zD(z,y) =
/ffi Zk"‘ RPe Pyt Zk YWz ¥ k+1
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5 2 Tr Yk
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_/‘\/(r Zk‘ L By P Py 24 Zk:l T kt1 Y+l
2% kY k +T kY k+1
( + (18)

+Z g 1Y & 22 31y k1)

Figure 3. shows equal-lateral polygons. The equal-lateral triangle, square, pen-
tagon and hexagon are in the unit circle. The distance from each node to the circle
center is 1. The edge length and area of each equal-lateral polygon are listed in the
following table. The centers of gravity of the equal-lateral triangle, square, pentagon
and hexagon are the center of ‘the unit circle. Using the simplex integrations, the

same area and center of gravity are obtained for each equal-lateral polygon.

polygon edge length area

equal-lateral triangle V3 13v/3 =1.299038
equal-lateral square V2 2.000000

equal-lateral pentagon %(5 —~/5) %\/ 10 + 2v/5 = 2.377641
equal-lateral hexagon 1 13/3 = 2.598076

7 SIMPLEX INTEGRATIONS ON GENERAL THREE-DIMENSIONAL BLOCKS

Integrations (19)-(22) are the summations of simplex integrations on tetrahe-
drons. the volume or integrations of any 3-d block can be computed. Assume
P[l]P[z]Pm PT[:(]Z) PE“(JI) 4= PI[Z] 1= 1,2,3,...,s are all outward rotated poly-

gons of a block (see Figure 4), PJ[] (zr:{],yJ ,z[]) and Py = (0,0,0). The volume
of this block is given by (19). Computed by simplex integrations, integrals (19)-(22)
are represented by the coordinates of the boundary vertices only.

‘ s n(i)
// f(v) d:cdydz—Zi=1 Zk=1 o P10l pl 1D(z,y, 2)

k+1
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Figure 5.  3-dimensional blocks with equal-lateral boundary polygon
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Figure 5. shows § different 3-d blocks. For each block, the nine geometric formulae
are listed in the following tables. 1 boundary polygon number of the block, 2 edge
number of each polygons, 3 angle of two adjacent polygon planes, 4 edge length of
polygons, & distance from polygon to sphere center, 6 distance of node to its polygon
center, 7 distance from block vertices to sphere center, 8 geometric formule of block
volume, 9 computed volume by simplex integration.

3 atan z 2atan 7 — atan(2) acos(\/ 0“‘2
3 (2v2) (V2) +7 — atan(S \/_
¢ 2\@ 7 V2 2 (V5-1) 2(1- %)
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1 1 1 1 54245
o 3§ 7 el Wi 5-2v5 %
6 3v2 5% VA -VE - )
7 1 1 1 1 1
8 V3 3% % 2=1/10@ +vE)  2/(10+2v5)
9 0.561320 1.53960 1.33333 2.78516 2.53615

In order to use the simplex integration, the node coordinates (z, y) in each boundary
polygon have to be computed. Based on the angles of boundary planes and distances
of these planes to the sphere center, the polygons, the edges and the vertices can
be computed. The three dimensional simplex integrations give the same volume as
computed directly from the geometric formulae listed in the table.

10 ROCK FAILURE EXAMPLES BY DDA

The equilibrium of the DDA method is reached by minimizing the total potential
energy. As the energy is computed by integrations, most of the DDA formulae are
formed by the polynomial integrations over the generally shaped blocks. The simplex
integration is developed and applied to DDA formulation. Based on the simplex
integration, DDA algorithms are simple, efficient yet accurate. Most important, the
accurate integral solution of mass matrix ensured the convergence of “open-close”
iterations.

Following a real time sequence, the DDA uses a step by step approach. The dis-
placements of each time step are so small that normal linear equations for small
displacements can be adopted. At the end of each time step, the equilibrium in both
discontinuous interfaces and continuous zones are reached. As the step displacements
are small, the kinematic relation and friction law are expressed as linear inequalities.
Based on natural contact phenomena, an “entrance theory” was developed. The en-
trance lines are used to form linear inequality equations. The “open-close” iterations
ensure that no tension and no penetration occur at all entrance positions. Coloumb’s

Law is also fulfilled at all entrance modes and all entrance positions.

There are 1500 to 2000 rock blocks in each example. The dimensions of computed
regions are about 40 to 80 meters. The numbers of time steps are from 300 to 600.
The total elapsed times are from 0.2 to 2.0 second. The maximum total displacements
are more than ten times the average block diameter.

Figure 6 shows the penetration of a missile at a velocity of 300 meters per second

into a blocky rock mass with two tunnels.

Figure 7 shows the damage state as a strong stress wave passing through three
tunnels excavated in a blocky rock mass. '
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Figure 6. The penetration of a missile at a velocity of 300 meters per second into

a blocky rock mass with two tunnels
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Figure 7. A strong stress wave passing through three tunnels excavated in-a blocky
rock mass
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Figure 8. A rock toppling failure caused by slope excavation
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Figure 9. Two examples of manifold method
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Figure 9. Two examples of manifold method
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Figure 8 shows a rock toppling failure caused by slope excavation.

Figure 9 shows two examples of manifold method.
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Abstract

DDA develeped by Goodman and Shi has attracted geotechnical engineers since
it can handle static and dynamic behavior of assemblage of arbitrary shape blocks.
However, when we consider to use DDA as an engineering tool, the original DDA has
some shortcomings such as:

1) Elements for bolt, continuous concrete lining are not available.

2) It can not handle elasto-plastic behavior of a block.

3) A true circular (disk) block element is not yet formulated.

4} Erratic calculation of block area is encountered when a block is in fast rotation.

5) The high stiffness of penalty property at block interfaces often causes instability
of calculation.

6) Complicated and non-friendly man-machine interface; difficulty in processing
input and output data is not solved.

‘We have been working on developing a new code which can overcome the above
mentioned shortcomings. The new concept of an interface, elasto-plastic block, cir-
cular element, nonlinear coordinate transformation to avoid erratic area calculation
in rotation were developed and implemented in the code. A new user friendly man-
machine graphic interface was introduced to ease heavy duty work to generate block
meshes. Boundary condition input and mesh correction are done on the screen. Some
example problems in relation to rock mechanics (e.g. rock slope, rock fall, tunnel ex-
cavation, rock foundation) were solved to check the new computer code. Some of them
were compared with model test. The result of evaluation of the code was satisfactory.

1 Introduction

Discontinuous deformation analysis (DDA) was introduced by Shi and Goodman in 1985
and further developed by Shi. Discontinuous deformation analysis is used for analyzing
force displacement interactions of block systems. For each block, displacements, defor-
mations, and strains are permitted and for the entire block system, sliding, opening, and
closing of block interfaces are also permitted. _

DDA is a kind of hybrid displacement type model of the finite element method and
is also very similar to Elastic Body Spring Method (EBSM) proposed by Kawai (1981).
Shi (1984} succeeded to formulate the potential energy theory for the contact behavior of-
blocks by introducing a penalty function.

Discontinuous deformation analysis required the development of a complete kinematic
theory that enables one to obtain large deformation solutions for numerous blocks under
load or unload without penetration of one block by another. This kinematic theory rec-
ognizes the connections of joints around the perimeters of blocks so that correction-logic
can be applied optimally.

The original DDA. only considers the elastic deformation of blocks and at the contact
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points blocks slide without any cohesive resistance. In order to -apply this new tool to
general rock mechanics problems, we need to modify and elaborate it up to the point
which is comparable with FEM and DEM (Cundall 1971, 1981). We introduces a Drucker-
Prager elasto-plastic constitutive law for solid blocks and a Mohr-Coulomb law for block
interfaces. The main purpose to take into account the block yielding is to analyze soft rock
mass behavior subjected to various loading conditions such as excavation and embankment.

The rockbolt element was introduced to represent the effect of confinement for rock
masses. The bonding element which fuses two blocks was also invented to represent
shotcrete and concrete lining in a tunrcel structure. Additionally, damping coefficient
was implemented to take into account the block collision.

The new DDA code was calibrated in comparison with laboratory model tests. Stability
of rock slope and tunnel in a discontinuous rock mass is analyzed, and the effect of lining
and rockbolts is discussed. Rockfall on a very steep slope was also calculated.

2 Verification of DDA

The DDA code has been compared with the results given by the theoretical analyses and
a laboratory test to verify the ability of DDA. The toppling slope failure and the rock
foundation were chosen for the evaluation. The simple biaxial test of a jointed rock was
performed for comparison.

2.1 Limit Equilibrium Analysis of Toppling on a Stepped Base

Following the example shown in the text book written by Hoek and Bray (1977), the
regular system of blocks shown in Fig. 1 was analyzed. The base is stepped upwards
with an inclination. When a system of blocks commences to fail, it is generally possible
to distinguish three separate groups according to their mode of behavior:

a) a group of sliding blocks in the toe region,

b) a group of stable blocks at the top,

c) an intermediate group section of toppling blocks.

Fig. 2 shows that the calculated result is very close to the theoretical prediction in
which the bottom 4 blocks slide, whereas the computed result indicates that the bottom
2 blocks slide and other two blocks slide and topple.

2.2 Rock Foundation Analysis (Sasaki, et al, 1995)

In large scale rock foundations within the discontinuous planes existing in a rock mass, the
behavior of deformation and stress distribution along structure foundations are strongly
influenced by the pattern of the discontinuous planes. The behavior was examined by
using Boussinesq analytical theory, and the experiment models of Maury (1971).

Table 1 gives the material properties of the experiments. The applied external load is
4.17kgf/cm? for the 12¢m width at the center of the upper part of the rigid block made by
irons as shown in Fig. 3. Fig. 4 — Fig. 7 show vertically and horizontally staggered models
presented Maury (1971) through the use of 4cm X 4cm duralumin square rods. Here, in
order to express the roller conditions along boundaries, the dummy slender blocks are
attached along the boundaries in DDA models shown in Fig. 3. This is to cut the friction
between inner blocks and fixed blocks of the outer boundaries.
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step 55 total time 107.060

step 53 tolal time 5.16000

/ Stable

b =33
Slope angle of step = 307
Toppling
Fig.l. Analysis of toppling on a Fig.2. Analysis of toppling on a
stepped base (Start to move). stepped base (Final stage).

Tablel. Material properties of the block

1l aingrem?

model test(Maury,1970).
T Components Propertics
40cm N Dewmy Young's modulus 7X 10°%kgf/om®
blocks Poisson's ratio 034
_l_ cohesion of surface 0 kgffem®
friction angle 40°
I+ 80cm » cohesion of body elastic
internal friction angle elastic

Fig.3. The boundary and loading
conditions of DDA model.
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Fig.4. The vertically staggered model Fig.5. The horizontally staggered
(Model-A, Continuum). model (Model-A, Discrete).
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Fig.6. The vertically staggered model Fig.7. The horizontally staggered
(Model-B, Continuurn). model ( Model-B, Discrete).
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Mohr-Coulomb friction criterion is employed for the block surface. A large penalty
coefficient is applied for non-penetration conditions between blocks in the normal direction
of the block surface. If shear stress of the block surface is greater than shear strength, the
zero spring coefficient is employed for shear slip conditions.

Fig. 4 and Fig. 6 show the principal stress distribution of the continuum models in
which the tensile strength is given for the friction conditions of a block surface. Fig. 5 and
Fig. 7 show the principal stress distribution of discrete model of Model-A and Model-B.

Fig. 8 shows the vertical stress distribution along bottom boundary blocks of the
vertically staggered model (Model-A, Discrete) and the result of Maury’s experiment.
Fig. 9 also shows the vertical stress distribution along bottom boundary blocks of the
horizontally staggered model (Model-B, Discrete) and the result of Maury’s experiment.
The vertical stress concentration of Model-B is concentrated greater than of Model-A near
the center of analytical region. The numerical results roughly agree with the experiments.

Fig. 10 shows comparison of the vertical stress distribution at the center of loading
point for Model-A, Model-B and Boussinesq analytical theory. The stress concentration
of the numerical solutions (DDA) is smaller than analytical theory at the center of loading
point. Thus, the reason of different stress distribution seems due to the fundamental
difference between the discontinuum and continuum models. In addition the analytical
theory assumed the infinite boundary.

Fig. 11 and Fig. 12 show the principal stress distribution of the 45° inclined jointed
model (Model-C) of the continuum model and the discrete model which simulate the model
test result presented by Gaziev (1971) shown in Fig. 13. The maximum principal stress
contours of Gaziev’s experimental results and the numerical results obtained by DDA
agreed with those experiments.

2.3 Biaxial Compression Test (Sasaki, et al, 1994)

A biaxial compression test of rock blocks was performed to compare with DDA calculation.
A 40cm x 80cm tuff specimen with some artificial discontinuities was tested as shown in
Fig. 14. The confining stress at a constant 196k Pe is applied by eight side jacks. The
properties of the tested material, the jacks, and the loading plates are given in Table
2. The tephron sheets were used between the rock blocks and the loading plates of jacks.
Observation points No.1-13 were dial gauges and No.14-21 were slip gauges. The observed
test results are shown in Fig. 15. The maximum displacement of loading direction was 2
mm and reached the maximum load.

In the DDA analysis, the cylinder guides of the jack models are fixed and the loads are
applied at the center of those cylinders as shown in Fig. 16. The friction angle between
the blocks and loading plates is assumed to be 20°. The shear stiffness between the blocks
is obtained by the experiments and was 1.4TGN/m3. The analysis results are shown in
Fig. 16. The main directions of the principal stresses of the rock blocks are shown along
. the lad convey direction between the external forces which form the upper part of the left
side blocks to the down part of light side blocks (Block No.1, 3, 6, and 8 as shown in Fig.
15). It is clear that the deformation mode seen in the test is simulated very well in the
analysis.

29



10,00 -20.00  6.00 20,00 40.00 -t0.00 2000 0.0 20,00 4000
# T Xtem) =T ¥ Xlen)
—KODEL-A; ODELB:
DISCAETE mscazls !
— MARYS it Ar
EXPERTNERTS  EreR s Y
oy (gl 7oa) oy Begt7et]
Fig.8. The vertical stress distribution Fig.9. The vertical stress distribution

along bottom boundary blocks
(Model-A vs. Maury’s experiments).

along bottom boundary
blocks (Model-B vs. Maury’s experiments).

@y (kef/om’)
5 -4 -3 =2 -t 0 ! 3
— 0 F =N
) —— WODEL-A: #:Fﬁ JM Egh ag.
& DISCRETE [/ SA 1T HH O
VR 17" | — woe-e; YA AW AR o ]
! = mscnm Y A ) A0
! 2 7
! {-2 2|~ GRitctio = —
I ) @ | .. woEL-B: Y I
l ] -30 CONRECTED I\ - i 1 \
— BOUSSIHESO' § L 1
.I THEORY The vertically staggered model  The horizontally staggered
-0 model
Fig.10. The vertical stress distribution
along center reigomn. — A
Y RIS S TS TS A
AR AL SIS oSSR ,
HYSKYSEYSNSA A / |
H N YNL- e p \ SAvVEOa F
A"..',-',"II“\\‘\".. '—: ' / !
HX™ YN YN SN Y NAT “The 45" inclined modet The elastic model

-T-1 1

i Yo 200200 “i Fig.13. Maximum principal stress contours
10920 .' N ‘ ‘ bt of Gaziev’'s experiment results(1971).
Fig.11. The 45deg. mclined model

{Model-C, Continuum).

Table2. Material properties of the
rock model test.

= [* 3 I(
s N Y Y24 A H Components rock blocks jucks and
iy v ', < "\ VO H (luff} loading plales
1k o POV ONVOL H Young's modulus 1412.1MPa 205.9GPa
g < ; 'l POLOE N Poisson’s ratio 0.2 0.3
'H A PAVOANVOA KH- cohesion of surface 0 kPa 0 kPa
11 98% AP OAYE friction angle 40° (0.698ead) 0°_(Orad)
j: ; y P 2O S unit weight 14.12kN/m’ 76.49kN/m’
‘T!"lli~l'l-l-_!_-l-l~l-lll°l'ltl_ ]
Fig.12. The 45deg. inclined model

(Model-C, Discrete).
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3 New Elements

3.1 Rock Bolt

We developed a rockbolt element (Sasaki et al, 1994). Fig. 17 shows that arbitrary two
points (z;,3;) and (z;,;) in blocks 7 and j are connected by a rockbolt. Let I the length,
dl the deformation and s the stiffness of the rockbolt, the strain energy of the rockbolt is
given by the following equation:
s
I, = —dI%.
T (1)
Minimizing the potential energy of (1), the stiffness matrix of the rockbolt [Kpg] is
given as follows.
o',

[Kr.e] = Bd,.,-adm- == [KAR]' (2)

3.2 Bonding Element

We developed a bonding element by introducing the penalty method, for the purpose of
simulation the continuous region to analyze local stress and strain of blocks or bond of
blocks like shotcrete as lining of tunnel (Sasaki et al, 1994). Fig. 18 shows the relation-
ship between blocks ¢ and j which are bonded to each other. Relative displacement of
arbitrary points (z;,%;) and (z;,v;) in bonded blocks 7 and j is defined as a function of
the coordinates and the displacements of the points, which must be zero at the bonding
face. The spring force by the relative displacement is given by the product of the relative
displacement and the stiffness of the bonding element. Then the strain energy of the

element is 1

Iy = —E(dea: + Fydy) (3)
where d, and d, are the relative displacements in x and y directions, respectively. Using
displecements of the points (z;,y;) and (z;,¥;), we can get the strain (potential) energy as
the function of (z;,¥;) and (x;,y;). Minimizing the potential energy, the stiffness matrix

of bonding elements is given as follows. And we also get the external force vector.

&I,
adriadgi - = [KAC]° (4)

[K rs] =

3.3 Circular (Disc) Element

We developed a rigid circular element for the purpose of the analyzing mechanics and
introduced a rigid circular element into the DDA code (Ohnishi and Miki, 1993). The
displacements (u,v) in the rigid circular element 7 are expressed as functions of the coor-

dinates (z,y) as follows:
w\_ (10 —@w-w) [
(v)_(o 1 (:c—rco)) rz )

where (g, ) are rigid translation, rq is rigid rotation.

A deformable element has six degree of freedom (ug, vo, 70, €2, €42 Vzy) While the rigid
elements have only three degrees of freedom (up,vp,70). The matrices depending on the
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conditions of a rigid circluar element and the contacts between rigid circluar elements are
derived by reducing the degree of freedom of the matrices in the deformable element. Fxg
19 shows an example of analysis for the granular system.

4 Constitutive Law for Block

4.1 Elasto-Plastic Element

The strength criterion for a block was introduced. The well known Drucker-Prager failure
criterion with associated constitutive law as shown in Fig. 20 was implemented in the
code to take into account the block failure of rock masses.

The authors adopted the Drucker-Prager associated constitutive law for a block:

FeahtVh- =0 (6)

where
1 [ sin?¢
= = 7
3V 3+sin?¢ (7)
and

7 = 3C(1 — 12a2), (8)

J1 and J2 are first and second invariants of deviator stress, C is a cohesion, ¢ is a friction
angle of the block.

In case of large deformation, the coordinates of blocks should be updated at each time
step. The stress increment with the rotation of the coordinate with block rotation at
each time step is represented by Jaumann co-rotational differential, in order to fulfill the

objectivity of the stress. Then the stresses before and after the rotation are superposed
as following:

o = L7 1 (o[ AWi) + (ol (AW ©)

(o358 = [o35]" + [035] At (10)

where [AW};] is a rotation increment matrix , [oi;] is a stress rate tensor, [Acyj] is a stress
increment tensor and At is a time step.

This manipulation is important for the case of large spin motion on toppling analysis
of slope for instance and the elasto-plastic analysis in which a block has different principal
axis of strain between each steps in particular,

4.2 Example - Stability Analysis of Rock Slope and Tunnel

A stability problem of slope and tunmel in a rock mass with some directions was analyzed
for five cases. The model is shown in Fig. 21. The blocks outside are fixed. The friction
forces of the blocks located at the first and the second layers from the outside are assumed
to be zero, hence, the analysis imitates the roller supports used in FEM. A Drucker-Prager
yield criterion and an assoctated plastic fiow rule were adopted for blocks. And a Mohr-
Coulomb friction criterion was adopted for block surfaces. An external loads of 588kN
was applied on the crest of the slope and inertia forces in the vertical direction of the each
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Fig.15. Result of the experiments
by observation.

Fig.14. The rock specimens and
observation points.

Fig.17. Modeling of Rockbolts.

Fig.16. Numerical result of the rock Fig.18. Bonded Blocks.
block model test.

{a¥nital statc (brcsult after 600 steps {c)result afler 1081 steps

Fig.19. An example of analysis for
the granular system.
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block were also applied. The other analysis conditions are given in Table 3. In Cases-3.1
and 3.2, no reinforcement is installed around the tunnel.
In Cases-3.3 and 3.4, linings were installed. In Case-3.5, rockbolts and a lining were

installed and the lining was bonded to the tunnel wall. The connecting elements used for
the rockbolts and the lining were arranged as shown in Fig. 22.

The material property of the blocks is assumed to be elastic in Cases-3.1 and 3.3, and
elasto-plastic following the Drucker-Prager associated constitutive law in Cases-3.2, 3.4,
and 3.5. The results are shown in Figures 23 to 27. The principal stress distribution
of the elastic analysis with no friction on block surfaces in Case-3.1 can be seen to agree
approximately with the elastic solution for FEM in the instance shown Fig. 23. The
plastic region and the displacement around the tunnel was very large in Case-3.2 without
rockbolts and a lining as shown in Fig. 24. The large stress concentration is caused at the
crest of the corner at the right hand side of the lining and the displacement is shown as
very small in the elastic analysis of Case-3.3 as shown in Fig. 25. Fig. 26 shows the results
of Case-3.4 with inner blocks of the tunnel and the plastic regions and the displacement
is shown as smaller than Case-3.2 with no inner blocks of the tunnel. Fig. 27 shows
the plastic regions and the displacement for Case-3.5 with rockboltings and the lining of
the tunnel. The plastic regions are extremely reduced compared with those of Case-3.4.
From the results, it is clear that DDA can show the difference between the five cases and
represent the effect of tunnel supporting like shotcrete linings or rockbolts.

The results showed that this method can express the effects of the reinforcement to the
tunnel. Since the method is applicable to the discontinuity between continuous models
through its controlling of the friction criteria of block surfaces and using the rockbolt and

concrete elements, the deformation of DDA depends strongly on the friction criterion of
the block interface.

5 Improvement

5.1 Block Rotation

The problem related with block rotation in DDA was found in the research for the rock
fall analysis. The purpose of the research was whether we can follow the actual rock fall in
the high mountain by this new numerical technique DDA. A typical example was chosen
from a site in Niigata Pref. in Japan.

The height of the slope is more or less 150m and slope angle is 45° to 50°. The volume
of falling blocks are estimated to be 18m?® which is normally too big to protect with a
usual concrete wall. The computation is underway to compare with conventional design
criteria which usually does not handle such a large block.

Fig. 28 show the time series of falling blocks from the top of the slope. The estimated
large block was cut into small pieces according to the joint pattern observed at the site.
Fig. 29 also show the falling of idealized parallelepiped blocks when several barriers are
set in the middle of the slope. Some blocks settles and some others are over-riding the
barrier down to the bottom. The energy and velocity distribution of the blocks at each
time steps are obtained and the results are now under examination.

In this research we found that the volume of falling blocks rapidly change according

to the amount of rotation. Now, we discuss what is the reason and how to improve the
problem.
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Fig.20. Strength and deformability "
of a block. Fig.21. Analyzed model.

Table3. Material properties and
analysis conditions.

Components Properties and
analysis conditions
number of time steps 20(Case-3.1-3.4)
Rock bolt Lining 40(Case-1.5)
time step interval 0.5s
Fig.22. Armengement of rockbolts penally coefficient 1x10"
and lining. maximum displacement ratio 0.01
inertia force ( horizontal ) 0 kN
—— —|—-| inertia force { vertical ) -24.5 kN
o 74A ] initial stress 0 kPa
g vigihil Young's modulus 98MPa
L Lt Wi Poisson's ratio 0.24
s/ Mgy cohesion of the body 40kPa
; j( A ; HiA intemnal friction angle 40° (0.698rad)
T LA “ ¥—~ unit weight 24.5kN/m’
% 0
- T, T) l*
Sl s, A
H+ -,f }ﬁ
T YTt ] P11 ¢ FM Y
P 7]
Fig.23. Result of tunnel stability : 7774
analysis (Case-3.1 elastic,without lining, PSPy
: -’ - 3 v _lh_-
friction angle between blocks $=0 degrees ). gy gsvignll
LA “ T~
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i / . ” - () () : *—’
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Fig.25. Result of tunnel stability analysis
(Case-3.3 elastic,with lining, friction angle

between blocks ¢=40 degrees ).

Fig.24. Result of tunnel stability analysis
(Case-3.2 elasto-plastic,without lining,

friction angle between blocks $=40 degrees ).
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Fig.26. Result of tunnel stability analysis Fig.27. Resuit of tunnel stability analysis

(Case-3.4 elasto-plastic,with lining, friction (Case-3.5 elasto-plastic,with lining bonded

angle between blocks ¢=40 degrees ). and rockbolts, friction angle between blocks
$=40 drgrees ).

Fig.28. Modeling of rock fall.
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The displacement (u, v) of any point (z,y) within a block is supposed to be the following
in DDA:

Ug

()00 ez &3 ot G| 2 |

where, (uo,vq) is the rigid displacement of the center point (z¢, o) within the block; rq
is the angle of rigid rotation of the block around the point (w0, %0); €z, £y and Yzy are the
avearge elestic strains of the block.

It is known that (11) is only the first order approximation of displacement, and the
rigid rotation 7 is defined as

1,0v Bu
o= 2(3:1: By) (12)
with £ = 25 and y = y0.
It is worth notice that (12) is defined as the rotation only under the presupposition of
small deformation in elastic theroy. Obviously, it is not valid for large rotation, which can
be shown as the follows.

Supposing that the displacement of a block only involves rigid rotation, then, (11)

becomes
{'ﬂ = —(y—yo) To

v = (z—=xg) 7T (13)
In this case, if 2 block as shown in Fig. 30(a) is rotated 60°, the vertices of the block will
move to the new positions shown in Fig. 30(b)} according to the displacemenets calculated
from (13). Obviously, the area of the block increases by about two times.

In fact, the displacement of a point (z,y) from rigid rotation should be calculated by
the following formula:

u = (z—x)(costg— 1) — (y — yo)sinrg
- : (14)
v = (y—y)(cosrg— 1)+ (z — zq)sinry
Comparing (13) with (14), it can be seen that (13) is the first order approximation of (14).
However, when rotation angle 7y is large enough, (cos v — 1) is no longer approximate
to 0 and sinrp no longer to ry. The larger the rotation angle rq is, the larger the differences
between (cosrg — 1) and 0 as well as sin 7y and rg become.
Because of the nonlinearity of (14), it is difficult to be used directly in the displacement
function of DDA. Therefore, there has not yet been a precise way to solve the problem up
to now. Here we propose two measures to overcome the problem as far as possible:

1. The time increament for a step is taken as small as possible so that the rotation
angle rg can be kept small.

2. Use (14) instead of (13) to calculate the displacements of block vertices in each step.
This can avoid the areal increaments of blocks and reduce the accumulated errors
from rotaions of each step.

The measure 2 has been involoved in the programs of DDA, and it has been shwon very
effective by a lot of calculations.
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5.2 Joint Behavior and Penalty Function

In DDA, the penalty function is used to avoid the physical intrusion of blocks and the
theory is derived as follows.

Denote the stiffness of the spring as p and the inter-penetration distance as d, the
strain energy of the contact spring is;

I = gdﬁ. (15)
The inter-penetration distance d of Fig. 31 can be expressed in terms of coordinate function
[es], {9;] and unknown variables [D;], {D;] of blocks Z and j.

a=22 1 [ed D] + oslID4), (16)

where p is a very large positive number and is the stiffness of the spring (penalty coef-
ficient). And Sp is the area of penetration as shown in Fig. 31. In DDA the penalty
function is representing the contact spring between two blocks. However, if you look at
the physical interface like a rock joint, the contact spring is much softer than the one
used for the penalty function. Then the result of calculation by using the original method
predicts less deformation than the actual one.

‘What we have done to modify the penalty function is as follows. Fig. 32 shows the
concept of the criterion by Shi, in which he applied the penalty method to both normal
and shear directions. In this criterion, if shear stress is smaller than the friction strength,
no block stress conditions are caused due to the non-slip condition (locking) being applied
to the block.

To relax this constraint, we introduced the shear stiffness K, just for the shear compo-
nent instead of penalty and the penalty method is applied only to the normal component.

5.3 Man-Machine Interface

In order to pursue the method to widely practical applications, a powerful system software
for DDA is important and imperative since a vast of data are involved in both input and
output of DDA calculation. In this section, we introduce our newly developed such a
software called DDAWorkTool, which makes it very easy to apply DDA to any practical
problems.

DDAWorkTool, based on window graphics and menu choices, contains three functional
modules corresponding to the three procedures: model-making, calculation-executing and
result-analyzing, which are controlled by a main menu panel (Fig. 33).

The model-making module is used to make DDA models and can be accessed from
the main menu panel by pushing the menu button [Make Model]. Fig. 34 shows its work
windows and menu buttons. It has the following major merits:

1. Grouped blocks are automatically made by filling the related parameters in panel
tables. Joint blocks, tunnel blocks and the blocks from Voronoi Divisions are such
kind of grouped blocks (Fig. 35).

2. Points and boundary lines of blocks can directly be drawn on the screen by use of
mouse. Therefore, un-grouped blocks, fixed points, measured points and load points
can be easily made (Fig. 34). '
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Fig.29. Modeling of rock fall by
parallelepiped blocks.
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(a). Before rotation (b). After rotation

Fig.30. A block is rotated by 60 degrees
counterclockwise.
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'Fig.31. Inter-penetration of blocks. Fig.32. Criteria of penalty method.

39



3. All the parameters are directly inputed by filling the corresponding panel tables.
Therefore, material parameters, boundary parameters and other controlling param-
eters can be easily added, deleted and corrected (Fig. 34).

4. The information and visual pictures of input data for a model are immediately shown

on the windows for every operation. Therefore, it is easy to check the model while
making.

The calculation of DDA can be executed from the main menu panel by pushing the
menu button {Calculation]. The module is based on the codes made by G. Shi, 1994,
but the following improvements have been made.

1. The name of the model to be calculated are directly chosen from the menu list which
are collected automatically from the current directory.

2. Both ASCII and binary formats are available for the output of the calculation, the
format and the number of output steps can be chosen by user.

3. The part of codes related to block rigid rotation are modified. Since the first ap-
proximation is taken in displacement functions of DDA, large errors will take place
when large rigid rotations of blocks are involved in a step. By modification of the
codes, the results have been improved considerably for this case.

The result-analyzing module can be accessed from the main menu panel by pushing
the menu button [Result Analysis]. Fig. 36 shows its work windows and menu buttons.
It provides various kinds of graphics and pictures based on the output data of DDA so

that a user can analyze the calculated results easily. The following graphics and pictures
are available:

1. The picture of the deformed whole block system can be shown for any step, forward
and backward.

2. The animated drawing of the deformed whole block system can be automatically
shown step by step.

3. The pictures of the déformed whole block system can be amplified so as to investigate
the interesting part in detail.

4. The graphics of the stresses, strains, displacements and velocities from the first step
to the last step for any block are immediately available when a block is pointed by
mouse or a block number is assigned in the menu panel (Fig. 37).

The digital results of a specified block are also shown in the right window corresponding
to each step.

DDAWorkTool has been coded with C langnage on Sun WorkStation, and it has been
shown to be very efficient by a lot of practical uses. We expect that the useful DDA
method will get more and more widely practical applications by using the tool.
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Fig. 33. The main menu panel of DDAWorkTool

5.4 -Discussion

In the process of solving actual geotechnical engineering problems, we faced a lot of diffi-
culties to use DDA method. Some of the difficulties have been solved, but there still exist
problems to be discussed.

a} cohesion ¢ In the Mohr-Coulomb failure criterion, we use cohesion ¢ to add
strength of the martial in geotechnical engineering. In any application of DDA nobody
tried to include cohesion ¢ term for the failure criterion. The problem comes from the
nature of DDA block contact assumption in which the edge to edge contact is not consid-
ered. We should carefully examine how we can include ¢ term in the DDA code which is
often used in the engineering calculation.

b) node (corner) to node {corner) contact In DDA the fancy and amazing
method was introduced to identify the block to block contact. Unfortunately in case of
the node (corner) to node contact, the it takes so much time to identify the block contact
and sometime computation time is intolerable. In order to avoid this problem, most of
the example were calculated not using node to node contact when the block mesh was
created.

However, if we use Volonoi tessellation for block mesh, the node to node contact is not
avoidable. Then as a temporally solution we introduced the rounded corner for the special
case.

c) material damping for a block In addition to the block rotation problem, we
found the strange behavior of falling blocks when they collide each other. The energy
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balance between blocks has to be take into account. For the moment, the damping factor
for the block was introduced, but the energy consumption at the collided interfaces has to
be considered. '

d) uniform load (stress) boundary There is no problem for the uniform displace-
ment boundary in DDA because the stiff block behaves as the boundary. But, uniform
stress boundary usually used in the laboratory test condition can not be created easy in
the existing DDA code.

6 Conclusion

The potential use of a new tool, discontinuous deformation analysis technique, are investi-
gated. The application of this method to the actual rock slope engineering has just started

recently and we will try to develop more convenient and powerful technique for the future
research.

The method of DDA with improvement has been proven to be very effective to analyze
rock stability problems in discontinuous deformable rock masses, but we still have prob-
lems to be solved as discussed in the previous section.
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Discontinuous Modeling and Rock Mass Instablity Problems

Dezhang Lin

Rock Mechanics Institute, The University of Oklahoma, Norman, OK 73019, USA

L. INTRODUCTION

Due to its sheer size, the Three Gorges Project has been attracting world attention.
The project is now underway and will take about seventeen years to complete. One
of the largest engineering project in recent times, the Three Gorges Dam Project
has the potential to provide unique field data and opportunities to advance rock
mechanics and rock engineering.

Considering the geology and the engineering requirements of the project, rock
mechanics tests and analyses have, so far, been focused on the following topics:
1) physical and mechanical properties of rocks and rock masses, with emphasis on
weathering and discontinuities; 2) development of a general conceptual model for
the behavior of the rock masses, i.e., engineering classification; 3) determination of
the rock stress and groundwater fields in the vicinity of the dam site; 4) optimization
of the dam foundation, i.e., feasibility of founding the dam on weathered rock; 5)
stability of high and steep rock slopes; and, 6) stability analysis of landslide areas
along the future reservoir, especially in the shiplock areas.

The Rock Mechanics Research Center (RMRC) at The University of Oklahoma
conducts basic and applied research in rock mechanics and rock engineering. The
RMRC and the Research Group of the Ship Loch High Slopes for the Three Gorges
signed a teaming agreement on June 9, 1994 in order to start a mutually beneficial
partnership.

2 GOALS

The Three Gorges Project is the largest water resources development scheme cur-
rently being constructed in China, and probably in the world. Local as well as foreign
scientists and engineers have been approached to provide the technology required
to complete this project in a more effective, safe, and environmentally acceptable
fashion.

Design in rock engineering as well as the process of developing construction
plans, should be based on sound principles of mechanics. The Three Gorges Project
provides a number of unique facilities and sites to conduct scientific investigations on
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these basic principles and their applications not only from a civil construction point
of view, but also in economic exploration, resource extraction, and waste disposal.

3 OBJECTIVES

The objectives of the project are:

1) to conduct basic and applied research on rock mechanics related problems
having a direct impact on the Three Gorges Project and provide the technology
required to complete this project in a more cost effective , safe, and environmentally
acceptable fashion.

2) to develop U.S.-China mutually-beneficial partnerships amongst scientists and
engineers involved the rock mechanics research.

3) to help establish participation in international science and engineering activ-
ities that promise substantial benefits to research and education enterprises.

4) to enhance the international perspectives of the next generation of U.S. sci-
entists and engineers in rock mechanics, including graduate students, post-doctoral
fellows and visiting scholars through fellowships, summer programs, and research
participation.

5) to access an unique research site (The Three Gorges site) and collaborate with
outstanding Chinese researchers.

4 LITERATURE REVIEW

Significant research achievements over the past two decades by the U.S. rock mechan-
ics community could easily be used to advance the technology required to optimize
some of the aspects of the Three Gorges Project. ,

As Table | indicates, there have been numerous static analyses of the stability of
a single block published in the rock mechanics literature over the past two decades.
Most of these analyses have concentrated on the stability of a single block, with
little or no consideration to the behavior of the system stability, and the possibility
of a sequential instability of blocks affected by the motion of surrounding entities.

The behavior of a single simple block, such as a parallepiped or a tetrahedral
wedge, adjacent to the excavation surface was the main focus of earlier studies
(e.g, Londe (1965), Ashby (1971), Hoek et al. (1973), Goodman (1976), and Lucas
(1980)), with results obtained either graphically by stereo graphic projection or an-
alytically by vector techniques. Some recent stability analyses have attempted to
consider more complex {polyhedral) block geometries. Two investigations, one de-
veloped by Warburton (1981), the other by Goodman and Shi (1985), are especially
noteworthy. Both are implicit methods. The ingenious "Key Block Theory” by
Goodman and Shi has become particularly well-known. In this procedure, all of the
potentially unstable blocks (i.e. those for which displacement into the excavation or
free surfaces of the rock structure is kinematically feasible) are identified. Each of
these blocks is examined in turn to determine which of them are unstable, or "Key
Blocks”. Attention is then given to reinforcing or otherwise ensuring the stability of
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these blocks. With these key blocks secured, it is argued that the entire fractured
system is then stable, and it is not necessary to examine the stability of other blocks.

Two approaches, one developed by Warburton (1981), Goodman and Shi (1985),
the other by Lin and Fairhurst (1988) are especially noteworthy.

Table 1. Modeling studies of the static stability of a single, two-dimensional or
three-dimensional block

Investigator Year Dimension Shape Data Structure
Londe 1965 3 wedge explicit
Benson et al 1971 2 polygon 7
Cording et al 1971 2 polygon K
Ashby 1971 3 parallelepiped ”
Hoek et al 1973 3 wedge "
Goodman 1976 3 wedge implicit
Hoek and Bray 1977 3 wedge explicit
Croney et al 1978 3 wedge "
Bray 1979 2 polygon ?
Coric 1979 3 wedge ”
Hoek and Brown 1980 3 wedge "
Priest 1980 3 wedge implicit
Lucas 1980 3 wedge "
Warburton 1981 3 polyhedron K
Crawford 1982 2 wedge explicit
Goodman and Shi 1981 3 polyhedron implicit
Zhu and Xiao 1982 2 polygon explicit
Crawford and Bray 1983 2 polygon ”
Elsworth 1983 2 polygon K
Zhifa 1983 3 wedge mmplicit
Goodman and Shi 1985 3 polyhedron "
Lin and Fairhurst 1989 3 polyhedron explicit

Footnote: In the context of the static analysis of blocky systems, there are two type
of methods:

o Implicit methods are those where, in the problem formulation, the orientations
of the joint sets are prescribed, but the spacing and spatial location are not
defined. Implicit analyses set out to determine the *worst- case’, 1.e that spac-
ing and location of joints which will result in the most unstable combination
for the particular excavation or structure under study.

* Explicit methods require that the joint (and hence block) system be completely
specified, with given values for each joint orientation, joint spacing and location
In space.

In the key block analysis, a complex block - formed by a number of discontinuities
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- is regarded as a combination of geometrically simple convex blocks and classified
according to the following conditions:

(1) finiteness: the block is finite, its boundary consists of either joint planes or
excavated free surfaces;

(2) removability: there is at least one direction along which the block can move,
without rotating, so as not to invade a neighboring block; and

(3) stability: the analysis of potential instability usually compares the joint
strength with the external forces necessary to develop critical conditions for the
block.

Owing to the absence of an explicit, well-formed data structure for the geometry
of individual blocks and the block system, complexity and ambiguity are unavoidable
with implicit methods. The sequential displacement of blocks and the progressive
development of instabilities can not be determined. This limits the range of block
instability problems to which implicit methods, including the key block theory, can
be applied.

Several approaches, e.g, Elsworth (1986), Yow and Goodman (1987), Londe
(1989) have been developed recently to evaluate the effects of such factors as initial
stress, stiffness and dilatancy of the joint surface or block interface on the static sta-
bility of blocks. Most of these approaches are based on a statjc relaxation analysis
of wedges in the roof of an underground opening, as presented by Bray [see Brady
and Brown (1985, pp.227-236)]. Static relaxation takes into account joint stiffness
and the effects of associated changes in joint force (due to a potentially destabilizing
movement ), prior to joint slip, on the equilibrium of a single block. Although these
studies do consider the effect of block displacement to this limited degree, they do
not examine the progressive deformational behavior of the blocky system.

While it is possible, in principle, to analyze how the stability of other blocks in
a Jointed mass are affected by instability ( or 'removal’) of the first block, relatively
little attention has been paid to this problem in the static analyses described above.
Stability of the jointed system, overall, is an important question both from the view-
point of mining, where {controlled) instability of a blocky mass is often desired (e.g.
in block caving operations) and in rock dam engineering, where a knowledge of the
‘ultimate’ behavior of a system is often essential to the safe design of structures.

A primary obstacle to undertaking a systematic study of the static stability of
a blocky mass has been the absence of a well-designed computational procedure for
identification of the geometrical and topological structure of a polyhedral blocky
system.

As noted above, static analyses of block stability usually assume that the forces
acting on a block are constant and independent of any block motion. In reality,
of course, motion of one block relative to its neighbors must produce changes in
the block-block forces. These changes will spread progressively through the block
system until either the system reaches a new stable equilibrium, or it collapses -
often after large inter-block displacements.

Dynamic analyses incorporate these changes in force and moment equilibria into
studies of block motion. Thus, considerations of the behavior of the blocky system
is inherent in a dynamic analysis.
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Table 2 lists some of the main attempts to develop realistic descriptions of the
dynamic deformation response of a jointed rock mass.

Table 2 Dynamic methods for modeling the stability of two- dimensional or
three-dimensional blocky systems in rocks '

Investigator Year Dimensions Type of Constraint
Cundall 1971 2 explicit
Burman 1971 i K
Chappel 1972 " "

Cundall 1976 " "
Hocking 1977 " "
Kawai 1977 Y "

Kawai et al 1978 " "

Lotstedt 1979 " implicit
Cundall 1980 " explicit

Kawai et al 1980 ” ”
Dowding et al 1983 " K

Belytshko 1984 " "

Shi and Goodman 1988 - 2 (DDA) implicit
Hocking et al 1985 3 explicit
Williams et al 1987 K i
Cundall et al 1988 " 7

Ghaboussi et al 1990 » explicit
Lin 1990 3 explicit

As with static analyses, published results of dynamic stability studies may be
classified into explicit and implicit methods. The explicit methods are based on
‘reaction constraints’, while implicit approaches are based on ’optimization con-
straints’, as described below.

In explicit methods (reaction constraints), blocks are assumed to be related by a
spring-damper-actuator element (a generalized spring). The attachment points are
F; and F;. The spring constant is k. The damping coefficient is ¢, and the actu-
ator force is F,. With all parameters explicitly prescribed, the motion interaction
between blocks is also explicitly specified. _

In implicit methods (optimization constraint), constrained optimization proce-
dure finds a minimum of a function f(x) on a specific subspace. During constrained
optimization, the state vector x should be attracted to the subspace g(x) = 0, then
slide along the subspace until it reaches the locally smallest value of the function
f(x) on g(x) = 0.

Dynamic analyses consider the time history of position, velocity, and acceleration
of the system of blocks under the changing distribution of forces and force interac-
tions as the blocks deform and displace. Three types of block-block interactions may
be considered: rigid blocks, ’simply deformable blocks’; "fully deformable’ blocks’.

Lotstedt (1979), and Shi and Goodman (1988) have used an implicit ’optimiza-
tion constraint’ approach. This method assumes that the system will seek a min-
imum energy condition and optimization is based on achieving such a condition.
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Various techniques, such as the penalty method, augmented Lagrangian method,
Lagrange multiplier or gradient descent method are used in the optimization con-
straint approach.

Review of the above-mentioned static and dynamic stability analyses has led to
several conclusions:

¢ Dynamic analysis is physically more realistic and overcomes some intrinsic
shortcomings of static analysis - but dynamic analysis can be computationally
much more time- consuming.

e Key-block analysis is unsatisfying in that no consideration is given to the
stability of the blocky system after removal of an unstable key block. Although,
as note earlier, it is possible, in principle, to repeat the key block analysis
technique successfully on the individual blocks after removal of a key block,
the implicit nature of the analysis makes it difficult to examine the overall
stability of a system of blocks. Users of key-block analysis contend that it
is sufficient to identify the unstable block that intersects the open boundary
of the block system. It is reasoned that, once this block is made stables by
rock-bolting, all other blocks in the system will remain stable. (Note, however,
that there are situations where individually stable blocks may become unstable
when bolted so as to act as a single block - so it is necessary to examine the
stability of such combined blocks.)

e Static analysis of blocky systems may help to define those block assemblages,
orientations or regions (with respect to free surfaces, applied forces etc.) that
may be intrinsically stable. Once these stable regions or situations are defined,
it may be possible to restrict the dynamic analysis to those parts of the blocky
system where stability is problematical. In other words, it may be possible to
combine static and dynamic methods of analysis so as to provide a procedure
that is physically realistic but less demanding computationally than a dvnamic
analyses of the entire system of blocks.

* The methods used to define blocks (i.e the ’data structure’) in studies published
to date have been different for the static and dynamic analyses. This makes

it difficult to compare a static and dynamic analysis of the same system of
blocks.

5 STUDY TASK DESCRIPTION

The Rock Mechanics Research Center is committed to carry out research to acquire a
better understanding of the fundamental principles associated with rock engineering
and to build this understanding into planning, design, and construction activities.

The five preferred topics of research, as outlined by U.S. and Chinese research
partners, are the following:
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Task 1: Micro- and Macro-failure Mechanism(s) Characterization

‘The inelastic behavior of fissured rock masses is due primarily to the presence of
discontinuities and the frictional sliding on such surfaces. Consequently, this macro-
scopic inelastic response is inhibited by an increase in hydrostatic pressure and
exhibits volume changes and strain softening.

The rate sensitivity on the location of the deformations in a visco-plastic rock
mass will be examined under different stress conditions, especially at the base of
the proposed shiplock. The microstatistical, rate-dependent, internal state variable
approach is directly connected to microstructural variables; forming a link between
microstructural failure and macro fracture (joint) deformation.

In dealing with strain localization damage and shear bands, it is necessary to
introduce a material scale or internal dimension to allow for the discontinuous na-
ture of the material. Cosserat’s model, gradient theories, nonlocal concepts, special
averaging schemes, and diffusion or relative motion through interfaces are among
the possibilities for incorporating the effect of an internal dimension. Significant re-
search will be needed in order to arrive at closed-form or experimentally determined
formulae that would depend on factors such as interparticle properties and grain
S8lZe.

Task 2: Fracture Network and Slope Stability Analyses

The natural rock mass consists of an interconnected network: main fracture channel,
secondary fractures and pore matrix which are each characterized by their distinct
porosities and permeabilities. Such a multi-level network approach is being devel-
oped at The University of Oklahoma.

In the context of the static analysis of blocky systems, there are two type of
methods:

o Implicit methods are those where, in the problem formulation, the orientations
of the joint sets are prescribed, but the spacing and spatial location are not
defined. Implicit analyses set out to determine the 'worst- case’, i.e that spac-
ing and location of joints which will result in the most unstable combination
for a particular excavation or structure under study.

¢ Explicit methods are those require that the joint system (and, hence, the
block) to be completely specified, with given values for each joint orientation,
joint spacing and location in three-dimensional space.

Owing to the absence of an explicit, well-formulated data structure for the rock
mass geometry, complexity and ambiguity are unavoidable with implicit methods.
The sequential displacement of blocks and the progressive development of instabil-
ities can not be determined. This limits the range of block instability problems to
which implicit methods, including the key block theory, can be applied.

Development of an efficient modeling procedure, based on geometry and top ology,
for definition of three-dimensional rock masses will allow the geological data input to
be structured so as to simplify both the data structure; and the subsequent analysis
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of the static or dynamic stability. A static (key block theory) and a dynamic (distinct
element and DDA) stability analysis procedure for three-dimensional blocky systems
will be compared and validated.

Task 3: Anchorage Optimization

It is reasoned that, once the key blocks are stabilized by bolting, all other blocks
in the system will remain stable. (Note, however, that there are situations where
individually stable blocks may become unstable when bolted so as to act as a single
composite block - so it is necessary to examine the stability of such combined blocks.)

Static analyses of blocky systems (Warburton, 1981; Shi and Goodman, 1985
and Lin and Fairhurst, 1988) may help to define those block assernblages, orien-
tations or regions (with respect to free surfaces, applied forces etc.) that may be
intrinsically stable. Once these stable regions or situations are defined, it may be
possible to restrict the dynamic analysis to those parts of the system where stability
1s problematical. In other words, it may be possible to combine static and dynamic
methods of analysis so as to provide a procedure that is physically realistic but less
demanding computationally than a dynamic analysis of the entire system of blocks.

Static relaxation takes into account joint stiffriess and the effects of associated
changes in joint forces (due to a potentially destabilizing movement), prior to joint
slip, on the equilibrium of a single block. Although these studies do consider the
effect of block displacement to a limited degree, they do not examine the progressive
deformational behavior of the blocky system.

A topological structure has been developed to define three-dimensional fracture
systems and blocky systems. This structure provides a unified framework for the
static and dynamic analyses making it possible to compare such analysis.

Task 4: Excavation Effects

It is possible to estimate the stress concentrations, stress shadows and structure
performance which occur in a complex excavation sequence; however, it is important
to choose the correct analysis technique. Some guidelines will be given for the case
of the Three Gorges project.

A series of experiments will be performed to define the fundamental behavior
and validate the theoretical models. If the rock structure is considered important
then the blocky approach seems to offer the best compromise between computational
efficiency and realistic behavior. The success of the analysis interpretation will be
directly proportional to the effort spent in back analysis, building up each particular
rock engineering structure.

Task 5: Rock Classification

The different rock classifications developed in U.S. and China will be tested and
validated using the Three Gorges’ site data.

In view of the large area of the dam site and non-homogeneity of the rock mass,
1t will be necessary to divide the site into a number of sub-regions. In order to fit
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the particular conditions of the Three Gorges project, a new method of rock mass
quality classification, the "TG-YZP” (Three Gorges-Rock Mass Quality Evaluation)
method, recently been developed by the Changjiang Water Resource Comnmission
(CWRC) Investigation Service will be evaluated. This method is semi-qualitative,
and is based on a comprehensive evaluation of five factors: 1) rock mass integrity;
2) rock strength; 3) character and status of the joint; 4) rock mass permeability;
and, 5) rock mass deformability,

The rock ‘mass rating (RMR), the mining rock mass rating (MRMR) and the
design rock mass strength (DRMS), developed by western rock mechanics communi-
ties provide good guidelines for mine design purposes. However in the Three Gorges
Project a more detailed investigation might be required; the difference between
those classification systems will be examined at the dam site, including Barton’s
classification.

Task 6. Rock Mass Failure Database

An important step in decreasing failures is understanding the precursors, triggering
mechanisms, failure initiation and propagation processes. The experience gained
from rock failure data should facilitate the implementation of remedial measures by
allowing modification of the support design, based on an improved understanding
of failure mechanism of rock and support components.

The main database will be partitioned in several smaller databases. In addition,
three further subdivisions or separate parts will be designed to contain information
on support, destressing and rockbursts. The rock failure database program will be
written for aiding data entry and information retrieval to locate specific records,
create reports, calculate statistics, present graphics and conduct various database
operations and text editing.

Rock failure data will be accumulated at the Three Gorges dam construction
sites and shared with partners.

Task 7. Other Developments

The constitutive three-dimensional behavior of joints is a subject worthy of consid-
erable experimental and theoretical research, to provide more realistic input to the
static and, especially, the dynamic analyses of fractured rock masses.

There are important research opportunities to improve both current block mod-
eling procedures and their applicability to slope stability problems such as the ones
in the Three Gorges Project.

For example, extended models could include the coupled effects of: pressurized
flow in rock joints and mechanical deformation behavior.

The following important concepts and approaches are also important when con-
sidering block motions:

1) topology to allow a better description of the internal relationship and deep
structure of the geometrical entity; 2) Lie group to view the configuration manifold
of a variational framework. 3} manifold to derive the Langrangian formulation of
constraint systems as a coordinate-free generalization of Newton’s equations (the
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reaction force produced by the constraints are indeed orthogonal to the constraint
manifold.) Through this approach a blocky body can be viewed as a vector bundle
in the manifold.

6 PRELIMINARY WORK

Some preliminary work for the research has already been started as part of the
efforts associated with the Rock Mechanics Research Center at The University of
Oklahoma.

An efficient modeling procedure, based on geometry and topology, for definition
of three-dimensional blocky systems for anchorage, has been developed to allow the
geological data input to be structured so as to simplify both the topological data
structure for blocky systems. A static (key block theory) and a dynamic (distinct
element and DDA) stability analysis procedure for three-dimensional blocky systems
have already been compared and validated.

A multi-level network method has also been developed recently. Thls technique
differs fundamentally from most classic discrete models in that the subdivisions
based on topological theory and the multiple families of flow paths, such as connec-
tivity, are completely specified. The uninterrupted flow paths, which represents the
"backbone” of the fracture system, is ultimately defined. This new discrete model
represents a novel approach to characterize the transport phenomenon in fractured
rock masses.

7 IMPACT OF THE PROPOSED RESEARCH

The study is expected to enhance understanding of the basic principles governing
rock mass phenomena. Some of the associated problems are outlined below:

e Discontinuum Mechanics

The two classical theories of rigid body mechanics and deformable body con-
tinuum mechanics have each followed separate paths of development and have
reached levels that are quite sophisticated. It is only since the 70’s that numer-
ical simulation began to allow analyses of complex systems such as satellite
; cell motion and interaction in biology; robot motion in automation; and
block motion in rock mechanics. However, resurgence of interest in the overall
combination of the two classical theories needs to be considered.

¢ Imaging Technology

Technology pioneered in medicine have been emulated in seismic tomogra-
phy; together with three-dimensional imaging, this particular technology of-
fers much enhanced opportunities for inventorying and characterizing rocks at
engineering sites.

Borehole scanners provide an extremely detailed optical survey, this digital in-
formation can be processed as part of a rock engineering analysis; for example,
joint surveys including aperture distributions.
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s Manifold Methods

Continued contribution to the theory of material mechanics has created an
analytical framework suitable for discontinuous rock. The current state of this
field allows manifold concepts to be central in numerical modeling of problems
in continuum and discontinuum.

¢ Stochastic Methods

Applications of reliability analysis in fluid mechanics and environmental engi-
neering areas, and other fields of application are presently under development.
The use of the Monte Carlo method in multilple simulations (for example,
fracture network) is a good example but more economical and direct meth-
ods should be sought where possible to establish risk, reliability, safety and
probable outcomes.
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Abstract

This paper presents a new development of fracturing algorithms for jointed rock masses with the
Discontinuous Deformation Analysis (DDA) method over the past three years. Two types of
block fracturing are included: (1) intact block fracturing, and (2) sub-block fracturing. In the first
type, intact blocks can be broken into two blocks (with one tensile or one shear fracturing plane)
or four blocks (with two shear fracturing planes) at one time of block failure. The fracture tips
stop while the block boundary is met. In the second type, the fracture of sub-blocks embedded
inside intact blocks is allowed to propagate within sub-blocks in Mode I, Mode II, or mixed
Modes I and II. The capability of the newly developed block fracturing algorithms 1s to-be
examined by following examples: (1) rock-fall, (2) cliff failure, and (3) slope stability.

Introduction

The Discontinuous Deformation Analysis (DDA) method was first proposed by Shi and
Goodman [1] in 1984 and published in Dr. Shi's PhD thesis 2] in 1988. Over the past three
years, a number of extensions to the method were explored. The extensions are composed of (1)
improving the contact algorithm, (2) adding sub-blocking , and (3) block fracturing capabilities.
In the first extension, the penalty method first proposed by Dr. Shi in the DDA method to
enforce the block contacts was replaced by the Augmented Lagrangian Method (ALM). The
ALM enforces the block contacts more precisely and calculates block contact forces more
accurately. The second extension introduced the sub-blocking capability in order to determine the
stress variation within large blocks in which a number of sub-blocks 1s embedded. Along sub-
block contacts, the continuity of displacements is preserved. The third extension, which. is to be
presented along with three illustrative examples later in this paper, provided several fracturing

algorithms with the DDA method.
The details of the first two extensions can be seen in Lin's PhD thesis [3], entitled
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"Extensions to the Discontinuous Deformation Analysis for jointed rock masses and other blocky
systems".

Fractwming Criterion

The criterion selected in this research for block fracturing with the DDA method is 2
Mohr-Coulomb criterion with three parameters : s, is the inherent shear strength of the block
material, ¢ is its friction angle, and T, represents its tensile strength. It is assumed that tensile
normal stresses are positive, and the major and minor principal stresses are denoted as &, and
g, (with 6, > &;), respectively. A critical value of the minor principal stress is defined as-

o, = -C, + Totanz(%+%) (1)

where C,= 2stan (w/4 +¢/2) is the unconfined compressive strength of the block material.
According to the Mohr-Coulomb fracturing criterion, shear failure occurs when

a3<a;, A o35 -C, + cltanz(%+9) (2)

(where 'A'="and') and tensile failure occurs when

6,20, AN g 2T, (3)

o

The obvious advantage of using this criterion is that tensile or shear failure of blocks are well
defined by the transitional normal stress o, Tensile failure often occurs in strong brittle rocks
under tension. On the other hand, shear failure is more likely to occur in soil or in weak rocks.

Intact Block Fracture

The three-parameter Mohr-Coulomb criterion added to the DDA program is graphically
shown in the theoretical and physical plots in Figures 1(a) and 1(b). For each block of the
system, the major and minor in-plane principal stresses G, and ©; determined at the block's
centroid are compared to the third principal stress which is equal to 0 for a state of plane stress.
The largest of the three principal stresses is taken as o, and the smallest as o,. Before running
the program, the user has to divide the blocks into two groups : those that are allowed to break
(breakable blocks) and those that are not (intact blocks). Fracturing of the blocks in the first
group is determined in the program by comparing &, and @, with the following expressions of
the three-parameter Mohr-Coulomb criterion
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g,27, if 0,>0,>0 (4a)

02Ty, if 0,>0>a,>0,, (4b)

-C.+ 2E. 9 ] >0>g, > {(4¢)
0,5 -Cy+0,tan (Z+-i) if ¢,>0>ag,>a,

0,5s-C, if 0>0,>a, (4d)

If condition (4c) is satisfied within a breakable block, shear failure is assumed to occur
with two failure planes passing through the block's centroid and inclined at & (n/4 - ¢/2) with
respect to o;, as shown in Figure 1(b). Then, the block is divided into four blocks and the
analysis is resumed with a new block configuration. If, on the other hand, either condition (4a)
or (4b) is satisfied within a breakable block, tensile failure occurs with a failure plane passing
through the block's centroid and oriented at right angles to o, as shown in Figure 1(a). In this
case, the block is divided into two blocks and the analysis is resumed. This process is repeated
for all breakable blocks in the system. In this formulation, no energy dissipation is assumed to
occur during shear or tensile failure. Upon breaking, the new blocks are assumed to have the
same velocities as the original block. Also, the new fractures have Coulomb friction and
cohesion. Note that condition (4d) is not considered in this paper since, in that case, shear failure
occurs on two planes in a direction parallel to o,.

Sub-block Fracture

Consider a large block divided into several sub-blocks, as shown n Figure 2. The sub-
block contacts satisfy the displacement compatibility conditions along block-to-block contacts.
A crack has been initiated. Fracturing takes place at the crack tip (point A in Figure 2) and the
direction of crack propagation depends on the state of stress in the sub-block in direct contact
with the crack tip (shaded sub-block in Figure 2). Mode I (tensile), Mode II (shear), or mixed
Mode I and Mode II fracture propagation is allowed as specified by the user. In each case,
propagation results in the sub-block in contact with the crack tip to be divided into two new sub-
blocks and the process is repeated at the next time step. In contrast to the independent fracturing
of whole blocks, sub-block fracturing allows continuous crack propagation. All new crack
surfaces have Coulomb friction and cohesion.
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Mode I Fracture (Tensile Failure)

With this type of fracture mode, the crack will propagate through the sub-block just ahead
of the crack tip if the principal stresses ¢, and o, in that sub-block satisfy condition (3). The
direction of crack propagation will be perpendicular to .

A typical example of this type of fracture is shown in Figure 3. The crack is initiated at
point 1. Point O is the centroid of the sub-block. When the state of stress of the sub-block (or
at point O) satisfies condition (3), the crack propagates from point 1 to point 2 in a direction
perpendicular to g,.

Mode II Fracture ( Shear Failure)

The crack will propagate through the sub-block just ahead of the crack tip if the principal
stresses ¢, and g, in that sub-block satisfies (2). Now, the direction of propagation is inclined
at +(m/4-¢/2) or -(n/4-/2) with respect to ;. One of those two directions is specified by the user.

A typical example of this type of fracture is shown in Figures 4(a) and 4(b). In Figure
4(a), the crack is nitiated at point 1. Point O is the centroid of the sub-block. When the state of
stress in the sub-block ahead of the crack front satisfies (2), the crack propagates from point 1
to 2 in a direction inclined at +(n/4 - ¢/2) with respect to o,. Similarly, Figure 4(b) shows
another possible shear cracking plane, with the direction of propagation from point 1 to 2 inclined
at -(1/4 - §/2) with respect to ,.

Mixed Mode Fractiure

Here, the crack will propagate through the sub-block ahead of the crack front if the
principal stresses G, and o in the sub-block satisfy either Equation (2) or (3). The direction of
propagation is perpendicular to &, if G, and o, satisfy condition (3). On the other hand, the
direction of propagation is inclined at +(n/4-§/2) or -(n/4-¢/2) with respect to o, if G, and o,
satisfy condition (2). In the latter case, one of the shear fracturing directions must be specified
by the user.

The advantage of the mixed mode option is that either tensile or shear fracture is
determined by the state of stress in the sub-block ahead of the crack front at the time of fracture.

Energy Balance during Fracturing

Although classical fracture mechanics stipulates that some strain energy is released during
fracture [4], the current research does not include an energy loss criterion. Therefore, an
alternative kinematic condition has to be satisfied and enforced in the model.

Constder a block (or sub-block) i that is to be fractured at a certain time step when the
state of stress in the block satisfies the fracturing criterion. A fracture plane is introduced and two
new blocks are formed. One is denoted as block il and the other as block i2. At the end of the
time step, the new block velocities 8D;,(t)/Gt and ED.(t)/5t are assumed to satisfy the following

equation
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OD() _ D)) _ aDu(1) (5)
ar ot at

where 6D (1)/Gt is the velocity of the original block. Since velocities are conserved, there is no
energy loss associated with fracturing.

Numerncal Examples

The purpose of this section is to examine the capability of the newly developed DDA
program for the following applications: (1) rock-fall, (2) cliff failure, and (3) slope stability. All
the illustrative examples presented in this section employ the Augmented Lagrangian Method to
enforce block contacts and the dynamic analysis to model block kinematics.

rock-fall

Rock-fall analysis has been the subject of many engineering research programs in recent
years because rock-fall hazard is a major threat to human safety both on highways and on
construction sites. Therefore, several methods for rock-fall analysis have been carried out to
capture the different modes of motion of falling rocks such as free falling, bouncing, rolling and
sliding.

Consider a hexagonal intact rock with a diameter of 120 ft (36.6 m) resting at the top of
a 300 ft (90 m) high slope, as shown Figure 5. Note that the ground structure is composed of five
intact blocks while the fence is represented by one intact block. No external load is applied. The
material of the falling rock has a shear strength 5,=90 ksf (4.3 MPa), = tensile strength T=60 ksf
(2.8 MPa), and a 39.1° friction angle. All interfaces have a friction angle of 30° and zero
coheston.

In this case, the falling block is represented by one DDA element. As the intact rock
fracturing algorithm is applied, the intact block is allowed to break a maximum of three times.
Either shear or tensile fracturing of the block is allowed in this example, depending on the values
of the major and minor principal stresses, as described in the previous section. When shear
fracturing occurs, two fracturing planes pass through the centroid of the block and are inclined
at -(m/4-¢/2) and +(w/4-§/2) with respect to the minimum principal stress o, respectively. When
tensile fracturing occurs, the fracturing plane passes through the centroid of the block and is
perpendicular to the major principal stress ©,.

Figure 6(a) shows that the falling block starts rolling down and becomes loose after 130
time steps. Figures 6(b)-(f) show that the intact block breaks into smaller blocks upon impact
with the ground and show the trajectory of the resulting block fragments after 230, 300, 340, 400
and 600 time steps. Following breaking, the block fragments continue to roll and bounce until

they are stopped by the fence.
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cliff failure

In mountainous area like Tarwan, it is usual to find roads being constructed beside high
mountains with fractured rock masses. The rock masses with no fracture were stable. However,
tf the rock masses were fractured due to disturbance of construction, change of temperature, or
intrusion of water into the rock joints, the rocky mountain would become unstable. The example
presented below is designed to show how the new DDA program can capture the failure of a
sloped mountain.

Consider a 10 ft (3 m) high mountain with a slope inclined at 60.3 degrees to the
horizontal existing an initial crack with a depth of 1 ft (0.3 m), as shown in Figure 7(a). The
initial crack is located at 2.5 ft (0.76 m) from the right top edge of the mountain. No external
load is applied. The material in the mountain is assumed to be homogeneous with a Younws
Modulus E=1 x 10° psf (4,800 MPa), a Poisson's ratio v=0.25, a unit weicht v=130 pef (2 x 10~
MN/m’), an inherent shear strength (cohesion) s,=400 psf (1.92 x 10 MPa), a tensile strength
T,=400 psf (1.92 x 10* MPa), and a 30° friction angle. All interfaces have a friction angle of 30°
- and zero cohesion. In the DDA sub-blocking analysis, the mountain was represented by one block
divided into 71 sub-blocks; 19 of which were fixed in the horizontal and vertical directions
(Figure 7(b)).

In this case, either shear or tensile fracturing of the block is allowed in this example,
depending on the values of the major and minor principal stresses, as described in the previous
section. When shear fracturing occurs, one specified fracturing plane passes through the centroid
of the block and is inclined at -(7/4-¢/2) with respect to the minimum principal stress c,. When
tensile fracturing occurs, the fracturing plane passes through the centroid of the block and is
perpendicular to the major principal stress &,

Figures 8(a)-(f) show the trajectory of crack propagation and the fractured mountain after
4,7, 100, 200, 400 and 500 time steps, respectively. Gravity loading toward the slope results in
the crack propagate along a almost vertical direction. After 7 time steps, the mountain starts
fracturing at the initial crack tip and the crack propagates towards the slope. The mountain is
then divided into two distinct sections. The right hand side section continues to move downward.
Large displacements can be noticed. The results clearly demonstrate that the new DDA method
may be a useful tool in the analysis of a range of slope problems in the .mountainous area.

slope stability

Gravity can cause instability in natural slopes, in slopes formed by excavation and in
slopes of earth dams and embankments. Slope failure can be of three major types : rotational
(circular or noncircular) slip, translational slip and compound slip. In classical soil mechanics,
slope stability analysis is usually conducted using limiting equilibrium methods. Various
techniques are available such as the Fellenius method, the Bishop method, the Morgenstern
method, etc. [5]. The example presented below is used to show how the enhanced DDA method
can predict rotational slip in slopes with homogeneous properties. It is also used to demonstrate
the sub-blocking capability.

Consider a footing resting at the crest of a 10.5 ft (3.2 m) high slope with an angle of 45
degrees (Figure %(a)). A 1.5 ft (0.46 m) deep initial tension crack is located along the right side
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of the footing. Two vertical loads of 11 kips (4.9 x 10 MN) each are applied on the footing. The
material in the slope is assumed to be homogeneous with a Young's Modulus E=1 x 10° psf
(4,800 MPa), a Poisson’s ratio v=0.3, a unit weight y=130 pef (2 x 10 MN/m?), an inherent
shear strength (cohesion) s,=1000 psf (4.8 x 10~ MPa), a very high tensile strength, and a friction
angle of 26°. In selecting a high tensile strength, only shear failure was allowed to occur. When
shear fracturing occurs, the fracturing plane passes through the cracking front and is inclined at
-+(1/4-§/2) with respect to the minimum principal stress o,. The footing was assumed to have the
same elastic properties at the slope material. In the DDA analysis, the footing was represented
by one non-breakable block. The slope was represented by one block divided into 103 sub-blocks;
24 of which were fixed in the horizontal and vertical directions (Figure 9(b}). The contact
between the footing and the slope, the initial crack and all subsequent cracks were given a
friction angle of 30 degrees and zero cohesion.

Figures 10{a)-(f) show the trajectory of crack propagation and the fractured and deformed
slope after 5, 11, 150, 250, 300 and 500 time steps, respectively. Loading of the footing results
in having the crack propagate in a rotational manner. After 11 time steps, the foundation starts
fracturing at the initial crack tip and the crack propagates towards the slope. The slope is then
divided into two distinct sections. The upper section continues to slide downward along the newly
created crack surface. Large displacements along the footing-slope contact and the rotational slip
surface can be noticed. The results clearly demonstrate that the assumption of a rotational failure
surface is valid in this case. This validation also provides further confidence in the.capability of
the enhanced DDA model and the sub-blocking feature. Again, it suggests that the new DDA
method may-be a useful tool in the analysis of a range of slope stability problems.

Conclusions

Those examples demonstrated in the previous section have shown that the newly
developed DDA method is more widely applicable to a greater range of rock engineering
problems than the original DDA method. In the rock-fall analysis, the DDA method is capable
of capturing quite well block trajectories with free falling, rolling, sliding, bouncing and even the
compact with rock barriers, which definitely can not be simulated by the Finite Element Method
(FEM). In modeling cliff failure, which is a very common problem in the mountainous area, the
DDA sub-block analysis along with sub-block fracturing capability is capable of modeling cliff
failure with capturing fracture propagation within sub-blocks. In modeling slope stability, the
DDA sub-block analysis clearly demonstrates that not only the assumption of a rotational failure
surface, which has been made by many researchers before, is valid, but also that large
displacements along the footing-siope contact and the rotational slip surface can be captured.

Since the DDA method assumes discontinuity of element joints, the newly created
discontinuous element joints resulting from block fracturing can be naturally handled by the
method. Coulomb friction and cohesion are also given along the block joints. The addition of the
block fracturing algorithms in the DDA method makes the method a powerful tool for modeling
fracture propagation in already fractured rock masses or other blocky systems.
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(a)
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Fig 1 : The Mohr-Coulomb criterion with three parameters.
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Crack

Fig 2 : A large block consists of several sub-blocks and a initial crack
with crack tip at point A. The sub-block in contact with the crack tip is
shaded.
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* O : represents centroid of the sub-block.
** 1-2 : represents the Mode [ cracking plane.
*%% (7, : represents the major principal stress.

Fig 3 : Mode I sub-block fracturing.

74



/A~ 2h

[
I

My ,.—--'ﬁ_L '_J

* O :represents centroid of the sub-block.
** 1-2 : represents the Mode Il cracking plane.
*»* Gy represents the minor principal stress.

(a)

Fig 4 : (2) Mode II sub-block fracturing.
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* O :represents centroid of the sub-block.
** 1-2 : represents the Mode II cracking plane.
*k% g3 represents the minor principal stress.

(b)

Fig 4 : (b) Mode II sub-block fracturing.
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Fig 6 : Rock-fall example 2. Block trajectories after 130 and 230 time
steps of 0.03 seconds in (a) and (b), respectively.
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(d)

Fig 6 : Rock-fall example 2. Block trajectories after 300 and 340 time
steps of 0.03 seconds in (c) and (d), respectively.
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Fig 6 : Rock-fall example 2. Block trajectories after 400 and 600 time
steps of 0.03 seconds in (e) and (D), respectively.
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45 ft | 251

(a)

Fig 7 : (a) Problem geometry. Mountain with a 1 f£ (0.3 m)
deep tension initial crack on top.
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(b)

Fig 7 : (b) Mesh and initial configuration.
The blocks in the shaded area are fixed.
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(a)

(b)

Fig 8 : Fractured slope after 4 and 7 time steps of | x 10 * seconds in (a)
and (b), respectively.
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(c)

(d)

Fig 8 : Fractured slope after 100 and 200 time steps of 1x 10 - seconds
in (c) and (d), respectively.
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Fig 8 : Fractured slope after 400 and 500 time steps of 1 x 10  seconds
in (e) and (), respectively.
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(a)

Fig 9 : (a) Problem geometry. Slope with a 1.5 ft (0.46 m) deep tension
initial crack and a footing. The footing, loaded by two vertical loads
11,000 Ibs (48.9 kN) each, rests at the corner of the slope.
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Fig 9 : (b} Mesh and initial configuration. The blocks in the shaded area
are fixed.
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(b)

Fig 10 : Fractured slope after 5 and 11 time steps of 6 x 10 “* seconds in
(2) and (b), respectively.
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(d)

Fig 10 : Fractured slope after 150 and 250 time steps of 6 x 10
seconds in (c) and (d), respectively.
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Fig 10 : Fractured slope after 300 and 500 time steps of 6x10
seconds in (e) and (f), respectively. |
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Development of Second Order Displacement Function for
DDA

C.Y. Koo, J.C. Chem and S. Chen

Geotechnical Research Center, Sinotech Engineering Consultants, Inc., Taipel, R.O.C.

1. INTRODUCTION

DDA is a new displacement method developed by Shi in late 1980's by minimizing -
the total potential energy for analyzing the statics and dynamics of discontinuous block
system. Original DDA adopted the first order displacement function and did not allow
penetration and tension between blocks. In 1993, a new version of DDA was released
by Shi in which considerable modification was made. In this new version of DDA,
friction angle, cohesion and tepsile strength in contacts can be taken into account. In
addition, time step, displacement ratio and contact spring are adjusted automatically.

Results of the previous researches (Chen, 1993; Chern, Chen and Koo, 1995)
revealed that DDA was well suited to simulate the discontinuous block system.
However, it still has limitations, such as constant strain and stress in blocks. To
. overcome these limitations, several methods may be used, such as the concept of
artificial joints. In order to model the mechanical behavior more accurately, the fine-
drawn block system are always needed in using the artificial joints concept (Ke, 1993).
- Therefore, the adoption of high order displacement function may be a better aiternative
in which less artificial joints are required.

From these points of view, the formulation for the second order displacement
function were derived and a new code, Second Order DDA, was developed. Several
verification exanfples of continuum which used the concept of artificial joints are
carried out. In addition, the high order simplex integrations needed in the formulation
were also derived.

2. THE FORMULATION OF DDA WITH SECOND ORDER -
DISPLACEMENT FUNCTION

2.1 Displacement and Deformation of Block
Current version of DDA considers the first order displacement function. Thus, the
stress and strain are constant over the entire block. The unknowns of individual block

can be represented by selecting the six displacement variables (%o, Vo:0:82:8,:75), In

which 1,, v are rigid body translation of a specific point (xo,yo) within the block; 7 is

the rigid body rotation of the block with rotation center at (xo:yo)', €x 58y and 7y are
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the normal and shear strains of block. When the displacement and strain are small,
movement (,v) at any point (x, y) within a block can be written in terms of first order
approximation as:
u=a +a,x+a,y
v="5 +bx+by @-1)
If second order displacement approximation were used, these equations are
expanded as the following forms:
u=a +a,x +ay+a,x’ +axy +ay’
v=>b+bx+by+bx*+bxy+by’ (2-2)
For the 6 more variabies (a4,a5,a6,b4,b5,b6) being included, equivalent number of

unknowns are added to [DD] matrix, and block deformation matrix [7] is also modified
concurrently to determine the total displacement [u, v] of point (x, y) in block. Then,

the new [D]Tbecornes

<

[ % % & & 5 &l &, &, 8, K r] (2-3)

x bd XX 'y vy hwx Tow
And [7] is expressed as : []; T T ] | (2-4)
where, ‘ : :

[ 1
T = 10 "(y"_yo) (x—x,) 0 5'(}’—)10)
1 0 | (x.—xo) 0 (y—yn) l(x—xo)
2
=1 1
T “Z"(xz—xg) (xy—xbyo) _E(y?-_yg)
2 =
0 H%(xz'"xg) (xy _xuyo)
[ 1
0 0 E(y2 ~y3)
o 17 -52) l(x —x2) 0 |
[ 2 °/ 9 0

Consequently, the total displacement ( ) is obtained by the following equation:

mz | = [T}, P (2-5)

For a block system with N blocks, the simultaneous equations may be derived by
minimizing the total potential energy. And the simultaneous equations can be expressed

in matrix form as follows:
(%o, )=[%] | (2-6)
where [ Kg] is the global stiffness matrix which is formed by the stiffness sub-matrices

[ K]lzm of each block.
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K, Kp K - Ky
K21 K22 K23 Kz ‘
[K ]= KSI Ky Ky oo K3N _ (2-7)

_Km Km KN3 KNN

__(l'ZxN)x(leN}

[ Fg] is the global force matrix which is formed by the force sub-matrices (], > and

[ D ] is the global unknown matrix which is formed by [ D]

£ 12x1°

D, R,
D, £y

[D,]=| D . [E]=| B : (2-8)
_DN J(2xn)x1 -FN d1zN)x1

To form the individual sub-matrices of stiffness and force by second order
displacement function, the total potential energy done by all concerned forces and
stresses must be computed, then the derivatives with respect to the corresponding
deformation variables for individual potential energy can be derived. The sub-matrices
for each loading and stress are depicted as follows.

'+ 2.2 Elastic Stiffness Matrix . . .
For linear elastic material, the elastic strain energy I1, produced by the stresses in
the block is:

Il, = _” %(cxex +0,6,+1T Lyrly)dxdy

1
_U 5 [e][c]dxay (2-9)
For plane stress condition, the stress-strain relationship is given by:
o, 1 v 0 (e, €,
£ v 1 0 e, |=[5]
M T 1-v 5 |=LE] ey (2-10)
T-‘-J’ 0 0 2 rl}’ r—"J’

where E and v are Young's modulus and Poisson's ratio. The strains can be
approximated by
€, =€, +E,, X+E, Y
— c
€, =€, +&, X+E, y

Ty =l 1o X+1, Y (2-11)
and can be written in matrix form as follows:
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- [ [NT

(2-12)

S OO O R OO = o OO
S O N OO O SO O O

L R O O 0 0 = O O O O O

Therefore, the elastic strain energy of the i-th block can be wriiten in matrix form as:

T
= _JJ 1x12 12x3[Ei :l?»:Bl:]Vl']?.xlz[Di ]12x1 ‘dey (2_13)
By minimmng the stram energy, it leads to the stiffness matrix: ‘
" = = ” 12x3 3x3 N ]3x12dxdy » (2-14)
where the mtegratlon H ]m[ ]m[N ]3x1 ,dxdy can be expressed as the following
form: '
[0 0 0 0 0 0 0 0 0 0 ]
0 0 0 0 0 0 0 0 0
0 0 0 0 0 o 0 0 0 0
S Sv 0 S S, Sy Sy 0 0
S 0 Sy Sy 8, S 0 0
1- 1- -
-, . . S0 o (o
E 2 2 2
— Se S, Sgv S,y 0 0
S, Sgv S,v 0 0
Se Sy 0 0
Y ) o)
1-v 1-v
S tri S hy
ymmetric =Ty e
1—
5, 0
L 2

in which § | §_, S, , Su , Sy, and S, are the two dimensional Simplex integrations as
defined by Shi(1989).

94



2.3 Imitial Stress Matrix

For the i-th block, the potential energy of the initial stresses (0’0 0'° ‘tfy) is:
.= —-H(sxcg +6,0)+7,,T5, ) dxdy = —” dxdy

0

EX
=-|J[DYINTE] &5 |dxay (2-15)
Ty
in which
€r =2 +€7 x+exyy
£, = j,°+s x+ay Y
Vo S HFg X+ Y
Therefore,
=-{[[D/] v ][ D°] deay (2-16)

By minimlzmg the potentlal energy, it leads to the force matrix of the initial stress of
the i-th block as follows:

oIl .
r= ad‘f =_U[Ni]T[Ei][Ni]chdy'[D?]
=[N oo (2], » =112 (2-17)
- where
NN] _U 1213 3:3 Nr’]sxlzdxdy
and -
[ ?];zz[ o Vo T tr & ry &y, gy, &5, &, Tox r;y]

2.4 Point Load Force Matrix
The potential energy of the i-th block due to point loads (F;,Fy)

I, = ~{Fat ) =[u v][ﬂ |

¥y

T T Fx
-1y | 219
By minimizing the potential energy, the force matrix due to point load is obtained as:
d Hp ot B _
/= -[Ts] [Fy] , =112 (2-19)

2.5 Body Force Matrix

Assuming that ( £, fy) are the constant body force of the i-th block, the potential
energy due to the body force is:
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M, == [[ {7+ 7,v) ddy

- [[l« v][_';jdxdy=—[D;]T Il [T;]dedy[ﬂ - @20

The integration can be written as:

I by 0 ]
0 - s
0 0
0 0
0 0
' 0 0
1 5
—|s -2
=) o
S.5 1 S:
T 8§ 2l LI
[JmY ad = » " 7§ 2[ = SJ
1 8?2 5,8
-] 8 - I i J
Hor %] (50 -2
, 1 52
0 — - 2
2z
0 '_(SH_S_:)
o2 s
1 $3
?(S”"TyJ ]

where § S S Se, S, andS,, are the Simplex integrations.

x 7 ¥y

By minimizing the potential energy, the body force matrix is

£ =%= —“[];]dedy{j:j Cor=1,..,02

which will be added into the global force matrix.

2.6 Inertia Force Matrix

The potential energy for the i-th block due. to inertia forces (Fx,Fy) of unit area is:

I, =]« V][Z‘] dxdy - (22))
The initial forces per unit area are
u(t)
= o ‘
[Fy] - (1) . _ (2-22)
or

according to Newton's Second Law of Motion. M is the mass per unit area. From
equations (2-9) and (2-22), the potential energy can be expressed as:
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62u(i)

” Ad[u 6? e dxdy

or
aDy(1) | -
= [[M[DT 7] (7] - dudy (2-23)
Neglecting the higher order term of Taylor's series expansion,
o°D(1) 2 0

arr A 15 A ot
where A is the time increment, therefore, the potential energy due to inertia force is

2M
=[] [firY A1 S 2215
Minimizing the potential energy, we obtained
2M T :
K== [J[5] [Tty . rs=10,12 (2-24)
which will be added into stiffness matrix, and another term

f_—” 1 [Thadedy [V,] r=1,..12 (2-25)

will be added into the force matrix. The integration _”[];]T[Ti ] dxdy 1s a 12x12 matrix

and is in the following form:

1 1 1

S0 0 0 0 0 =5, s, -5, 0 0o 2,

s 0 0 o 0 o -ls s, Ly ls o

1 1 1 2 1 1 12 % 1
§+8, -5 6§, 5511""2“52 _EST _SIZ_ESS E'S'sl'*'sn ‘2'S|u ‘Z_Sa _‘2”‘5'9

1 1
5 0 385 55 5, -2 5 0 10 =S,

1 1 1

S, ESB 0 —ES., AR —-2-~S9 EST 0

1 1 1 1 1 1 1 1 1 1
'ZS1+ZS2 =5 ESIZ ZSs "'ZS:““ESH sz ZSs ng

1 1
=5 '5815 _ZSlS 0 ‘ 0 ZSIS

1 1 1 1 1 1
S +ZS13 _ESI'I _'2_S16 _ZSIS _'ZSH ESI'F

1 1 1 1

4 8, + Sts ESH ESIG _ISM
. 1 1
Symmetric IS“ ESH 0
1
ZSD 0
1
ZSH ]

in which §, S,,...,8,4 are functions of Simplex integration.
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2.7 Fixed Point Matrix

The constraint at the fixed point on the block boundary may be simulated by using
two stiff springs acting on the fixed points. The potential energy due to the springs at
the i-th block is equal to :

Pyl ] @229

where p is the spring constant at the fixed point. The stiffness matrix due to fixed point
can be obtained as follows:

k=2

= 6ddd. _:P[]:]szz[y;]lez s 1s=1.,12 (2-27)

2.8 Line Load Force Matrix
The potential energy of the i-th block due to line loads (F E ) are;

X1y

II, = —J: (F;,u + Fyv) idt = —JZ [ v][?] Idt
¥

=-[D, ]T[i’?]r[?] (2-28)

By minimizing the potential energy, the force matrix due to line load is obtained as:

oI, p F,
7. :_5;%= 0[7;]:’[1:] de , r=1,.,12 (2-29)

Y
which are added to [#]. In that, /is the length of loading line, F F, are loading at x

and y directions.

2.9 Rock Bolt Force Matrix
The potential energy of the i-th block due to rock bolt force 7 is:

1
[, =~ fd!

where f = _s%{; s is the stiffness of rock bolt; / is the length of rock bolt. The potential

energy can be expressed as follows.
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where

[E],. =[7;]fm[j"]2x1 ;1G] =[7}];z[§x]2ﬂ

pa ¥
By minimizing the potential energy, the stiffness matrices due to rock bolt force are
obtained as:

;{E ]12::1[ ]1x12’ %[Ef]lle[ ]mz [ J]]le 1*'2’ [ ]12x1[G‘;];2
il

5]

which are added to the stiffness matrix [X:] [ ] [

2.10 Normal and Shear Contact Matrices
The formulations for normal and shear contact matrices are exactly the same as

those given by Shi(1989) with the exception of using extended [T] and [D] matrices.

The sub-matrices due to the interaction between blocks are mainly induced by the
contact forces which are determined by the quantity of penetration, relative movement
between blocks and stiffness of contact spring. They are :

T T

p[ef]lz.x][e"]:'xlz ? P[ef]lle[gi]lxlz [gl]lle[ ]1x12 ’ p[gf]lm[gf]mz
which are added to the stiffness matrix [k, ], [X;], [ ﬂ] . [K;] s and

¥

S, PS,
__lg'[e‘]lzx: T [0[

are added to the force matrix[ F;],[ F,]

In these sub-matrices, p is the stiffness of contact spring, J is the length of contact
edge, and [e [ g ] have the following forms:
r|Ya=)
[ei]lle :_[I:(x]Jyl)] l: : 3]

X3 =X,

bttt

3 2
and
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1 x, y
So=l x, ¥
1 x, y,

The stiffness and force matrices at the individual block derived above are
assembled into global stiffness and force matrices for the block system. Simultaneous

equations were formed for solving the unknowns [D] for all blocks.

3. HIGH ORDER SIMPLEX INTEGRATIONS |

Because blocks in DDA can be in any shape, it is difficult to calculate the
integrations by using the Gauss integration method. To solve this problem, Simplex
integration method was developed by Shi. In this study, the high order expansions of
simplex integration are required in the formulation of Second Order DDA.

In this method, the integration of a function over an arbitrary polygonal block can
be divided into a sum of many triangles, and the integration in each triangle is

calculated analytically. The vertex of block can be expressed as B,B,P,...,P,. P, and
the vertex of each triangle may be defined as P, B P,,, where P, can be any point in
the calculation domain. In this study, let (0,0) be the coordinates of P, in order to write

the high order simplex integrations more clearly. Therefore, the high order simplex
integrations can be written in the following form.

M
S e =_Uxadxdy = Z;_O(x?'*'x?xm +x.x, +x:'3+1 0

i i+l
i=1

Mo )
Sy = || Vetedy =3 —(5 + Y2y + ¥V + Vi) o
i=1 0

[F%]

-l—(xf +x3

2.2 3 4
30 (X, Fxixs, Fxx, Fxo W
1

PV iV i+l i

Mz

S e = ” x*dxdy =

: 1
Sy = || ¥ dedy = 23g O TV Vit YT+ Vi)
i=l
2 <1 2 2 2 2
Sey = Hx ydxdy = Z%fo Vi +2X% Vi F X0 Vs X Vi + 26X, Vi + 3%,V W

> .
]
Sxyy = U xy*dxdy = Z%(?’yizxi + 21, Y% + y,-i,x,. + yfzxm + 2y, VX t+ 3ya‘2+1xi+l)‘jo
i=l
g1 3 2 2 3 3 2
Z 120 (4x;y; +3x; %, ¥; F 20,50, + X0V X Vi + 2%, % Vi
=1 :
+ 3x1‘xi2+1yi+l + 4xi3+iy|‘+l)‘]0
M

1 \
Sop = J_[ xy*dxdy = ZE(‘U’?% +3yi2ys+1xi + Zyiyi2+1xi + y?ﬂxi +.yi3xi+1 + 2)"52}’:'+|xi+1
i=1

+ 3Jf;yf+1x,-+1 + 4y?+1xi+1 Mo

Sy = H x* ydxdy
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M
1
Sey = |[¥*ydedy = Y Tag CF Ve + 35 Vi + X0 Vi #3500 + X200 00 + 355,07,
i=1

+ X V] 350 Y Yy 6x7, Vi Mo

where M is the vertex number of each block. It is different from the Gauss integration
method that Simplex integration need not to convert the element(or block) shape into
local regular element to get the approximate solution. Therefore, exact analytical
solutions of integrations in Second Order DDA can be obtained by using the high order
simplex integrations. In addition, the calculation of integration in other numerical
methods such as finite element and manifold method may also be done by the same
method.

4. VERIFICATION OF Second Order DDA

4.1 Modification of DDA Code

DDA code version(1993) developed by Dr. Gen-hua Shi was used as the basic
program for modification. The main features of the modified version of DDA program
include :

(1) incorporate the second order displacement function;

(2) add line loading and rock bolt functions;

(3) revise the variable contact spring constant to fixed value;

(4) change the convergence criteria from iteration number of 200 or relative

criterion of 10~® to an absolute criterion of 1¢~%.

By the concept of artificial joints(Ke ,1993), Second Order DDA can simulate not
- only the discontinuous problems but also continuous problems. For this reason, several
examples of continuum with analytical solutions were used for validation to check the
correctness of formulation and coding. The results are presented in the following
section,

4.2 Example 1

The first example is the case of cantilever beam shown in Figure 1. An 8 m long x
1 m deep cantilever beam with unit thickness subjected to 1 ton concentrated load at the
end of the beam was used for validation. The material properties of the beam were
assumed to be E=10°T/m?® and v=0.2. The problem was solved by dividing the beam
into 1, 4, 8, 16, 32 and 64 blocks. The results for the deformation along the beam axis
are shown in Figure 2. And stress component o _ at the centroid of each block for the
case of 64 blocks are shown in Figure 3. It may be seen that 64 blocks can obtain good
approximation as compared with analytical solution. This example also illustrates that
the Second Order DDA can release the restriction of block shape requirement for
certain types of problem, such as beams. It also requires a smaller number of blocks to
achieve the same degree of accuracy as the first order code.
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Figure 1 The 32 rectangular sub-blocks for example 1.
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Figure 2 Results for the deformation of cantilever beam.
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Figure 3 Results for the distribution of ¢ _ at the centroid of blocks.
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4.3 Example 2

A beam with both ends fixed and subjected to concentrated ‘load P at the center
was used for validation. The dimensions and material parameters are the same as
example 1. For this analysis, the beam was divided into 32 sub-blocks as shown in
Figure 4. The results computed from Second Order DDA are summarized and plotted in
Figure 5.

;'P 0.00

SHRA

2 3

Q 4

:'r-_‘; .

§ —2.00 ]

E E Hisvtts SDDA (32 blocks)

o = —— FKzact aoctution

®

Q""’4.00 LL L S N I B B N N NN N B I N N N B T NN S B S B B B B SN S Il S S R S R N
¢.00 2.00 £.00 .00 8.00

X (M)
Figure 5 Results for the deformation of fixed beam.

4.4 Example 3

The third example used a uniformly loaded linear elastic plate with a central
circular opening to study the effect of stress concentration. To simplify the calculation,
a slice of the plate as shown in Figure 6 was used. The problem was analyzed by using
8 blocks together with 2 rigid blocks to provide the frictionless lateral boundaries which
simulate the condition of zero circumferential displacement. The results of stress
concentration factoprs for radial stress, circumferential stress and shear stress at the block
centroid together with the analytical solutions are shown in Figure 7. Very good
agreement in results may be seen even for the very crude blocks adopted.

S. DISCUSSION OF RESULTS

In 1993, a new version of DDA was released in which tensile strength between
blocks can be assumed. Hence, the simulation of continuum becomes possible. Second
Order DDA follows the same approaches used in 1993's DDA so that it is able to
simulate the problems of continuum. But modifications are needed and described as
follows.
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Figure 6 Block system for simulating the Kirsch solution.
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Figure 7 The Results Calculated by Second Order DDA.

5.1 Multiple Co-line Vertex Edge

In DDA, the deformation of each block can be efficiently drawn by two-vertices
e ige under the assumption of linear strain and stress inside element. However, it is not
suitable for Second Order DDA because the deformation of each block is non-linearly
distributed. For improvement, multiple co-line vertices are introduced to the block edge
in Second Order DDA so that the image of large deformation may be caught. In other
words, the picture of large deformation of block is simulated by piece-wise linear
sections along block edge. In order to implement this approach, the original DC
program has to be modified and the existence of co-line vertices in each block edge
may be allowed. Figure 9 and 11 show the numerical results computed from modified
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DC and Second Order DDA programs and they may be compared with the results
computed form original DC and DDA programs as shown in Figure 8 and 10. From
these Figures, it can be seen that the large deformation along the block edge can be
depicted reasonably by modified DC and Second Order DDA programs even if ihe
whole cantilever beam is considered as one block.

Figure 8 Block system and results for large deformation test
' by vsing First Order DDA.

Figure 9 Results for large deformation test by using Second Order DDA.

Figure 10 Cantilever beam and results for large deformation test
by using First Order DDA.
Figure 11 Results of cantilever beam deformation

by using Second Order DDA.
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5.2 Influence of Varying kj
In the current version of DDA, the stiffness of contact spring, k,, will be adjusted

at every time step so that the number of iterations to reach the state of convergence may
be reduced. But in solving the problem of cantilever beam which is a continuum
problem, the change in spring constant may result in significant error.

To investigate the influence of k;, on the results, a cantilever beam the same as

Example 1 with the stiffness of constant spring ranging from 6.5, 100, 1000 and 5000
times of the block modulus was used, and these values were fixed throughout the
computation. The results are summarized in Figure 12. It was found that small contact
spring would result in excessive deformation as indicated by the solid line in Figure 12.
As the spring constant is over 1000, the results converge to a value very close to the
exact solution. This means that by changing the contact spring constant during
calculation may affect the final solution. From limited experience gained, the contact
spring should not only be fixed but also be greater than 1000 times of the Young's
modulus of block material in solving continuum problems.
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Figure 12 Results for contact spring stiffness test.

5.3 Block Shape Effects

From the results of previous research(Ke, 1993), it was found that the first order
DDA can only describe uniform extension in two directions or simple shearing when
square sub-blocks are used. Therefore, it can not simulate the problem, such as
cantilever beam, appropriately. However, this can be overcome by using the Second
Order DDA as shown by the previous examples. It means that the limitations in block
shape of the first order DDA may be released. To further illustrate this point, the
cantilever beam problem with three different meshes were used. They are 32
rectangular sub-blocks(Figure 1), 64 rectangular sub-blocks(Figure 13) and 34
triangular sub-blocks(Figure 14), respectively. From the results summarized in Figure
15, it appears that the block shape makes no significant difference in results. Uniike
DDA by first order displacement function, the results can be very large.
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Figure 13 64 rectangular sub-blocks.
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Figure 14 34 trianguiar sub-blocks.
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Figure 15 Results for the tests of block shape test.
‘CONCLUSIONS

In this study, the formulation and computer code for the Second Order DDA were

developed. Validations have been performed by comparing the results obtained with
analytical solutions. From these results, several aspects are observed as follows :

1

. From the results of several validated examples, it is obvious that the Second Order

DDA is more suitable for simulating continuum problems of large deformation than
the first order DDA.

. Based on the results of analyzing continuum problems obtained in this study, the

stiffness of contact spring k, can affect the results significantly. It appears that
reasonable results can be obtained when k,, value is fixed and is greater than 1000
times of block modulus.

. The adoption of second order displacement function in DDA can reduce the block

number required. However, fixing the contact spring stiffness would increase the
number of iteration to reach the convergence criterion. Enormous amount of CPU
time and memory capacity are the main constraints in applying it to the practical
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engineering problem currently. Hence, it is very important to improve the calculation
efficiency of Second Order DDA.

4. During the development of Second Order DDA, hlg,h order simplex integrations were
also derived. This method of integration can also be adopted in other numerical
methods, such as finite element and manifold method.
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Study on the Performance of Tunnel near Slope by DDA

S. Chen, J.C Chern and C.Y. Koo

Geotechnical Research Center, Sinotech Engineering. Consultants, Inc., Taipei, R.O.C

1. INTRODUCTION

Tunnels are often constructed near the slope of mountain ridge to meet the alignment
requirement and/or to minimize its length. Results of analytical studyl.2 and case
histories have demonstrated that they often lead to unstable conditions as indicated by
large tunnel closure and cracking on the slope surface. In the extreme case, it could
cause instability in slope and/or tunnel rendered the remedial measures very expensive
and difficult.

A section of highway project was planned to pass through the periphery of mountain
ridge. Due to the alignment requirement, a 3-lane roadway would have to be
constructed using tunneling method and the other line by open cut in the original design.
The slope is about 100m high, and the overall slope angle is around 30°, Excavation for
the top half section of tunnel and the slope with 8 benches were carried out
simultaneously. Reinforcement for the slope were installed right after the excavation
of each bench. When half of the tunnel excavation was completed and two more
benches of slope excavation remained to be done, monitoring data showed excessive
slope movements and tunnel closures occurred with accompanying cracks in shotcrete
slope protection and in shotcrete tunnel lining. The total monitored ground settlement
and horizontal movements at berm 5 range from 10 to 30 c¢cm and 20 to 35 cm
respectively. The crown settlements in the tunnel are around 25 to 35 cm.

Numerical analyses have been conducted through the computing code named FLAC
to study the stability of tunnel-slope by using elasto-plastic continuum model.
Extensive yield zone around the tunnel and tension zone in the upper part of the slope
were obtained from these studies. However, due to the special geological structure
presented at the site and the evidence of shear plane development from inclinometer
data, the results from continuum model may not be very useful in explaining the failure
mechanism and in the choosing of effective remedial measures.

Discontinuous Deformation Analysis, DDA, was first developed by Gen-hua Shi3 in -
late 1980's. It is a rigorous solution with a complete scheme of block kinematics in
dealing with complicated interaction between discrete blocks under ensured equilibrium
conditions at any time by minimizing the total potential energy of the system. Tt is
capable of simulating the discontinuous as well as continuous masses as demonstrated
by Shi3, Yeung?, Chen5, Keb, Chen, Koo and Chern’, and Koo, Chern and Chens.
Therefore, DDA was adopted to analyze the performance of the tunnel-slope by
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considering the geological conditions at the site and the construction procedures used in
the field. It intends to understand whether the mechanism of developing unstable
situation is due to the toppling of slope or sliding of surficial layer due to slope and
tunnel excavation, Comparison studies® on the effect of the tunne! excavation on the
stability of the tunnel/slope were also conducted. It also intends to evaluate the
suitability of DDA in solving engineering problem.

2. GEOLOGICAL CONDITIONS AND ROCK CHARACTERISTICS

2.1 Geological Structure :

The rock strata encountered at the site belong to Nan-kang formation of Miocene
sedimentary rocks. It consists mainly of massive sandstone and 'a zone of
sandstone/shale interbeds near the toe of the slope as shown in Fig. 1. The uniaxial
compressive strength of rock core are in the range of 1500 to 3000 t/m? for fresh
sandstone and 400 to 900 t/m? for weathered sandstone. The strength of
sandstone/shale interbeds is very low and the uniaxial compressive strength of rock core
is generally less than 500 t/m2.
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Fig. 1. Geological conditions.

The rock strata strike more or less paralleled to the slope and dip 55° to 65° into the
slope. The major weak planes controlling the slope stability appear to be the beddings
and stress relief joints. Bedding seams are well-developed with spacing ranging from
several centimeters in the sandstone/shale interbeds to tens of centimeter to several
meters in massive sandstone. Clay seams and slickensides are prevalent in these planes.
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The stress relief joints, which run more or less parallel to the slope surface, are well-
developed in the surficial layers as revealed by the drilling cores. The joint spacing is
in the range of 10 to 80 cm. At depth, however, they are sparsely developed. These
Joints are generally stained and filled. The joint development assumed in this study are
given in the following table.

Weak planes Joint Spacing  Joint Length Bridge Degrees of Randomness

Bd in MSS 5.0m 100m 0 g.1
Bd in SS/SH 2.0m 100m 0 0.1
Jtin surf. layer  2.0m 15~30m 1.0m 0.1
Jt at depth 4.5~7.5m 20~45m 22m 0.8

2.2 Rock Properties

For simulation purpose, the rock masses are divided into 4 distinct zones with similar
rock properties and joint development. They are: (1) well-jointed, weathered massive
sandstone on the slope surface, (2) fresh massive sandstone, (3) sandstone/shale
interbeds and (4) weathered massive sandstone near the toe of the slope. Their
properties including elastic moduli of rock masses, Mohr-Coulomb strength parameters
for weak planes are assumed as follows:

Zone Rock Blocks Weak Planes
Elastic Moduli (t/m?) c(t/m?) ¢ (degree)
(1) Jointed, W. MSS 40,000 0 20°
(2) Fresh MSS 200,000 20 36°
(3) SS/SH 40,000 2 20°
(4) W. MSS 40,000 2 20°

3. NUMERICAL MODELING

3.1 Maodification of DDA Code

The DDA code-of 1993 Version developed by G. H. Shi was used as basic code in
this study. In order to deal with practical engineering problem, several modifications of
the code have been made to simulate the complicated geological conditions, in-situ
siresses, staged excavation and rock reinforcement. The modification included the
following aspects.
(1) ' Line Producing Program (DL)

In the original DL program, the joints are produced by using statistical information
of spacing, length, bridge and degree of randomness for each joint set. However, the
same pattern of joint development is produced in the entire analytical domain. In this
study, the code was revised to contain several zones in the domain. Different joint
patterns can be generated in each zone according to its statistical joint information.
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(2) In-situ stress generation and restart function

In engineering problem, the in-situ stress conditions are the resultant of
gravitational force and tectonic stress. The distribution of the stresses is further
influenced by topographical and geological conditions. It is generally very complicated
and can not be predetermined easily and precisely in a block system. In this study, the
in-situ stresses existed in the slope before comstruction were produced by a
consolidation stage and a restart function was added into the program for carrying out
further stage of analysis. The excavation was simulated by taking off the blocks in the
excavation area. By implementing these functions, a better simulation to the in-situ
stress conditions and excavation procedures in the field can be made.
(3) Cable Element

In the original code, cable reinforcement was not included although the
formulation was provided in the manual. In the current version, simple, linear elastic
cable elements were incorporated for considering the rock reinforcement installed to
stabilize the rock masses.

3.2 Problem Modeling

From the geological model and joint development assumed, the block system for
analysis is shown in Fig. 2. The in-situ stress conditions at the site are considered
mainly due to gravitational force and are influenced by the topography. The in-situ
stresses were generated by consolidating the rock blocks under gravity with horizontally
fixed lateral roller boundaries. This process was terminated when the settlement
reaches a stable condition.

Fig. 2. Generated block system for analysis.
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After consolidation, the slope excavation was simulated by taking off the preset
blocks in one step. 15 to 20 m long, 60 t capacity prestressed cable anchors spaced at
3m were also activated during slope excavation. When the effects of slope excavation
reaches a stable condition, the top half of the tunnel was excavated and 6 m long, 15 t
capacity rock bolts spaced at 1.5 m activated. For comparing the influence of tunnel
location on the slope and tunnel stability, a case by moving the tunnel away from the
strata of weak sandstone/shale interbeds was also analyzed. Another case is also
analyzed for studying the behavior of tunnel deformation which is induced by the
further excavation on the lower part of tunnel.

29 measuring points were prescribed in the analytical model to monitor the rock
movements during the processes of consolidation, slope excavation and tunnel
excavation. The locations of measuring points are shown in Fig. 2.

4. DISCUSSION OF RESULTS

The initial stresses before excavation and the stress conditions at the ends of slope
and tunnel excavation are illustrated in Fig. 3, 4 and 5, respectively. The deformed
configurations of the whole block system at various construction stages are also shown
in the figures. The displacements occurred at the points monitoring the movement of
slope of the model are summarized in Fig. 6 for comparison purpose. The
configuration and deformation of blocks near tunnel at various excavation stages are
displayed in Fig.7 and 8. The settlement at tunnel's crown and the convergence of
tunnel during different excavation stages are summarized in Fig.9 and 10. For
comparison, the monitoring data of the crown settlement and the convergence of tunnel
~ at field during different excavation stages are also summarized in Fig.11. From the
results obtained, the following points may be observed.

(1) The movements of the slope are predominantly settlement at the top, lateral bulge
near the toe and the combination of lateral and downward settlements at the mid-height
of the slope. Macroscopically, no apparent discontinuity in the deformation pattern can
be observed.

(2) The predominant shearing of weak plane occurs along the bedding plane. This
cause slight toppling of rock strata in the surficial layers around berms 4 to 6. This is
consistent with the crack development observed in the field.

(3) The calculated slope movements and field monitoring data are shown in the
following table. '

Slope Movement (cm) Tunnel Settlement (cm)
mid-height top at crown
Numerical analysis 30(H), 12(V) 28(V) 17.5(V)
Field data* 10~28(H), 20~35(V) 13(V) 25~35(V)

* Field data not including the movements induced by two heavy storm events.
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It may be seen that the numerical analysis results are in the same order of magnitude as
those measured in the field if the effect of two storm events were not included. It
slightly over-estimates the settlement at the top of the slope and under-estimates the
settlement at the crown of the tunnel.

(4) Aside from the effect of storm events which was mmulated in the current analysis,
the major discrepancy is in the trend of diagonal convergence measurement D2. In the
field, a small relative extension at the two measuring points were obtained as shown in
Fig.11. However, net convergence in D2 was obtained in the analysis as indicated in
Fig.9.

(5) With the aid of Fig.7, it is observed that the convergence of tunnel from the hill
side and the heave of the temporary tunnel invert are mainly induced by the stress
release from the left upper part above tunnel. That also indicates that the excavation of
tunnel will have a negative effect on the stability of siope.

(6) Further benching and invert excavation of tunnel was analyzed and the results are
summarized in Figs.6, 8 and 10. From Fig.6, the movement along slope in this stage is
not obvious except some local area near surface. Figs.8 and 10 show that the
movements of blocks around tunnel are minor and mainly occur on the left side and
bottom of tunnel. This plienomenon may be explained by the fact that the stresses in
the invert area are released during the excavation of the upper portion of tunnel as
indicated by Fig.5.

Based on the observations described above, it appears that there is no imminent
danger of slope instability. However, two heavy storm events, which is not considered
in this study, triggered slips of the slope. Considerable amount of additional slope and
tunnel movements were observed. As indicated by inclinometer data, continuous slip
plane might have been formed. This analysis may not be able to predict such a
behavior due to much wider joint spacing adopted as compared with the 10 to 80 cm
spacing observed in the field. Also the elastic, constant strain block model used would
constrain the development of large sliding rock mass by a key block, unless much
smaller block sizes are used or block fracturing are incorporated. Therefore, the
development of continuous slip plane maybe the reason for different trend of left
diagonal measurement (D2) in tunnel convergence obtained from numerical simulation
and field measurement .

It may be seen that considerable slope movement occurred during slope excavation.
An additional movement around 10~30 cm in the surficial layer occurred during tunnel
excavation. This is the result of weakening in toe support by the tunnel excavation. An
alternative tunnel excavation scheme by moving the tunnel into a deeper position to
avoid the weak SS/SH strata near the toe of the slope was analyzed. The final results
are shown in Fig. 12, the pattern of slope movement in Fig. 13, deformation of blocks
near tunnel and tunnel convergence during tunnel excavation in Fig.14~17. Much
smaller downward slope movement may be observed, and the toppling of surficial layer
is less severe. The deformation and convergence of tunnel are also insignificant.
Therefore, this tunnel excavation scheme would be more favorable for the stability of
slope and tunnel. This is consistent with the results obtained from numerical analysis
and field experiences.
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5. CONCLUSIONS

This paper describes a preliminary attempt in using the DDA method for analyzing a
complicated engineering problem. Following conclusions may be drawn from these
studies.

(1) From the comparison of numerical results with the field performance, it appears
that DDA method can model the slope/tunnel behavior qualitatively prior to the
influence of two storm events.

(2) Current DDA version lacks the function of developing block fracture and internal
uplift pressure. Therefore, it can not model the development of sliding plane or the
effect of rising ground water table.

(3) To model the behavior of an engineering problem more accurately, it requires a
closer simulation of block system in the field. However, the main limitations lies in the
memory capacity of computing facility and the computing time required.
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DDA Combined with the Artificial Joint Concept

Te-Chih Ke'

!Chung Yuan University, Chungli, Taiwan, R.O.C.

ABSTRACT: This paper presents new capabilities of Shi’s discontinuous deformation
analysis (DDA) when combined with “the artificial joint concept”. These capabilities
refine the determination of the stress field within selected blocks of any shape, and
permit simulating fracture propagation in intact blocks. Implementation of this concept
does not sacrifice the simplicity and beauty of the original DDA formulation and code.
When compared with the other improvement schemes for DDA, this conceptual scheme
seems to be more flexible and practical.

KEYWORDS: discontinuous deformation analysis, artificial joint concept, refined stress

field, fracture propagation.

1. INTRODUCTION

Discontinuous deformation analysis (DDA) was infroduced in 1988 by Dr. Shi [1],
with constant stress within each block of a discrete block system. Since then,
accumulated efforts have been attempted to explore its full potential. Table 1 provides
a partial list of the current and future developments of DDA, according to the personal
opinion of the author (some of which are extracted from the reference [2]). This paper
describes an innovation for DDA modelling - "the artificial joint concept” that computes
variable stress states within blocks, thereby allowing modelling of problems with -
complex block domains containing -holes, interior blocks, or cracks. The latter
_ capability permits analysis of problems of fracture propagation across previously intact
blocks. The scheme involves the addition of artificial joints which subdivide blocks.
The artificial joints are assumed to be infinitely strong if the intra-block stress field is
simply to be detailed within a block, but not perturbed. Assignment of finite strengths
to the artificial joints allows perturbation of the block stresses as new fractures form
and propagate.
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Table 1 Partial list of current and future developments of DDA

Group Sub-group Contributors
DDA Blocks Refined stress field Shyu [3], Ke [4], Chang [5], Koo etc. [6],
Ma [7], Shi [8]

Non-linearity Chang [5], Ohnishi etc. [9]
Fragmentation Lee {10], Lin etc. [11]
Fracture propagation Ke [4], Lin etc. [11]
3D DDA bilocks Shi [12]
Circular blocks Lin [13], Ke [14]
Coupled flows -

Block contacts/ Strength properties Shi [15], Ke [4]

Joints Joint dilation Thapa [16]

Non-linear laws -
Lagrange multiplier ~ Hilbert etc. [17], Lin etc. [11]
Various constraints  Displacement const.  Ke [4], Ohnishi etc. [9]
Force constraints Ke [4]
Insight studies Time integration Ke [4]
Rigid-body rotation ~ Yeung [18], Ke [4]
Simplex integration  Shi [19]

Applications Rock siopes Yeung [18], Ke [20], Chen & Lin [21]
Underground works  Ke [4], Chang [5], Yeung etc. [22]
Rock foundations Yeung {18}

Particulate media Lin [13], Ke [13]
Composite materials  Shyu [3], Ke [23]
Fracturing Ke [4], Lin etc. [11]
Impact -

Joint flows Co-
Reliability-coupling -

2. DISCONTINUOUS DEFORMATION ANALYSIS

A system of simultaneous equations in DDA is formulated by minimizing the total
potential energy of a block system. The total potential energy includes that belonging
to individual blocks and that due to contact interactions. Inertia terms are implicitly
included; the global stiffness matrix is positive definite and diagonally dominant. If a
*static’ mode is chosen, the velocities of all the blocks are set to zero at the start of
every time step and DDA resembles a pseudo-static analysis. If a *dynamic’ mode is
specified, DDA yields a real-time response of a block system. DDA incorporates
complete block kinematics to fulfill constraints of no inter-penetration of blocks and no
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tension between blocks!. The interactions between blocks are simulated by linear
contact springs.

Shi’s original DDA code can handle a system of linearly elastic blocks subjected to
large displacements, rotations and deformations, and fairly general loading conditions.
However, it does not analyze fracture propagation because the modelled blocks are not
allowed to degrade during the process of deformation. Further, since DDA uses a first-
order displacement function, each block is modelled by a single constant stress state,
no matter how complicated its geometry. Figure la shows a complex block domain
with a notch at the left, one isolated crack below and another with a branching crack
above the notch, and two interior boundaries at the right. (The spaces within the
interior boundaries may be holes or other blocks.) Obviously it is unrealistic to assume
this complex region has a single constant stress state. Under a certain loading
condition, fracture may initiate from near or at the crack tips or the notch (Figure 1la).
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Figure 1 (a) A block with complex geometry and interior features; and refined .
geometry by: (b) Type A artificial joints; (c) Type C artificial joints

3. THE ARTIFICIAL JOINT CONCEPT

The artificial joint concept includes two parts: cutting and patching. Cutting is a
process of dividing a DDA block into sub-blocks by a certain pattern of artificial joints
so that the block becomes an assemblage of sub-blocks created by imaginary
boundaries. (Of course, the selection of artificial joint patterns affects the simulation
results of DDA, and this subject will be discussed in the latter section.) Patching is a
process of assigning strengths to the artificial joints to glue sub-blocks together.

If the artificial joints are infinitely strong, the contacts between sub-blocks never fail,
leading to continuous connection of two adjacent sub-blocks by contact springs. As the
stiffness of contact springs increases, the contact sides of two adjacent sub-blocks will
displace similarly. As a result, the assemblage of sub-blocks behaves as a continuous

! the *no-tension’ constraint can be relaxed for incipient joints which are assigned
a tensile strength.
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body like the original block but with refined stress distribution since DDA computes
a constant stress state for each sub-block.

If the artificial joints are assigned finite strengths, they provide potential cracking
paths wherever contact forces exceed limiting values. The energy loss due to cracking
is represented by the strain energy release of failed contact springs. Accordingly,
fracture propagation of an intact block along a predestined path can be simulated. The
failure criterion for (7,0) along the contacts between sub-blocks follows the Mohr-
Coulomb’s law with a tensile strength cut-off. Ke [4] added to the DDA code the
procedures to deal with joints having cohesion and tensile strength, in which contact
pairs, each composed of two contact points, need to be sought first.

Artificial joints intersecting the cracks, or boundaries of holes and interior blocks,
allow these complex features to be modelled. In this case, after artificial joints have
been added and a block system generated, DDA analyzes the contact behavior along
real joints as well along artificial joints. Figures 1b and 1lc show the resultant sub-
block systems of the block domain in Figure la by adding regular artificial joint
meshes. Note that any portions of the added artificial joints outside the refined domain
have been automatically deleted by the joint mesh generator. Type A artificial joint
mesh (Figure 1b) contains two orthogonal joint sets and generates rectangular sub-
blocks; Type C artificial joint mesh (Figure 1c) contains three joint sets to produce
equilateral triangular sub-blocks. However, it can be seen in these figures that the sub-
blocks formed near the outer or interior boundaries of the block are not regular at all.
There are another three artificial joint mesh types available to refine a homogeneous
and/or isotropic block domain, as follows.

Type Number of joint sets Sub-blocks formed

B 4 Right-angle triangular
D 2 Diamond-shaped
E 3 Hexagon-shaped

4, NUMERICAL EXAMPLES

The applicability of DDA combined with the artificial joint concept is illustrated by
the following five examples. The ’static’ analysis of DDA is used in the first three
examples; while the ’dynamics’ analysis of DDA is used in the last two where a
progressive failure is involved.

4.1 Cantilever Beam

This example examines the performance of Types A and C artificial joint meshes for
stress analysis in a cantilever beam. The beam, 8m long and 1m high, is fixed at its
left end and is loaded at its right tip. The Young’s modulus and Poisson’s ratio of the
beam are 100 MPa and 0.2, respectively; the tip load is 100 kN. Type A artificial
joints divide the beam into 128 sub-blocks; while Type C artificial joints cut the beam
into 228 sub-blocks. The added artificial joints have infinite strength.
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Figure 2a shows the deformed geometry and principal stress field® of the Type A
refined beam. The results are unsatisfactory; all sub-blocks have the same tensile
principal stress at -45° and the same compressive stress at 45°. The whole beam
responded in simple shear rather than bending, because the deformed shape of the
rectangular sub-blocks generated by Type A artificial joint mesh is restrained by, the
first-order displacement function used in DDA, to deform only into parallelograms®.

Figure 2b depicts the deformed geometry and principal stress field of the beam refined
by Type C artificial joints. In contrast to Figure 2a, Type C mesh allows the beam to
deflect, developing a neutral axis with tensile fiber stress in its upper part and
compressive fiber stress in its lower part. This example shows the adequacy of Type
C artificial joints to detail beam structures. Ke [4] examined other cases with smaller
deflection, in which Type C artificial joint mesh yielded results agreeing with those
calculated using classical simple beam theory.

. : . ..: Length (m)
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Length (m)
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Figure 2 Principal stress field of: (a) Type A refined beam; (b) Type C refined beam

4.2 Stress Concentration Near a Crack Tip

Analytical solutions to two-dimensional crack problems for various loading conditions
show that the stresses at a small distance 7 from the crack tip always vary as r'2 [24].
Two behavioral modes of a crack, Mode I (in-plane opening) and Mode II (in-plane
shearing), are investigated here. Figures 3a or b show a block, 1m high and 1m wide,

2 the principal stress field described in this paper means the DDA graphic output
showing the principal stresses of each block at its centroid; compressive stresses are
indicated by solid lines and tensile stresses by dotted lines.

3 this is no longer true when using a higher-order displacement function.
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with a horizontal crack extending six tenths of the way across its width; the block is
fixed at its two bottom corners. In Figure 3a, a vertical load P pulls the upper-left
corner of the block upward, causing crack opening (Mode 1); in Figure 3b, a horizontal
load H at the left end of the top crack wall causes sliding (Mode II crack shearing).
The block has the same Young’s modulus and Poisson’s ratio as in the cantilever beam
example and the crack is assigned zero friction to signify the sliding behavior in Mode
II. The cracked block was refined into 252 sub-blocks by Type C artificial joints with
infinite strength.
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Figure 3 A block with a crack: (a) vertical load P (Mode I); (b) horizontal load H
(Mode II); (c) principal stress field (Mode I); (d) principal stress field

(Mode I)
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Figure 3c shows the deformed geometry and principal stress field of the cracked block
subjected to P=10 kN. In this figure, the crack is open, and higher values of tensile
principal stresses are present near the crack tip in the radial direction. If more sub-
blocks are used, the stress concentration near the crack tip in Mode I will be more
precisely described.

Figure 3d depicts the deformed geometry and principal stress field of the cracked
block subjected to H=100 kN. The adjacent crack walls are in contact at the tip and
on the left end, but open between these two points. Higher compressive principal
stresses run from the loading point, along the top crack wall, around the tip, then
attenuate finally to merge toward the lower-right fixed corner; tensile stress is
distributed below the crack wall and concentrated near the lower-left fixed corner.

4.3 Block-in-Matrix Materials 7

A block-in-matrix material contains isolated (interior) blocks which are embedded
within a matrix. The properties of the matrix and interior blocks may not be the same;
the interfaces between the matrix and interior blocks are inherent discontinuities. The
matrix domain represents a complex space which contains interior boundaries and is
thus not simply-connected. The global behavior of a block-in-matrix material is a
function of the proportion, orientation, arrangement, and size of interior blocks and,
especially, the interface strengths [23].

Figure 4 shows two specimens from a particular case of block-in-matrix materials,
melange, found in the subduction zones paralleling present and ancient convergent plate
margins. Melange is distinguished by its oriented lenticular interior blocks. The
specimen in Figure 4a contains 19 horizontally oriented blocks (shaded areas) which
occupy 40% of the total "volume"; that of Figure 4b has 27 vertically oriented blocks
covering 58% of the "volume”.

Young’s moduli of the matrix and interior blocks are 250 and 420 MPa, respectwe]y,
both materials have the same Poisson’s ratio of 0.4. The interfaces are assumed to be
frictionless. A numerical uniaxial compression test was conducted on both specimens
(Figure 4) by adding stiff loading plates on the top and bottom of the specimen. The
bottom plate is fixed; a vertical load, P, is applied to the top of the upper plate. The
displacements of selected points around the specimens were used to compute their
overall secant moduli and Poisson’s ratios*. The matrix domain was refined by Type
C artificial joints with infinite strength. '

Table 2 lists the DDA results of two specimens, in which moduli are expressed in
units of MPa. Both specimens behave non-linearly, indicated weakly by the computed
secant moduli and more convincingly by Poisson’s ratios’. The non-linear behavior
derives from the large number of frictionless interfaces that undergo sliding in several
directions, leading to continuous reduction in stiffness with increasing load. Some of
the interfaces intersect the outer boundaries, especially on the free side walls of the
specimens (Figure 4), further degrading the overall stiffness. Table 2 also shows that
although the block proportion of Specimen 2 is higher than that of Specimen 1 by 18%,
the increase in modulus is not proportionally large. This is probably because Specimen

¢ ratios of average horizontal to vertical displacements revealed by the output.
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2 loses some stiffness due to increased chance for sliding along its longer frictionless
interfaces.

(@)

Figure 4 Melange specimens: (a) specimen 1 with 19 horizontally orlented blocks;
(b) specimen 2 with 27 vertically oriented blocks

Table 2 Computed secant moduli and Poisson’s Ratios in Example 3 7

P=1(kN) | P=2(kN) | P=5(N) | P=10(N)
Secant moduli: Specimen 1 298.5 298.0 297.9 297.9
Secant moduli: Specimen 2 312.2 310.3 13099 309.9
Poisson’s ratios: Specimen 1 0.4819 0.5165 0.5262 | 0.5205 .
Poisson’s ratios: Specimen 2 | 0.5986 0.6595 0.8422 0.8755

4.4 An Arch Dam Subjected to Impact

As an example of showing the fracture propagation capability of this refined scheme,
cracking and destruction of an arch dam subjected to enormous impact is simulated
here. Figure 5a gives a plan view of an arch dam abutting on jointed rock and a huge
block at t=0 approaching the dam in the indicated direction. Points 1 to 11 are fixed.
Because an arch dam is always made of rectangular concrete blocks, Type A artificial
joints were used to refine the dam into 36 concrete sub-blocks, as depicted in Figure
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5a. Each concrete sub-block was not further refined at the stage of this study. -

Young’s modulus and Poisson’s ratio of the dam are 1000 MPa and 0.2, respectively,
and those of the abutments are 200 MPa and 0.2, respectively. All joints in the
abutments are cohesionless and have a friction angle of 15°; the interfaces between the
dam and abutments have a friction angle of 30° and a cohesion of 0.1 MPa. The added
artificial joints (interfaces between concrete blocks in the dam) have a limited strength:
a friction angle of 30°, a cohesion of 0.1 MPa and a tensile strength of 0.03 MPa. The
velocity of the approaching rock is 141.1 m/sec.

Figure 5b shows the deformed geometry of the dam at t=0.002sec when the rock just
hit the dam. Many interfaces near the collision point fail (indicated by solid lines), and
lose their initial cohesion and tensile strength. Two gaps form in the interfaces of
concrete blocks below the impact point. At t=0.003sec, cracking of interfaces is
propagating into the two wings of the dam, as revealed in Figure 5c. Figure 5d depicts
the significantly deformed geometry of the dam at t=0.0lsec. In this figure, no
interface survives at this time, and remarkable gaps arise between the concrete blocks
below the hitting point. At this stage, imagine that water at a reservoir pressure enters
these gap, leading to the total collapse of the dam.

4.5 A Flying Object Hitting a Shelter Roof

This imaginary example provides a second illustration of fracture propagation within
a solid structure. As depicted in Figure 6a, the structure subjected to impact resembles
a military shelter for tanks or aircraft, which is composed of 80 concrete blocks (this
was also done using Type A artificial joints). A warhead-like object is approaching the
middle point of the shelter at a downward velocity of 100 m/sec. The foundation block
are fixed at its three corners.

Young’s modulus and Poisson’s ratio of the shelter and foundation are 1000 MPa and
0.2, respectively. The interfaces between the shelter and foundation have a friction
angle of 30° and a cohesion of 0.1 MPa. The added artificial joints (interfaces between
concrete blocks in the shelter) have a finite strength: a friction angle of 40°, a cohesion
of 0.05 MPa and a tensile strength of 0.01 MPa.

Figure 6b shows the deformed geometry of the cracking shelter at t=0.0015sec when
the object started to penetrate the shelter roof. Many interfaces near the collision point
fail (indicated by solid lines), and lose their initial cohesion and tensile strength. At
t=0.01sec, cracking is propagating into the two wings of the shelter, as revealed in
Figure 6¢c. Figure 6d depicts the total collapse of the initially intact shelter at
t=0.05sec. In this figure, the intruding object has already dug into the shelter and the
protected object(s) inside will be destroyed shortly.
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Figure 5 Cracking of an arch dam at t=: (a) 0; (b) 0.002; (c) 0.003; (d) 0.01sec
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Figure 6 Cracking of an shelter at t=: (a) 0; (b) 0.0015; (c) 0.01; (d) 0.05sec
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5. DISCUSSIONS

5.1 Comparison of Various Improvement Schemes

In addition to the artificial joint concept, there are at least three schemes which enable
DDA to handle variable stress and fracture propagation within a DDA block. They
include using a higher-order displacement function, finite element coupling [3,5], and
the manifold method [8]. Tables 3 and 4 compare these schemes with respect to refined
stress distribution and fracture propagation capabilities.

Table 2 Comparison of Various 'Schemes for Varjable Stress Capability

Scheme Computation | Complex Block Shape | Inclusions'
Need

Higher-order 3 2 Impossible
displacement function?

FE coupling 0.K. Need good mesh Need good

generator mesh generator

Manifold method O.X. O.K. 0O.K.

Artificial joint concept | Higher 0.X. 0.X.

! such as non-crossing cracks and interior blocks.
2 additional nodes needed along initial straight block sides.
* depending on the order of displacement function.

'Table 3 Comparison of Various Schemes for Fracture Propagation Capability

of failed contact

springs

Scheme Capability Energy Loss Cracking
Direction

Higher-order Fragmentation | Damping/Ag Any

displacement function | only

FE coupling Possible Damping/Ae Along element
boundaries

Manifold method OX. Damping/Ac Any -

Artificial joint concept | O.K. Strain energy release Along artificial

joints!

! relaxed by allowing the breakage of sub-blocks.
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Adopting a higher-order displacement function in DDA is the most straight-forward
to attain a varied stress field and to indicate a point where stress concentration occurs
and cracking initiates. In this case, since straight block sides become curved after
deformation, additional nodes must be added along those long straight block sides for
better detection of contacts. The computation time and complexity of block integration
involved increase with the order of the displacement function used. However, this
scheme alone can not resolve a DDA domain having extremely irregular shape and
containing non-crossing cracks or interior blocks. Also because it does not identify and
allow non-crossing cracks within a block, it can only simulate the fragmentation of
blocks, i.e. a block breaks into two or four pieces instantly.

Since a DDA block/domain is a continuous region, refining it by traditional finite
elements is not surprising. The original block unknowns are now replaced by finite
element nodal displacements. To refine a complex DDA domain containing non-
crossing cracks, a versatile mesh generator is required. It is possible for this scheme
to simulate fracture propagation if the element boundaries are allowed to break down.
The energy loss due to cracking can be modelled by damping or reduction in stress,
which may require input from physical tests.

The manifold method invented by Dr. Shi [8] represents a new approach to analyze
the interactions of different material domains based on the concept of separation of
mathematical and physical meshes. In its early form, the mathematical mesh used for
the blocks is the three-noded finite elements, and a versatile finite element mesh
generator is included to refine a block domain even containing swirling non-crossing
cracks. Block interactions are modelled according the block kinematics in DDA. With
adopting the adequate failure criteria, the fracture propagation within a solid can be
readily simulated. However, the energy loss due to cracking must be represented by
the same way as used in the above scheme.

When attaining a refined stress distribution under the same order of solution precision,
the total number of degree of freedom required by the artificial joint concept scheme
are about 40% larger than the other schemes, leading to longer computation time.
However, this does not remain true when modelling fracture propagation, in which an
intact solid is gradually fractured and finally broken into pieces. In this scheme, the
energy-loss associated with cracking is naturally modelled by the strain energy release
of failed contact springs, with no need of inputting other measured or artificial
guantities. The cracking direction is constrained by the artificial joint network selected,
but this problem can be overcome by allowing the breakage of sub-blocks according to
a certain failure criterion. '

5.2 Selection of Adequate Artificial Joint Meshes

Solid materials are usually composed of crystals or grains in the micro scale, as
schematically shown in Figure 7. Figure 7a depicts the interpretive drawing of a thin
section of gabbro, in which the main minerals are pyroxene (pyx), plagiclase (plag),
iron oxide (Fe), and Figure 7b shows an assemblage of uniform sand grains. The
crystal/gram boundaries are essentially softer and weaker than the solid, parts of
crystal/grains. Therefore, these boundaries are more deformable and represent potential
cracking routes. If an artificial joint mesh could match exactly these boundaries or
mostly their macro-pattern which would be mappable, then the DDA simulation results
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with an adequate displacement function should be much more compatible to the actual
behavior of the solid domain, in terms of deformation and strength.

Figure 7 Sketch map of a solid composed of: (a) crystals; (b) grains

For a homogeneous and/or isotropic solid with unknown crystal/grain boundary
pattern, a regular artificial joint mesh should be used, like those as described in the
Section of The Artificial Joint Concept. If a first-order displacement function is used
in DDA, only those generating triangular sub-blocks (such as Types B and C) should
be used. In the case of a higher-order displacement function used, all joint mesh types
can be adopted. When a transversely isotropic material is encountered, Type A joint
mesh may be applied, with one closely-spaced joint set being parallel to the geological
structure like foliation.

6. CONCLUSIONS

DDA is a powerful numerical tool to analyze the mechanical response of discrete
block systems. Without losing the simplicity and beauty of Shi’s original formulation,
"the artificial joint concept” was introduced to enhance its capabilities. The new
capabilities include determining refined stress distributions even in blocks with complex
geometry and interior features, and simulating the fracture propagation of intact blocks.
When compared with other improvement schemes, this conceptual scheme seems to be
more flexible and practical. Selection of an adequate artificial joint mesh depends upon
the understanding of the solid material under investigation.
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Summary:

There are two groups of numerical approaches in structural analysts. One group may be
termed as numerical analysis, which includes methods such as the finite element, finite
difference, and boundary element. By modeling the structure as a continuum, the analysis
obtains quantitative predictions of the pre-failure responses in the form of stresses,
deformations, and velocities. In these analyses, treating discontinuity and large
geometrical change commonly associated with failure is usually difficult. The second
group may be termed as numerical simulation. By modeling the structure as an
assemblage of discontinuous media, the motion histories of the structural components are
 recreated qualitatively. Often, each discontinuous medium is treated as a rigid body. In

these analyses, quantitative predictions of the stress and deformation due to applied
loading condition are often not available or less accurate. Examples of this group are
methods such as distinct elements and block theories for rock masses.

Attempts to integrate the stress analysis of continua and the motion simulation of
discontinuous media to form a comprehensive procedure for the study of complete failure
process have been reported in recent years. One of the key issues in the development of
such an algorithm is to find an accurate, simple, flexible, and numerically stable procedure
to handle the transition from a single continuous deformable body to multiple distinct
deformable bodies subjected to free rigid body motions. Such a transition may occur
during the fragmentation of a structure after fracture.

In this paper, we first discuss the numerical and analytical difficulties in treating the
transition behavior. Then, we summarize our recent attempt in the study of structure
fragmentation which involves a similar transition period. Briefly, our work is based on a
vector formulation of finite element and an explicit integration procedure for transient
loadings. This allows the simultaneous treatment of multiple bodies and rigid body
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motions in finite element analysis. A concept of updated material frame is introduced to
handle the large deformation and the high rate of motion at the instant of transition.

Sample numerical solutions are given for the fragmentation of frame structures and for a
rigid projectile penetrating through a plain concrete medium.

Introduction:

The advancement of structural design has historically been influenced by the availability
of analytical technics and the development of computational facilities. In a century ago,
the concept of differential calculus established the foundation for the breakthrough
concepts of stress and strain distributions, which led to the important theories of beams
and columns. These analytical tools facilitated the design and construction of long span
bridges, arches, and structural foundations. However, the lack of efficient computational
facilities limited the capability of analysis and design, engineers relied primarily on hand
calculations and graphical methods. The availability of desk calculators and new slide
rules at the turn of this century led to another breakthrough. The facilities made the
concept of numerical iterations and direct computational methods viable for practical
applications. These analytical tools led to the design and construction of highly redundant
structures. Tall buildings with complex frame components, efficient bridge designs and
integrated naval and airplane structures become possible. Using these computing
facilities, linear mathematics such as series, transformations and differential equations
were developed as engineering tools to study a variety of problems, including the inelastic
material theories and multi-axial stress behaviors. As a result, two dimensional structures
including plates, shells, pavements and mate foundations became standard components of
structural design.

With the advent of efficient personal computer and algorithms, structural engineers have
the opportunity to enter another new era. Due to the limited capacity and restrictions on
accessibility, earlier impact of computer has been in the broadening engineer's capability

to manage a large number of structural components and to handle complex structural
geometries. Direct stiffness method, finite difference and finite element methods were
developed by following essentially the traditional concepts such as variational approaches.
We are yet to realize the potentially revolutionary changes in engineering practice.

With the advancement in personalized computing power during the last decade, structural
engineers are now given the tool to approach design and analysis far beyond the
traditional confinements. One of the possible developments which may have such far-
reaching impact in engineering practice is an efficient and flexible design procedure based
on a realistic assessment of structural service condition. Such a procedure requires an
accurate evaluation of the component reliability and a.new approach to predict the
progressive failure of a structural component under the service load and the service
environment.
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Failure-Based Structural Design:

Finite element techniques combined with the developments in material modeling have
provided a solid basis to study the stress and strain distributions ina structural component
before it begins to fail. Because of the high redundancy built in a structure, the initial
failure of the structure often occurs at merely a small fraction of the ultimate structural
capacity. To assess the true load carrying capacity, one needs to consider the continuous
changes in material property, for example the yielding and hardening of metals and
microcracking of brittle and inhomogeneous materials. Part of the structure may fracture
and separate into multiple pieces. Due to the overall ductility, a structure may be
subjected to very large geometrical changes before collapse. Thus, one of the primary
concerns is finding new concepts and techniques to treat large displacements and fracture.

Traditional approaches to define fracture and to incorporate fractures into the design
procedure can be categorized into two groups. Empirical approaches use extensively the
test data to develop relationships between the input and output parameters. Such
approaches have successfully included failure modes into the design practice. Member
and connection designs for reinforced concrete structures and the fatigue design for metal
structures are typical examples. However, the resulting formulas are often not correlated
to the intrinsic phenomena of the structural material and geometry. They can not be
extrapolated to predict cases which are beyond the test environment. Hence, the
application is confined to simple structural geometry and simple loading conditions.

Mathematical formulation of the physical phenomenon, such as the classical fracture
mechanics, provides a rational basis for more general studies of failure. Simplifications
are often required to reduce the equations and the ensuing analysis to manageable sizes.
Singularities for example, are introduced to represent the cracked region as a point or as
a line. Other simplifications including plastic hinges, slip zones, jump conditions, yield
and fracture surfaces have been successfully used by structural engineers to handle
different forms of failure in the practice. Similar to the empirical approaches, the
analytical approaches are limited in their scope and range of application. They offer
valuable understanding of the initial failure of a structural component, but do not provide
an efficient tool for the prediction of the progressive failure and the ultimate collapse of a
structural system. Infact, the extensive use of singularities may prove to be efficient in
the mathematical formulations; they become troublesome obstacles in the implementation
for numerical evaluations.

Direct numerical approaches which do not follow the traditional empirical or analytical
concepts seem to show the greatest promise in the development of a viable technique to
simulate structural failure. Most of the advancements have been reported within the last
decade. Although a satisfactory algorithm is yet to be available, significant progresses
have been made in various areas. In general, such an algorithm should have the capability
to handle some of the basic behaviors common to most fracture processes.
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a. Stress Analysis of the Continuum:

Formulation of the mechanical properties of materials is based on the assumption of a
continuous body. Numerical analysis should be convenient to handle the study of stress
and strain prior to failure in the context of continuum mechanics.

b. Irreversible and Inelastic Materials and Failure Criteria.:

Permanent deformation and irreversible stress-strain relationships are critical behaviors to
a quantitative prediction of ultimate loading capacity. The algorithm should be able to
handle these properties without the need for extensive computational efforts.
Implementing failure criteria should be easy. They define changes in material properties
and identify the nature of failure. For example, the algorithm should be easy to include
yielding, plastic flow, and rate-dependant plasticity without the need for multiple
iterations.

c. Post-fracture Material Properties:

Material models should be implemented to describe the degenerated material properties
according to the nature of failure and how fractures occur. For example, concrete may
exhibit behaviors similar to anisotropic elastic or plastic models with a degenerated
stiffness parameters when concrete members are subjected to tension cracks. Concrete
may also behave similar to granular materials when it is crushed due to hydrostatic
compressions.

d. Mixture of Stiff and Soft Media:

Due to local failures in a continuous body, some structural members may become
significantly weaker in stiffness compared to other members. For example, part of a
continuous concrete body may be crushed or cracked and yet trapped within the medium
due-to constraints. Continuity is still maintained due to aggregate interlock. This forms a
mixture of hard and soft components which behaves as a continuous body. Current finite
element and stiffness methods have difficult handling such diversities in stiffness.

Classical continuum analysis often assumes homogeneity in material properties. This
assumption has excluded many physical conditions. For example, soil media often include
large boulders. Rock masses include soft soil layers. The algorithm should be able to
handle these diverse properties.

e. Large Deformations and Very Large Geometrical Changes:

Before fractures to start, the local deformations near the fracture zone can be extremely
large for ductile materials. Slender and thin-walled structures may be subjected to very
large geometrical changes before fracture. Layered structures may subjected to very large
inter-layer slides. Large deformation may occur in the soft layers, while the motions of
stiff layers are essentially in rigid-body motions. Large geometrical changes usually lead
to complicated interaction effects. In classical mechanics, these interactions are often
treated as isolated cases. For example, beam-column and buckling are usually taken
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separately in the analysis of frame structures. To predict structural fracture, these
interactions should be integrated into the algorithm as natural conclusions of the
geometrical changes.

f. Impact and Dynamic Responses:

Critical loading environments often involve forces applied within a very short period
known as impacts and shocks. Even for a gradually applied loading condition, the inertia
effect and the wave phenomenon can become important when 2 structural component is
subjected to a sudden fragmentation. Sudden changes of the constraint and loading
conditions of a fragmented member may induce rapid redistributions of the stresses and
strains in a manner similar to impacts and shocks. Very high rate of deformation may
occur near the fragmented zone which could lead to additional fracture and propagation
of the fracture zone.

g. Rigid Body Motions:

In the classical stress analysis , the considerations of rigid body motions and deformable
body motions are separated. By solving simultaneous equations, traditional finite element
and finite difference methods generally assume static equilibrium and ignore the ngid
body motions. To study fracture and to consider more realistic modeling of structures,
rigid body motions due to inter-layer sliding or due to fragmented components separated
from the original body should be integrated into the stress analysis procedure.

h. Multiple Deformable Bodies and Free Bodies:

To handle phenomena such as the break-off of structural components, sliding of layered
medium and the penetration of a projectile into a structure, the algorithm should have the
capability of computing stresses and motions of several interacting continuous bodies.
Multiple deformable bodies are generally not permitted in the classical continuum
concepts and the analytical methods associated with these concepts. They should thus be
modified to incorporate these conditions. For example, the breaking a fixed-fixed beam
changes the problem into two cantilevered beams. The algorithm should be able to trace
this transition and handle the sudden change in natural frequency of each component
beam without incurring the numerical probiem of instability. For some loadings, parts of
the beam may also be fragmented and separated from the original structure. To trace the
trajectories of separated fragments, unconstrained free bodies may be treated either as
rigid bodies with translations and rotations, or as deformable bodies subjected to
oscillations as well as the large rigid body motions.

Recent Developments:
Numerical methods for structural analysis are generally intended to study the pre-failure
responses of a single continuum. They provide quantitative predictions of the stress,

strain and displacement values with satisfactory accuracy. Using for example, the finite
difference to handle time variables and the finite element for the displacement
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distributions over the continuum, responses due to impact and shock can readily be
predicted.

Considerable advancements have been reported in the area of modeling permanent
deformation, irreversible behaviors and other inelastic responses. Most of the
developments have generally followed the traditional theories of plasticity, creep and
viscoplasticity. Accurate predictions can be obtained for the stress and strain responses
due to complicated loading conditions. However, modeling of the post-fracture responses
and the progression of failure zones through the media are not as accurate..

Extensions of the linear finite element formulations for small strains to study large
deflections of thin structures have been reported. For example, a large rotation and small
strain approximation known as the co-rotational approach has yielded accurate results for
moderately large deflections of frames, plates and shells.. The method is computationally
efficient and requires a small computer code. For structures subjected to very large
deformations, lengthy iterations are often required for most of the algorithms reported in
the literature. Convergence of the iteration process remains to be uncertain.

To simulate the fracture process which involves many different discrete bodies and very
large rigid body motions, discrete element methods have been developed and applied to
engineering practice with considerable success. This group of simulation methods has
been utilized mainly in modeling discontinuous media to qualitatively recreate the
bebaviors of granular or jointed materials. By analyzing the contact forces acting on the
discrete bodies and the changing contact points, motion histories of the discrete elements
can be obtatned.

To accurately predict the failure process, it seems necessary to combine the stress analysis
methods and the motion simulation techniques to form a comprehensive procedure. The
resulting algorithm should have the capability of calculating the stress, strain and
displacement prior to failure. Based on a set of failure criteria, the algorithin should
predict where and how failures occur in a given structural system. The analysis is then _
phased into the study of post-failure behaviors. The structural system is transformed from
a continuous body to a system of multiple discrete bodies. Large geometrical changes
may change the structural configuration of each discrete body due to large deflections or
large deformations. As the fracture process continues to progress, some pornons of the
structure become free bodies or separated deformable bodies.

An Algorithm for the Structure Transition:

As an initial attempt in the direction of developing a comprehensive procedure for failure
prediction, an algorithm is proposed which seems to have the capability of handling
stable transitions of a continuous medium into multiple deformable bodies and free
bodies. The algorithm has been implemented to study frame structures and two
dimensional solid media. We briefly summarize the essential ingredients of the algorithm.
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a. A Vector Formulation of Finite Elements: )

In the traditional finite element analysis, the stiffness and force matrices are calculated
based on structural discretization. These matrices are assembled to form a system of
simultaneous linear equations for the solution of nodal displacements. For dynamic
problems, a similar procedure to find the mass matrix and a system of differential
equations are obtained.

Instead of using the matrix formulation, we propose to adopt a transient formulation
developed earlier by Key, Belytschko and Hallquist. In the formulation, the continuous
medium is approximated by discrete mass particles. Using the standard finite element
analysis, energy equivalent internal and external forces are found. They are the forces
applied on the mass particles. Newton's law of motion and time integrations complete the
formulation to determine the acceleration, velocity and the displacement of each particle
for a particular time increment.

Since the discretization considers only the lumped mass particles and forces acting on the
particles, the formulation is written in vector form. One of the distinct advantages of a
vector formulation is that the code development is considerably simpler than a matrix
analysis.

Note that the equations of motion for each mass particle are essentially solved
independently. Mass particles are related to one another only through the internal forces.
This property of a mass-force system offers considerable advantages in the study of
structural failure.

* The motion of each particle is calculated independently. The equations of motion yield
total absolute motion of the particle, including both the rigid body motion and deformable
motion. :

* The system is an assemblage of independent particles, regardless whether these particles
form a unit body or multiple bodies. The only difference is in the calculation of internal
forces. Hence, the algorithm automatically permits multiple bodies and body separations.
* Since material properties are included in the computation of internal forces, inelastic
and discontinuous material properties are easy to handle.

* Adding or subtracting a set of nodes do not affect the original discretization. Hence,
creating new surfaces or eliminating portions of the medium due to failure presents no
numerical problem. '

* Numbering of the nodes has no effect on the computation. Again this is convenient for
creating or eliminating surfaces and bodies.

* Since the interactions between two components are through the internal forces, the co-
existence of soft and stiff components do not present numerical problems. The extreme
case is that some components have zero stiffness as a result of failure.

* It is easy to handle different types of structural component without the need for
complicated assemblage process.
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* Coding for the algorithm is simple. The resulting program is short and compact.
* it is easy to handle inelastic and discontinuous material properties.

Since Newton's law of motion forms the basis, the algorithm is a transient procedure by
nature. Static solutions can be obtained by attenuating the motion through the use of
dynamic relaxation and apply external loads incrementally.

Figure 1 shows a schematic diagram of the lumped mass-force model for the
discretization. Figure 2 shows a typical static solution obtained by introducing an
artificial damping to attenuate the motion.

b. Explicit Time Integration:

To avoid the complexity of iterations, a simple explicit time integration formulation is
suggested to find velocity and displacement for each time increment. This simplifies the
implementation for complicated material models, changing constraint conditions and
loading conditions. Fracture, particle collision, and penetration conditions become much
simpler to incorporate. However, small time and force increments are required for
numerical stability. This leads to longer computational times in general.

c. An Updated Material Frame Formulation for Large Deformation:

During the fragmental process, it is required that the large rigid body motion and the
large displacement should be tracked accurately. Approximated techniques such as co-
rotational formulation do not provide enough accuracy for these large geometrical
changes. Errors can accumulate rapidly and even cause numerical instability. Figure 3
shows a typical example of the error induced by the use of a co-rotational approach to
handle large displacement of a frame member after the member is fragmented.

To develop a more accurate approach to handle very large deformation and yet simple in
computation, an updated material frame formulation of the deformation is proposed.
Instead of using the undeformed geometry as the material reference frame to calculate the
deformation gradients and Lagrangian strains, we propose to use the current
configuration as the material frame and adopt an incremental procedure for the
deformation process. For each time or force increment, the geometry of the structural
element is updated. A new material frame is defined based on the current geometry. A
set of geometry shape functions can be defined to described element geometry in terms of
nodal geometry parameters such as positions and slopes. At a given time increment, a
structural element is subjected equilibrated stresses. And the stresses are also in
equilibrium with the applied external loads.

This process may be formulated as a modification of the traditional co-rotational

approach. If the load increments are small, linear stress and stram relationships can be
used to descrlbe the matenal propemes
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If isoparametric elements are used for the analysis of solid medium, the geometry updates
can be introduced by continuously updating the nodal positions and the element stress
values for each load increment.

d. Mixture of Rigid and Deformable Motions:

A master node-slave node approach is proposed to monitor the motion of each rigid body
imbedded in a continuous medium. The rigid bodies may be subjected to very large
motions and at the same time the continuous body undergoes large deformations. A slip
and frictional behavior can be introduced to represent the interface medium between
different bodies. Then the algorithm permits sliding between two surfaces.

e. Fragmentation Algorithms:

Several basic algorithms are needed for the purpose of monitoring the recreation of new
surfaces or new bodies. Most of them can be choices of the programmer according to
how the computer codes are developed. We list a few essential choices in our
programming process.

* Surface Creation or Adding Bodies:

When the element stresses or the nodal displacement values satisfy a failure criterion,
new nodes are added and new free surfaces are formed. The algorithm is required to
check whether a new surface is permitted to exist at that location and to determine the
types of constraint conditions which should be imposed on the new nodes. For the new
nodes, dynamic allocations and parameter storages should be adjusted accordmg]y

* Internal Force Calculations:

After an element is found to be fractured, all the internal forces should be recalculated to
examine whether more fracture should occur in the elements, including those already
fractured.

* Time Increment Adjustment:

To ensure numerical stability, the size of time and load increment should be re-examined
according to the change of effective structural dimensions and the stiffness of the new
structure.

* Inter-element Collision:

Fragmented components are allowed to move freely according to the force conditions.
Thus, fragments may penetrate through other elements numerically. An algorithm should
be adopted to control the motions of fragmented bodies.

A simple algorithm may define each fragment as a circle. Its center position is compared
to the positions of other components. If the circular zones are found to be coincided, a
set of equal and opposite collision forces are applied on the coinciding components. The
total collision forces are distributed to the nodes and treated as external forces. Using the
explicit approach, these new nodal forces are imposed in the calculations for the
subsequent time increment.

* Contact and Sliding Surfaces:

The master node-slave node approach can be used to handle contact and sliding surfaces
commonly encountered in the study of projectile penetrations. For example, the nodes on
the projectile can be designated as master nodes, and the target nodes are slave nodes. At
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each time increment, the positions of the slave nodes are examined to determine if the
slave nodes have penetrated into the master node boundaries. If they have done so, the
positions of the slave nodes and moved back to the master boundary, and the resulting
changes in momentum are transferred to the master nodes.

* Penetration of Projectiles:

Discretized models and material properties of the projectiles can be treated as separated
inputs. Their motions can be calculated in the program as part of the multiple bodies.
Motions of the bodies can be evaluated simultaneously, or computed in series. When they
are calculated in series, motions of one body can be used as the constraint conditions for
the next body. This simplification provides considerable flexibility in programming and
should be sufficiently accurate for practical applications if small time and load increments
are chosen.

Numerical Samples:

Without giving the details, we show samples of a variety of numerical examples. Figure
4 shows the motion histories of an unrestrained frame structure subjected to an impact
force acting at its left end. Without any support, the structure is deformed and undergoes
a large rigid body motion. The applied force is a triangular force which lasts 0.2 seconds.

Figure 5 demonstrates the updated material frame approach for large deformation.. A
square frame is supported at the lower mid-point. An impact force of triangular shape is
applied at the center of the upper cord. Figure 5 plots the deformed phase as well as the
rebound phase of large deflection. The plotted deflections are in proportion to the frame
size. At the center, the deflection is about 30% of the span length.

Figures 6(a) to (e) plot three fragmental conditions of a fixed-fixed beam subjected to a
set of concentrated forces on the middle three nodes. Assume that the forces are
sufficiently large to satisfy a failure criterion. The middle three nodes fractured.
Subsequently, the two neighboring nodes also fractured due to the high rate of
deformation induced by the fragmentation. Figure 6(2) shows the geometry, loading
condition, and a schematic diagram of the fragments. Figure 6(b) shows the traces of the
five nodes of the fragments. The fragments are subjected to translations as well as
rotations. Figure 6(c) shows the trajectories of the four fragmented elements. If gravity
forces are considered in the transverse or y direction, additional elements will fracture in a
later time. Figure 6(d) shows the traces of all eleven fractured nodes. It is interesting to
note that the outside elements which fractured at a later time are essentially in free fall
without spinning motion. Figure 6(e) considers the same beam with gravity force applied
in the -x or axial direction. Thus it is a column subjected to horizontal impact forces.

Figure 7 plots the results of a rigid projectile penetrating through a plain concrete
medium. The concrete medium is modeled by axi-symmetrical isoparametric elements.
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An elastic-plastic model with a four-parameter failure criterion is implemented to describe
the pre-failure and post-failure concrete properties. For a deep concrete medium
subjected to a hypervelocity projectile, it is expected that the projectile will create a
tunnel of crushed concrete and penetrate through without extensive cracking. The
fractured pattern shown in Figure 7 seems to agree with the observation.
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Figure 2. Typical solutions obtained by a dynamic relaxation procedure
(a) A one-bay frame subjected to a horizontal force of ramp type
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Figure 2(b). A simply-supported beam subjected to an axial force, a beam-
column problem. Buckling load is obtained by introducing artificial
damping.
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Figure 6(b). Displacement histories of four fragments, loci of nodes 6,78, 9
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in Continuum and Fracture
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SUMMARY:

Advances over recent years in the deformable discrete/finite element method
combined with parallel advances in the numerical treatment of non-linear continuum
problems have allowed discrete and finite element techniques to be merged to
provide solution capabilities for progressively fracturing solids. Farly applications
concentrated mostly on brittle (mainly strain softening) materials. The models
included crack propagation and fracture algorithms based on assumption of
localisation zone being orthogonal to the mazimum plastic sirain. This assumption
is limited to applications of the methodology to problems with mode I dominated

fracture patterns.

On going developments within a wider framework of the so called DEFT
(discrete/finite element technology) have introduced elasto-plastic/viscoplastic
deformation under finite strain conditions including problems of condensed maiter
physics with thermal and phase change phenomena. More robust fracturing
algorithms are employed enabling a greater choice of both yield and fracture/rupture
criteria. In this paper some algorithmic issues concerning continuum based DEFT
applications with fracture for both 2D and 3D problems are discussed and relevant

numerical ezamples are presented.

The outline of the paper is as follow:

e A short review of the state of the art of DEFT. Special attention is paid to
the limitations of early formulations and a need for more robust formulations;
especially of fracture propagation algorithms is established. This includes
extension to 3D problems with accent on enerqy and momentum preserving
contact algorithms at finite penetrations.

o Application to ductile materials 1s reviewed. This includes detection of strain
localisation zones, fracture propagation and adaptivily. Related numerical
results (micromechanical friction behaviour and metal cutting) are presented.
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1. INTRODUCTION

1.1. Finite Element Method

Many properties of engineering materials and systems coincide very closely
with predictions based on the assumption of continuity. The general formulation
of a continuum problem involves constitutive equations and conservation law. The
most widely used solution strategy is finite element method.

Since its advent some four decades ago, the finite element method has proved
an effective technique in industrial analysis and design. Finite element methods
are well established in many branches of engineering and are now routinely used in
the solution of large scale industrial problems.

As the mainstream numerical technique, the finite element method has been
applied to almost all conceivable disciplines of industries and has become an
important module in the integrated computer-aided engineering environment. This
situation has been brought about by the increased maturity of numerical analysis
methods in general, and in particular for nonlinear problems, combined with
dramatic developements in computer performances.

1.1. Discrete Element Method

The general statement of problems involving several particles or bodies must
specify the interaction law between any pair of particles and a conservation law.
The most widely employed solution strategy in this context is the discrete element
method. The overall algorithmic framework for discrete element methods is straight
forward and has remained more or less the same since the method was first
introduced. The simplest computational sequence for discrete elements typically
proceeds by solving the equations of motion using an explicit time marching scheme,
while updating force histories as a consequence of contacts between particles
or bodies {using a penalty format) and/or resulting from contacts with model
boundaries at a given time. An increased complexity of different discrete element
models is achieved by incorporating the deformability of the solid material and/or
by more complex interaction laws, and particularly by the introduction of any
failure or fracturing criteria controlling the solid material behaviour. From the
computational point of view, complexities arise from the need to detect and
continuously keep on updating pairs of bodies in contact in an efficient manner,
where a number of sophisticated searching algorithms and data representation
techniques are employed.

The origins of the discrete element method can be traced to the late sixties.
A model by Goodman, Taylor and Brekke [1], for example, was aimed at the
simulation of jointed rock and was accomplished by introducing discontinuities
into an existing continuum. In the early seventies, models based on the a priori
assumption of discontinous behaviour were introduced, with continuum behaviour
being treated as a special case {Cundall {2]). The methodology was initially applied
to jointed rock systems, with later application being made to industrial processes
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such as granular media [6] and shear flow [7]. The set of methods developed was
generally termed the distinct element method.

Further developement took place in the eighties with the incorporation
of deformable behaviour for the more precise modelling of individual elements
and the term discrete element methods became widely accepted. The
continuum representation of individual elements was dealt with through polynomial
approximation of the strain field (Williams [3], Goodman [4]) or by incorporation
of central difference procedures (Cundall [5}). Fracture models were either based
on rigid fracture energy release rate concepts or on the breakage of cohesive links
between discrete elements.

Recent developements [6, 7] have centered on improved physical models and
associated computational algorithms. Improved formulation for nonlinear physical
models and associated computational issues for discrete element method are closely
related to advances in continuum based computational plasticity. In this context
more robust fracturing algorithms have also being developed in contrast to more
traditional element interface based rigid fracture modes. Notable advances also
include improved contact detection and interaction algorithms and the introduction
of advanced computational concepts (parallel and distributed computing, object
oriented programming and in core data bases). The first approaches for coupling
discrete element methods with fluid flow methods have also appeared [10], as well
as combined finite element/discrete element simulations.

1.3. Combined Finite/Discrete Element Method -

Apart from more traditional continua and/or multibody based methods,
engineering practlce requires computational technology for problems that involve
transition from continua to discontinua (demolition, blasting, etc). The most
appropriate solution strategy in this context is a so called combined finite/discrete
element method.

Early attempts to combine finite and discrete elements were made by Ghabousy
[9]. However, a systematic development of a so called combined finite/discrete
element method which involves fracturing, fragmentation, coupled problems,
viscoplasticity, finite strains, strain localisation and adaptivity can be found in [11].
First successful applications of the methodology to relevant practical engineering
problems can also be found in [11, 19]

It may be argued that the only tanglble difference between a traditional explicit
transient finite element analysis and combined finite/discrete element formulations
lies in the automatic creation of new discrete elements and the detection of new
contacts. However, both the algorithmic issues and applications are much more
complex then that.

The discussions to follow consider the issues involved in the development of a
combined finite/discrete element method from a fundamental theoretical viewpoint
and, in addition, some related algorithmic considerations essential for the efficient
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numerical solution of a large scale problems are elaborated upon. In considering
fracturing media, starting from a continuum representation by finite elements of the
solid domain of interest, progressive fracturing is allowed to take place according
to some fracturing criterion, thereby forming discontinuities, leading eventually to
discrete elements which may be composed of several deformable finite elements.
Subsequent motion of these elements and further fracturing of both the remaining
continuum domain and previously created discrete elements is then modelled and
monitored.

2. DEFORMABILITY OF DISCRETE ELEMENTS

The deformability of individual discrete elements was initially dealt with
by subdividing discrete elements into constant strain zones [13]. An alternative
was suggested by Williams and Mustoe [3], introducing several discrete body
deformation shapes superimposed on top of the body centroid motion and a
similar deformability model was proposed by Shi [8], where so called discontinuous
deformation analysis (DDA) employs polynomial approximation of the strain field
superimposed to the centroid movement for each discrete element.

More robust solution for deformability of individual discrete elements is
achieved by discretisation of each discrete element into finite elements followed
by a subsequent generally nonlinear finite element analysis.

This approach is computationally efficient and very suitable for computer
parallelization. The nature of deformation demands a finite strain elasto-plastic
model be implemented.

Nowadays, hyperelastic models based on stored energy potentials are widely
accepted as the correct approach in implicit models. The extensions for plasticity
require multiplicative decomposition of the deformation gradient:

_ ox

F_'ﬁ=

F.Fp (1)

However, for explicit integration with small time increments and small elastic
stretches, the error arising from a hypoelastic approach is practically negligible,
while element database requirements and computational speed benefits occure. The
stress integration scheme is based on the objective stress rate, while the plasticity
is modelled via a standard elastic predictor-plastic corrector procedure. If the
additive strain rate composition

d=d.+dp (2)

is assumed in the mid-time step configuration, this procedure takes the classical
small strain format. For the plane stress case, a consistent algorithmic treatment
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has been derived in [14]. It should be noted that local iterations on the element level
are not omitted in the present work, as is usually done in other explicit schemes.

3. MECHANICAL CONTACT

3.1. Contact Interaction

One of the key issues in the developement of combined finite /discrete element
technology for a large class of industrially relevant problems is the treatment of
general 2D and 3D contact impact, i.e. enforcement of the constraint that no point
in the space is occupied by more then one body at the same time.

The surfaces of solids are wavy and rough, Figure 1. As a consequence of
the surface irregularities, the contact between two surfaces is always discrete. In
mechanical contact pressure is actually transferred through a set of points in which
surfaces touch. With increasing normal pressure elastic and/or plastic deformation
© of individual asperities occurs, resulting in an increase in the real contact area. At
some point, undulations over which asperities are distributed begin to influence
significantly the shape and size of the real contact area, through change of the
shape of the contour area.

Figure 1. Typical rough surface profile

Experimantal tests and theoretical investigations relate normal stress in the
contact interface to the approach between the two contact surfaces

Opn = 6'n(‘s"vrn S) (3)

where a, is the approach and s is a vector of state variables depending on the
magnitude and nature of normal forces, degree of fracture of surface asperities,
work hardening of surface asperities, wear, plowing phenomena, phase changes,
thermal effects, etc.

The most simple contact law expresses normal pressure as a function of the
approach only ’

On = On (a-n) (4)
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in which case &, is in general a nonlinear function, although in computational
literature for the sake of simplicity a linear relationship is often adopted.

Over the last decade a considerable body of literature has also been devoted
to tangential resistance in contact. Among theoretical approaches to friction
phenomena are local and nonlocal theories of friction [16,17] based on detailed
analysis of interaction among asperities, adhesion, microcutting, etc.

In practical applications concerning computational mechanics, the analogy
which exists between plastic and frictional phenomena [18,19,20] have been usually
exploited. In static problems for small tangential force it is assumed that the
tangential displacement increases with increase in the tangential force.

T = ?n(a'r) (5)

Considerable sliding occurs only after the tangential resistance is reached. The
tangential resistance to motion is in general a function of normal pressure and
in the rhost simple form a law similar to the classical theory of plasticity can be
derived

Fr(on,7ykn) =0 (6)
Fr(on,7,k7) =0 (7)

Gn = dn® + d,™" (8)

ar = a% + af (9)
(g S o
i = { Ve nine o)

where separate yield/slip surfaces for normal stress and tangential resistance are
assumed. There are two reasons for this assumption. Firstly the physical nature of
tangential and normal resistance is different. Secondly, an associated flow rule can
be applied at least formally for normal and tangential components in turn. In fact
the above formulation is a logical extension of the formulation employed in metal
plasticity [20] and in a similar way leads to a nonsymmetric tangent operator.

169



3.1. Contact Kinematics

Numerical methods employed for implementing contact constraints [21] are
based either on Lagrange multiplier methods or penalty function methods, although
for some applications special approaches have been introduced, e.g. for high-
velocity impact problems or dynamics of loosely packed particles in which transfer
of momentum is the dominant effect of the contact interaction, a method based on
momentum conservation has been employed [15).

In static problems a consistent linearisation of the field equations in the Newton
iterative scheme is needed to ensure quadratic convergence in the region close to
the solution [22]. Recent applications of non-associated flow rules have opened
the way to a consistent linearisation, and thus quadratic convergence, although
sometimes at the expense of complicated expressions for handling changing contact
kinematics.

Within an implicit transient dynamics context the Lagrange multiplier method
is implemented in a rigorous manner, whilst in explicit transient dynamics the
term Lagrange multiplier method implies that the impenetrability conditions are
satisfied approximately {24] (often through iterative solution of a coupled system
of equations, e.g. Gauss iterative solver, and sufficiently small time steps taken
to impose energy and momentum balance). The penalty method is either used
to impose the impenetrability condition in an iterative manner or to ensure the
correct response of the physical system despite violating impenetrability conditions.
In explicit transient dynamics the penalty formulation is well suited for contact
modelling, however, the presence of nonlinear contact kinematics may induce
instability of the numerical integration scheme [11,12].

In large systems [11,12] it may not always be possible to keep the penetration
»small”, in which case a finite penetration may occur but a correct overall behaviour
of the system may still be achieved. However, with most algorithms in use, the finite
penetration produces imbalance of energy and/or momentum and in cases with
pronounced local confinement can lead to a solution failure due to the instability
induced by repeated contact/release.

The kinematics of contact is often treated by slideline algorithms [25].
Traditionally one surface is designated as the master (target) surface while the other
surface is designated as the slave {contactor) surface [26]. The common feature of
all algorithms that handle contact kinematics in this way are the concentrated
contact forces that arise although there have been some attempts at applying a

distributed approach through calculation of overlapping volumes between bodies in
contact [27].

Both distributed and concentrated approaches may involve many branches of
code and can be difficult to vectorise or parallelise [28], in which case contact
processing can be the critical issue in deciding the efficiency of a algorithm. To
deal with the problem, a so called pinball algorithm has been proposed [29]. The
pinball algorithm is among the simplest slideline algorithms. Its core idea is to
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embed pinballs in surface elements and to enforce the impenetrability condition
only on pinballs. Difficulties can arise from the large number of pinballs needed
to discretise the surface and/or unrealistic contact force distribution due to the
discrete nature of the pinballs.

More realistic contact force distribution is achieved by a so called defence
node algorithm {30]. The normal force is proportional to the gap between the
contact node and the target face. The major difficulty with this model is a need
for additional logic if more complex 3D situations are to be handled, which makes
the model extremely difficult for tuning to preserve energy balance.

The solution to this problem was considered in the context of computer
graphics and discrete element methods. However initial considerations of the model
based on intersection volumes were abolished because of the computational costs
involved. One of the interesting algorithms from this class is the algorithm based
on fuzzy boundaries [27]. However the model employed trades off efficiency against
reliability.

Energy balance at both small and finite penetrations is exactly preserved
with a contact model based on the concept of contact elements [11,12). The
model employed for contact kinematics was originally developed to handle 2D
problems. The major drawback of the algorithm is difficulty in implementing it
for 3D problems, where for instance a surface normal may not be defined at all
surface points.

Figure 2. Potential contact force

In this work a potential contact force approach, figure 2, is applied. The
contact algorithm developed has to date been applied to 2D and 3D explicit
transient dynamics problems. The most important feature of the algorithm is
the preservation of momentum and energy balance irrespective of the permitted
overlaps (penetrations).
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3.2. Contact Detection

In the discrete element methods, each element is considered as a separate,
distinct body that interacts with neighbouring elements. In this context both
representation of individual bodies and contact detection algorithms are very
important both from practical and algorithmic point of view. The geometry of
individual bodies is traditionally represented through discretisation or through
mathematical objects, such as superquadrics and hyperquadrics [31], which are
“specially suitable for systems comprising small particles where deformability is
not of greater importance. The effective solution of large scale discrete element
problems relies upon a robust and computationally efficient contact detection
algorithms. Consequently considerable research has been focused on this topic.
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Figure 3. (a)space subdivision and (b) buffer zones

In general the optimal contact detection algorithm is dependent upon the
problem to be solved. For instance, the master and slave surface algorithm better
suits two-surface contact situations and the single surface algorithm is preferred in
problems with highly distorted contact surfaces with self-contact situations. On
the other hand, for quasi-static problems, relative motion of individual bodies is
restricted, relative arrangements of individual bodies remain constant and well
established contact detection concepts from finite element based applications can
be considered. However, transient dynamics problems allow significant relative
motion of individual bodies, thus more robust contact detection algorithms for
either dense or loose packing are required. In the last decade a number of contact
detection algorithms has been reported in the literature, most of them having
Nin(N) proportional contact detection time. The majority of these algorithms
can be classified as body based search or space based search, figure 3.

The master and slave surface interface concept usually starts with global search
for the closest master node to each slave node [28]. After this rather costly initial
search, only the closest neighbourhood of each master and slave node combination
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is checked in succeding time steps. The algorithm is likely to fail if contact surfaces
become too distorted or if single surface contact situations should occur.

The direct checking (brute force search) method is computationally most
simple and usually most expensive and for this reason in most cases not affordable.

A so called linear complexity contact detection algorithm [33] is especially
suited for detailed analysis of object to object intersection. The representation
makes use of mapping of boundary coordinates into a single valued function. The
algorithm benefits from the simple data structure employed to present geometry.

A concept of contact hierarchies is exploited by the algorithm proposed by
Zhong [30]. The search procedure is based on definitions of contact territories of
cubic shape. When the common territory is detected, the elements at the same
levels of the hierarchy which are enclosed or intersected by common territory are
tested.

A so called single surface contact algorithm [32] assigns to each node a segment
of space (bucket). The list of nodes in each bucket is used to find all segments that
are candidate contact segments for each contact node, figure 4.
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Figure 4. Set of buckets in one dimension

The so called position codes algorithm [32] is based on similar concepts -
the problem of sorting and searching in three dimensions is transformed to a one

dimensional sorting and searching with contact detection time being proportiopnal
to NinN.

Alternating digital tree algorithm [23] was originally developed for mesh
generation purposes. However with minor modifications it can also be successfully
employed for discrete elements. A quad tree and binary tree based algorithm [11,12]
based on a so called coordinate based space decomposition also achieves logarithmic
efficiency.

In this work BSD contact detection algorithm [11,12] is employed. As the
name implies, B stands for binary, S for space cell decomposition and D for direct
evidence. The core of the algorithm is a binary tree search, figure 5. The particular
advantage of the algorithm is its ability to handle both loose and dense packing
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and systems comprising of mixture of small particles and very large self contacting
general shape bodies.
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Figure 5. The binary tree search

3. TRANSITION FROM CONTINUA TO DISCONTINUA - FRACTURING

3.1. Brittle Fracture

The main tasks in describing fracturing are: (1) to predict crack initiation
(2) to predict propagation (3) to perform the necessary remeshing (4) to transfer
variables from the old to new mesh and (3) to replace released internal forces with
equivalent contact forces.

Fracture mechanics concepts could be applied in this context. A more robust
approach is however achieved through modelling of conditions for gradual fracturing
(strain localisation prior to separation by cracking or shear slip).

Nonlinear continuum based material models for fracturing media are usually
generalisations of elasto-plasticity laws using different failure (or fracture) surface
descriptions, and no discontinuities are admitted in the displacement field as the
geometry of a problem remains unchanged. Some models attempt also to simulate
post fracturing behaviour, again via continuum formulations. Models adopted for
prefragmentation, i.e. continuum, stage are usually based on concepts of damage
mechanics, strain softening plasticity formulations (utilising fracture mechanics
concepts of energy release required to open a crack or induce a shear slip) or
have been formulated using some higher order continuum theory. The numerical
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modelling of pressure dependent civil engineering materials (e.g. rocks, concrete)
is far more complex than modelling of metals, and it frequently requires more
complex constitutive modelling (non local theories, vectorial damage description,
localisation modelling, Cosserat continuum) to be adopted as a basis for analysis.

Pressure dependant quasi brittle materials are often treated as softening
materials, i.e. materials which show a reduction of the load-carrying capacity
accompanied by incresaing (localised) deformations after reaching the maximum
load-carrying capacity. Beyond the failure load i.e. when the material gradually
disintegrates, two types of failure mechanisms are observed, narmely decohesion and
frictional slip. In the first type of failure fracture zones are observed (cracks), while
in the latter failure zones propagate along shear bands (faults).

Standard continuum mechanics formulation incorporating softening fails for
such a case of localised failure, as its use is beyond the limit of its applicability
and the underlying mathematical problem becomes ill-posed. Physically, this is
because standard, rate independent coninuum models do not recognise or include a
length scale and therefore no characteristic dimensions or spatial interaction in any
potential localisation zone can be present. As a result, numerical solutions in the
limit predict a vanishing energy dissipation upon spatial discretisation refinement
and scale effects such as spacing of cracks or faults cannot be captured.

A mathematically well-posed problem can be obtained by using an enriched
or higher-order continuum formulation for the softening solid. Failure behaviour
of softening materials can be rigorously described through various ways - a non-
local or gradient model where the higher order gradients of the deformation field
are included in the formulation, or a rate-dependent model, with the higher order
time derivatives included. The inclusion of a first-order time derivative term in
the constitutive equations (rate dependent crack model, viscoplasticity model) of
the softening solid is not only natural from a physical point of view (high loading
rates) but also from a mathematical point of view. Finally, a Micro-polar (Cosserat)
model can be adopted, based on the idea that a macro- structure consists of micro-
elements with a finite length.

Although the well posed problem can be rigorously formulated by using the
above enriched or higher-order continuum formulation for the softening solid, a
relatively straight forward alternative utilising a fracture energy based softening
plasticity framework has been successfully adopted, where a mesh size dependent
softening modulus ensures objective energy dissipation and remedies this spurious
behaviour to a large extent.

In the authors’ experience, the use of a fracture energy based softening
plasticity model to control the evolution of the failure surface in most cases suffices
to overcome any mesh dependance problems. This is because the influence of mesh
alignment in small discrete elements may not have a large inflence on the overall
response. If this is not true and if the discrete elements remain large, i.e.consist of
a large number of finite elements, the influence of the orientation of the mesh lines
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cannot be neglected ard enriched or higher-order continuum models may also have
to be considered for the discrete elements.

3.2. Ductile Fracture

A common feature of recent attempts is to move beyond the classical failure
criteria (Rankine) and employ more robust descriptions of initial and residual failure
surfaces. In this context a computationally convinient analogy with Classical
Theory of Plasticity can be derived with Fracture criterion being equivalent to
yield criterion, crack propagation rule being equivalent to flow rule and fracture
hardening-softening rule being equivalent to classical hardening-softening rule.

The crack propagation rule defines the direction of crack growth from a crack
tip. It is known from fracture mechanics that for two dimensinal cases there are
two possible independent movements of the crack boundaries. They are referred to
as Mode I (opening) and Mode II (shearing) fracture modes, depicted in figure 6.
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Figure 6. Fundamental modes of fracture

In the present work, two crack propagation rules have been formulated which
approximate these two modes. However, they are based on the direction of principal
plastic strains, which are more fundamental physical factors then stresses.

For Mode I, the crack direction is assumed perpendicular to the direction
of maximal tensile plastic strain and can be referred to as tensile fracture mode.
Computationally, the plastic strain tensor is updated incrementally according to
the hypoelastic rotation measure.

While this rule is straightforward and unambigous, for Mode II a failure along
the direction maximal shear plastic strain, or shear fracture mode is assumed, which
obviously gives two possible solutions. The following procedure based on integration
of a fail factor has been formulated which provides the choice between the two shear
options: Starting from the crack tip, the following average integral is calculated in
each semidirection, providing four scalar values:

Ip=f Frdr (12)
0
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Here, Fp indicates the fail factor which is linearly interpolated between element
edges, while r is equal to a predefined value rr (radius of influence), or less then r;
if a discrete element boundary is encountered on the integral path.

Generally, a fracture criterion can take either the classical form where a scalar
function of the material point state parameters (stress, strain, internal variables,...)
is defined, or it can be expressed directly by means of an elasto-plastic damage
model {34]. Although the latter approach is more general in terms of variety of
stress and strain histories, the former is easier for a numerical implementation,
yet accurate enough if the parameters are obtained from experiments calibrated to
match the problems to be simulated.

A comprehensive review of ductile fracture criteria are summarized in reference
[34], where original references can also be found. Other criteria have been advocated
for brittle fracture, with the most widely used being the Rankine model.

In the present research, the simpler criteria have been considered {34], namely
Freudenthal (total plastic work), Cockroft-Latham (tensile plastic work) and
Oyane. Numerical investigations have shown that the Oyane criterion represents a
good compromise between simplicity and accuracy.

3.3. Discretisation

As it has already been said, a new algorithmic problem arises upon separation,
- as the "book keeping” of neighbours and updating of the discrete element list is
needed whenever a new partial or complete failure occurs. In addition, there is
also a need to transfer state variables (plastic strains, equivalent plastic strain,
dissipated energy, damage variables) from the original deformable discrete element
to the newly created deformable discrete elements.

Figure 7. Local remeshing
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In modelling the fragmentation, the required minimum number of finite
clements needed in the localisation zone to describe the sharp peak in the
deformations can be prohibitively high if the direction of crack or fault propagation
is not known in advance. When the load-carrying capacity in the crack or the shear
band reduces to zero the continuum has been split up. A network of fully developed
localisation zones leads to the appearance of discrete elements, consisting of one
or more finite elements, requiring some form of remeshing, figure 7. When parts
of the fractured continuum become fully separated, the problem topology changes
with the creation of new discrete bodies. The separate bodies are again considered
deformable.

The total number of finite elements can be kept within reasonable limits when
the mesh is adapted dependent on the localisation process. If mesh adaptivity
techniques are used, a finer division of elements can be applied in the localisation
zone, while keeping the discretisation of the remainder of the body relatively coarse.

The automated adaptive finite element simulation comprises discretisation,
finite element analysis and accuracy assessment. The discretisation procedure
discretises each discrete element into finite elements. The finite element model goes
through the analysis procedure to perform finite/discrete element analysis. The
finite element solution, yielded by the combined finite/discrete element analysis,
as an approximative solution goes through an error estimating procedure and if
the pre-set accuracy is not reached, or the model is evolved beyond the tolerance
limit, this procedure will pass the required data and switch the control to the
mesh prediction module within the accuracy assessment procedure. Based on the
(discretisation) error data, the module is capable of designing a better mesh, figure
8. In this process finite element solutions from the old mesh are mapped to the
newly adapted mesh.

Figure 8. A 3D mesh

3.4. Infinite Domains

An important discretisation problem is also related to the treatment of model
boundaries. If fracturing of a continuum is considered, problems with treatment
of artificial boundaries extending into infinite domains remains the same as for the
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transient dynamic finite element analysis, i.e. the issue of nonreflecting boundaries
need to be taken into account. In the context of particle mechanics, the imposition
of rigid or the so called periodic (repeated) boundaries may restrict discontinuities
or localisation patterns that would potentially develop at model boundaries.

3.5. Temporal Discretisation

Apart from spatial discretisation, temporal discretisation requires attention
in situations where repeated contact-release situations are common (confined
systems). Problems with spurious energy generation arise when applying the central
difference explicit time integration scheme. Local contact energy dissipation is
often necessary to avoid energy imbalance or unstable solution. Such modified
temporal operators [11} do not affect the critical time step. However other
types of nonlinearity such as softening may impose additional limits on the time
step. Furthermore, if a higher order continuum formulation is adopted, the time
integrator should be modified to increase accuracy as the use of such a framework
leads to dispersion of waves, i.e. the waves with different wave numbers propagate
with different velocities in the localisation zone. A dispersion analysis results in
even more severe limits for element size and time step.

4. NUMERICAL EXAMPLES

Recent developments concerning ductile fracture are illustrated by means of
numerical examples. Three examples are shown. The first example is concerned
with determination of macroscopic friction laws based on micromechanical
numerical simulations. Frictional contact of rigid obstacle asperities with two
different configuration of deformable body asperities has been simulated by means
of the obstacle prescribed displacement Az and Ay. Local Coulomb friction 4 = 0.2
and isotropic hardening of the bulk material are assumed. Deformed configurations
for both meshes, including the resulting global forces and global friction coefficient
diagrams are shown in figure 9.

The fracturing of a deformable asperity in contact with a series of rigid
counterparts is modelled in the second example. Similar material parameters as in
the first example have been employed. The Cockroft-Latham fracture criterion is
used with a tensile fracture crack propagation rule. Global and zoomed meshes at
various stages of wear particle creation are depicted in figure 10.

Finally, the generality of the numerical model developed in this work has been
tested in the macroscopic simulation of a cold metal cutting operation. Oyane’s
criterion and a shear fracture crack propagation rule have been found to represent
closely the metal behaviour in this industrial forming process. The results are
shown in figure 11.
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Figure 9. Rigid-deformable asperities contact
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5. CONCLUSIONS AND RESEARCH RECOMMENDATIONS

A combined finite/discrete element approach to the simulation of progressively
fracturing continua has been presented. The need for efficient algorithms for
modelling the separate phenomena that arise has been emphasised.

Basic elements of a comprehensive, general and upgradable numerical model
for a wide range of engineering applications have been described. Although the
results shown here and elsewhere can be considered as initial attempts in the field,
realistic simulations have already yielded useful and practically aplicable results.

The future research and enhancement of the model should be directed in
three principal directions: (1) development of efficient element technology for plane
strain/axisymmetric and possibly 3-D explicit finite element models; (2} remeshing
techniques with approprite mapping algorithms; (3) experimental verification of the
proposed models and/or combined numerical-experimental inverse identification of
fracture and contact law parameters

In view of the large scale nature of practical industrial problems, the
use of parallel processing strategies in computational solution is particularly
attractive. The explicit nature of the methodology makes it particularly suitable
for parallelisation. The situation may be complicated by fracturing and contact
conditions that take place throughout the transient process.
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Numerical Manifold Method

Gen-hua Shi

Geotechnical Lab, US Army Engineer Waterways Experiment Station, Vicksburg,
MS 39180-6199

Abstract.  Aiming global analysis, the well known mathematical manifold is
perhaps the most important subject of mddern mathematics. Based upon mathemat-
ical manifold, this numerical manifold method is a newly developed general numerical
method. This method computes the movements and deformations of structures or
materials. The meshes of the numerical manifold method are finite covers. The fi-
nite covers overlapped each other and covered the entire material volume. On each
cover, a independent cover displacement function is defined. The cover displacement
functions on individual covers are connect together to form a global displacement
funetion on the entire material volume. The global displacement function are the

weighted averages of the independent cover functions on the common part of several

COVers.

Using the finite cover systems, continuous, jointed or blocky materials can be
computed in a mathematically consistent manner. The mathematical covers and
physical mesh are independent. As mathematical covers can be moved, split removed
and added, the large deformations can be computed by steps. Dividing a cover to two
or more covers, jointed and blocky materials can be modeled. Both the finite element
method (FEM) for continua and the discontinuous deformation analysis (DDA) for
block systems are special cases of this numerical manifold method. In the current
development stage of numerical manifold Iﬁethod, the extended finite element method

can compute more flexible deformations and movements of joints and blocks.

1 Finite Covers Formed by Mathematical Mesh and Physical Mesh

187



Physically, material objects often have different shapes. When the material volumes
have fractures or blocks the shapes and boundaries become more complex. Manifolds
connect many individual folded covers together to study the entire material volume.
The new method has separated mathematical covers and physical mesh: the math-
ematical covers define only the fine or rough approximations; as the real material
boundary, the physical mesh defines the integration fields. The mathematical covers
are chosen by user; the physical mesh includes the material boundaries, joints, blocks
and the interfaces of different material zones. The physical mesh can not be chosen
artificially. If the joints or block boundaries divide a mathematical cover to two or

more completely disconnected domains, Those domains are defined as physical covers.

In Figure 1.1 and 1.2, tWo circles and one rectangle (indicated by thin lines)
delimit th.ree mathematical covers V1-, Va, Va. The thick lines indicate the material
boundary and inner curved joints. In Figure 1.1, V; is divided by the physical mesh
into two physical covers 17, 19, Vo ‘has fwo physical covers 21, 29 and V3 has two

physical covers 31, 3a.

Figure 1.2 shows more joints. Mathematical cover V5 contains two curved lines,
but only two totally disconnected physical covers 21, 29 are formed. The upper curve
(inside cover 21) can not cut through rectangle V5 to form more physical covers,
therefore cover 24 is a single physical cover. Similarly mathematical cover V3 contains
two physical covers 31, 39. In both Figure 1.1 and 1.2, the common part of two or

more physical covers are defined as “elements” and marked by its cover numbers.

Figure 2.1 shows a simple but often useful chain cover system. This cover system
is specially convenient for long and narrow material shapes. Figure 2.2 shows a DDA
block system, here each block is a mathematical cover and a physical cover. There

are no overlaps between any two covers in DDA case.

The finite element meshes can be used to define finite covers for manifold method.

Considering any node, all elements having this node form a mathematical cover (called
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“star” in algebraic topology). In Figure 3, there are 10 nodes, each node has a
mathematical cover. Cover U; of node 1 has two elements (1, 2,5) and (1,5,4). Cover
Us of node 5 has 6 elements (1,5, 4), (1,2, 5), (2,6,5), (5,6,9), (5,9,8), (4,5,8). Any
original finite element is the common area of the mathematical cover of its nodes. The

element (1,5,4) is the common area of covers Uy, Us, Uy,

The physical mesh of Figure 3 is the thick lines, which are the boundaries and the
joints of the material volume. In Figure 3 mathematical cover U1 splits to two phys-
ical covers: 11, 12; mathematical cover Us splits to three physical covers: 51,59, 53.
The original element (2, 5, 6) splits to three new elements (21, 61, 51), (22, 62, 53) and
(21,63, 51).

Now, each physical cover is a new “node”. Each “element” is a common part of
exactly three physical covers. The eIement (11,51,41) is the common part of three
physical covers 11,5 and 4;. Using the newrnodes and elements, the joints can open
and slide, the blocks can move away and the continuous area can still be connected.
Two new elements (11, 21, 51) and (13, 23, 53) have no common new nodes and can be
separated after the loads applied. Therefore the joint dividing the two elements can
open or slide. The new elements (13,23, 52) and (23, 64, 52) are divided by a edge 2,5

which is not a joint. Then the two elements have common edge 22, 52

Before the deformation, some nodes share the same position. It can be under-
stood as many layers divided by discontinuities on the original simple finite element
mesh. Using the manifold definition of nodes and elements, the following important

conclusions can be seen directly from Figure 3:
[1] the elements are irregularly shaped;
[2] each element has three physical cover numbers or “nodes”;
[3] these three covers have one element as their common area;
[4] the adjacent elements have the same nodes along the common edge;

[5] two elements divided by joints have different nodes.
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2 Cover Functions and Weight Functions on Finite Covers

The one dimensional cover functions u;{z) defined on physical cover U; u;(z) z € Uj
can be constant, linear, high order polynemials or locally defined series. These cover

functions are connected together by the weight functions w;(z)

wiz) >0 =z €U, wi(z) =0 z¢U; Z wi{z) =1
zeU;

The weight functions w;{x) are the weighted average, which is to take a percentage
from each cover function wu;(z) for all physical covers U; containing z. Using the
weight functions w;i(x), a global function F(z) on the whole physical cover system is

defined

Fla) =3 wie)ui(z)
i=1

Figure 4.1 is a one dimensional example of three physical covers

ul(m) = Az Ay U = A1Ay wl(:r;)ul(:z) =A3A5A x e Uy
ug{z) = B3 By Uy =B1B2 wa(z)ug(x) =B1BsBsBs =z €Uy
uz(z) = C3Cy U3 =C1Cy  ws(z)us(z) =CoCs5C; z€Us

The global function F(z) is

n
F(z) = Zwi(:v)ui(x) = A3A5B5BsC5Cs.
i=1

Figure 4.2 shows seven one dimensional physical covers U; = =zgzy, Uy =
Tz, Us = mz3, Uy = o3, Us = yszy, Us = yszs, Uy = z4z5 Since
the function has a jump at the point 3 = y3, the mathematical cover z9x4 was split
to two physical covers Uy = z2z3 and Us = y3z4.

wn (z)u1 () wa(@)us(z) ws(z)us(z) walz)us(z) ws(z)us(z) we(z)us(z) wr(z)ur(z)
Az zod1ma  m1Aams 243 Bszy ysdazs  Tads

rxel x el x € Us ze Uy z € Us z € Us z e Uy
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The global function F(z) = ZLI wi(z)u(z) = Ao A1 Ay A3 B3 Ay As is very close

to the original natural curve.

For two dimensional manifold computation, the cover displacement functions
ui(z,y) and vi(x,y) are defined on cover U;. The global displacement functions

u(:n, y) and v(z,y} on the whole material body are two global functions:

ui(z, y) e fzg(iv Y) 0 d; 951
{'Ui(-’L' y) } _,2;( 0 fij(—”;:y)){ d; 25 }
(z,y) € (1)

‘The cover displacement functions are connected together by the weight functions

wi(ma y)
'LU;‘(Z, y) >0 (ZE, y) € Ui? wi(a:? y) =0 (2:: y) g Ui (2)

with 3= e, wi(%,y) = 1 The global displacement function u(z, y) and v(z,y) on

the whole physical cover system is

{u(x,y)}: {23_1%@ Wiz, y)} S5 [Ty (20 9)] {Dy) (3)

v(z, y) > wilz, y)vi(z, y i=1 j=1

unizx, ii\x, 0 d,; i—
[Tz'j(w,y)]=( (5 9)5(z.3) ) {Dij}z{ ¥ 1}

0 wi(z, ¥) fij{z, ¥) d; 2;

For finite element, the cover functions are are the simplest function namely constant

m =1, fij(z,y) =1, dix = u; and dj3 = v; in (3). Therefore,

{ ’U,(m: y) } — Z [T,'(:c, y)] {Dz}

v(z, y) i=1
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T:(s,9)] = (w"(;” d . (z y)) {Di} = {:’} 4

Denote the nodes of a triangle element e as e(1), e(2), e(3), then e is the common
region of three covers of its three nodes e = Ugy N Ue(zj NU,(z)- On all points of this
element, the only non-zero weight functions are we(y), We(2)s We(3)- Denote (z;, ¥;) as

the coordinates of node 2, the weight functions of element e are computed.

(we1)(2,4) Wer2) (2, Y) We3)(2,9))

Ty Yey) fin fiz fis
=(1 z y) |1 Zem) Ve =(1 z y)| fa foo Jfo (5)
1 Bea) Yem)/ fai fa2 Jf33

For each element, the summation of three weight function of three nodes are 1.

: 1 Ze(1) Ye(n)
(wey (@, 4) We) (2, 4) Wem) (2, 4)) | 1 Te) ey | =(1 7 )

. 1 Te(3) Ye(3)
We(1) (:E’ y) + We(2) (:5: y) + We(3) (-"E: y) =1

For element e and (z,y) € e, {(4) will reduce to normal element displacement

function,

3 Dey)
u(z, ) ,
o) | S )] = (Teqry Tey To@)) § Pe)

r=1

| o De(3)
fir + forxz + fary 0 )

(6)
0 fir + forT + f3ry

[Te(r) ,(333 y)] = (

3 Coefficient Matrix of Equilibrium Equations
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Assume the number of physical covers is n, and there are 2m unknowns in each

physical cover, the total potential energy has the form

1
m=2(of pf D} ... DI) (7)
_f‘Ku Ki2 Kiz ... Kln\ ([ Dy ) ((Fy )
| B Koz Kys ... Ko | | Dy Fy
K31 K3y Kis3 ... Kz, 4 D3 ¢+ (D? Dg Dg‘ .. Dg) s F3 »+C
\Knl an Kn3 Knn) .\ Dn) | — .\FnJ

Submatrices [£(;;] are 2m x 2m matrices. [D;] and [F;] are 2m x 1 submatrices,
where [D;] represents the displacement variables (dig disdiz dig ... dizm)T of physical
cover 7. From the formulation of II, the formula (7) can be written as a symrnetric
representation, [Kj;] = [K;]7. |

"The equilibrium equations are derived by minimizing the total potential energy

I1. The i-th row of following equation (8) consists of 2m. linear equations

o1l
0d;

=0, r=1,2,3,4,...,2m,

'The matrix of obtained simultaneous equilibrium equations is same as the matrix of

quadratic form (7):

Koy Ky Koz ... Koy Dy | Fy
K31 K3z Kizz ... Kszn [ { Ds f =< 5 (8)
\Knl Kny Kpz ... Knn) \Dn) \FnJ

For material analysis, [F;] is the loading on cover i distributed to the 9m displacement
variables. Submatrices [K;] depend on the material properties of cover i and [Kj;] ,

where ¢ # j is defined by the overlapping of cover i and cover i-
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For the two dimensional triangle elements, m = 1. The unknown [D;}] and the
force term [F;] of cover 7 are 2 X 1 submatrices. The coefficient submatrices [Kj;;] are

2 x 2.

4-Stiffness Matrix

For FEM, the integration domains of the stiffness matrices are whole elements with
standard boundaries. For manifold method, the integration domains of the stiffness

matrices are the manifold elements, which can be part of the elements.

Same as FEM method, the relationship between stress and strain, is given by

Gz €x 1 v 0

E _
oy ¢t =[Elq & ¢, [E] = vl 1 0 (9)
Tay Yoy 0 0

E,v are the Young’s modulus and Poisson’s ratio respectively. From (5), element

strain can be computed

-\
QD
e

u(z,y

€ - Deqy
€ ¢ =3 a—”g(;’-;-’y—) = ([33(1)] [Be(2)] [Be(3)]) Do
Ty ) (2 i) Des
6_1(;;(:1 0 f 2r 0
Bapl=] 0 Z2|=|0 fu| r= 1,2,3 (10)
\ aw;, Qtete) far  for

The strain energy Il done by the elastic stresses of element e is the integration

over the entire material area & in that element. Then

Oz

1
He=//§(6$ €y 'Yzy) oy ¢ dzdy
S

T:l; y
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T
1 Be(l) Dey
= 58 (Dgh) Dg‘(z) Dgi;g) ) BE(Q) [E] (Be(l) Be(2) Be(B) ) De(2) (11)
By, De3)

Then

S[Be(r)]T[E][Be(s)] — [Ke(r)e(s)], r,8=1,2,3,

5 Initial Stress Matrix

Following the time sequence, the manifold method computes step by step. The com-

puted stresses of previous time step will be the initial stresses of the next time step.

Therefore the initial stresses are essential for manifold computation.

For the element e, the potential energy of the initial constant stresses {¢%} =

(o8 0'2 Tgy )T is
o3
I, — /js (& € Yoy)d o0 % dudy
Tgy T 0
B e(1) lop
_ T T T T
=8(Dyqy Doy Deay) | Begy) oy (12)
T 0
Be(S) Toy
where & is the area of that element.
C
—S[Be(,.)]T O'g — {Fe(r)}: r=1,2,3.
0
Ty

6 Point Loading Matrix
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Different from ordinary FEM method, a load point can be any point in its element.
The point loading force (F; Fy )T acts on point {(zg, yo) of element e. The potential

energy due to the point loading is

by
I, = — (u{zo,50) v{zo,y0)) { 7 }
Y

=— (DT

e(1) e(2) Dgza)) Te(z)(«’b‘oayo)T

Te(l) (0, yo)T
Dt {
T, (5)(z0, 30)T

F

’ } (13)
Fy
Then

) |
[Te('r) ("EU) yO)]T { } — {Fe(r)}: r= 1, 2, 3,

By

7 Body Loading Matrix

Assuming that (fz fy )T is the constant body force acting on the material area of

element e. The potential energy due to the body loading is

f/ (#,y) v(z ,y)){g}dmdy

/Te(l)(x’ y)T I
= (D Doy Do) / fs Te(z) (2, 9)" d”dy{ P }

Ty (2, )T Y
C1

(1) fap(z; Dygy) | C2 {f }dmdy (14)
co) I

1= [raowotass= [ [ (5 0)
5 = e+ fur [ [S sdady + far ] jS ydzdy

— (DT
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Sy can be computed by formulae (5} and (20). Then

(ST O){f”} — {(Fn}, r=1,23
0 S/ |4

8-Inertia Force Matrix

The inertia force matrix is equivalent to the mass matrix of FEM. This matrix is the
most important matrix of manifold method. The inertia force matrix will control the
movements of all points of the whole material volume. Choosing small time steps, the
discontinuous contact computation will be stable. From the beginning of the current
time step, denote (u(t) wv(f) )T as the time dependent displacements of any point

(z,y) of element e and M as the mass per unit area. The force of inertia per unit

area is
-De(l) (t)
fz(z,y) 82 [ u(t) o
{fy(:c, y)} Matz {v (t)} M (Teqy Tem Te(3))8t2 ﬁe(z)(t)
e(3)(t)

At the beginning of the time step, the node displacement {Dg1(0)} = {0}. At the
end of the time step, the node displacement {De(y(A)} = {Degy}, A is the time

interval of this time step. Then

d elr ' 232 elr
{De(r)(A)} — {De(r)(o)}-i-A {Da(t)(O)} n éz__ {Da,§2)(0)}

B{De(r)(o)}+£82{De(r)(0)}

= A 2 oz (15)
3?{ Dy (0 {De(ry (0
T 2 oy - 222002y 2 o,
9{Dy;
{V;a(r)(o)} = _{‘_D%)(i_)];: {De(r)} = {De(r)(A)} (16)

"{Ve(r)(0)} is the velocity at the beginning of the time step. Then the potential energy

becomes

_ fm(ma'y)
I = / [S (u(z, y) v(z,y)){ fy(m’y)}dmdy
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5 D.y(t)
- [ [Mstmi) ven) (T Ten T dadyz § Decn(®)

De(3)(t)
2 .
= Moz (D Dty Do) |
Ty (%, y)T Doy — Ve (0)
f /‘S @) | (Tey Ter) Teqn) dzdy § De2) — Ve)(0) (17)
Tz, y)T D3y — Ve3)(0)
t 0
T [Tyaldody = | <O 18
[ [ Ty ( S (19)

te(r)e(s):/Lwe(r)we(s)dxdy

- f fs (i + far -+ Fart) (1o + faoT + faoy)day

Number te(y)e(s) can be computed by formulae (5) and (20). Then the final formula
is '

M (te(r)e(s) 0
AP0 el
M

t 0
e(r)es)
{‘/3(0)} — {Fe T }‘J T8 = 172)3}
B ( 0 te(r)e(s)) ") |

) — [Ke(r)e(s)]s r,8=1,2,3,

9 Fixed Point Matrix

Assume the fixed point is (z,y) at element e. There are two springs which are along

the z and y directions respectively. The stiffness of the springs is p. The spring forces

{fm} _ _p{u(x,y)}
.f i 'U("E: y)
The strain energy of the springs is

0 =E(u(e,y) vley) {“(“”y)}

v(z,y)

are
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T
Teqy D1y

P
=5 (D Z(l) DZ(?.) DZ@) ) T;‘E) (Teqy Tery Ten)) § Pe
T
Te(3) Do)
p[Te(r)][Te(s)] - [Ke(r)e(s)]? rs=123. (19)

10 Simplex Integration

As a element of the manifold method is a generally shaped polygon,
PPy ... Ppo1 Pn P, Pi=Ppnt1, P;i=(zi,y;) are its ordered vertices rotat-
ing from axis z to axis y. As a arbitrary chosen point, Py = {0,0). The following

integrations are analytical solutions

5 1| & W
— A 3
23z vin
m

S
Sz =3 D i+ zir),

i=1

S m
Sy = 3 Z(yi + yit1),
i=1

S m
Seg = r Z(ﬂ%z + @y + TiTi),

i=1
m

S
Syy = 5 (y? + yi2+1 + Yilfir1)s
1

i=

S m
Sey = 7% > (2 + 20i41Yi41 + Tilir1 + Tig19s)- (20)
12 po

11 Definition of Entrances

Thus far, only individual covers and elements were considered. For the movements of
discontinuous boundaries, no tension and no penetration must be satisfied between

two contact sides. The entrances are defined in the beginning of each time step.
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[1] A entrance is formed with two sides, their minimum distance is less than 2p,

here p is the maximum step displacement.

[2] When one entrance side translates to the other side without rotation, the max-
imum overlapping angle is less than 24, here § = 1.5 is used in the computer

program.

Figure 5.2 shows two complex blocks, under this contact criteria, there are only

two contacts even if the distance limit 2p is lager than the block diameters.

The kinematics can be imposed on the global equations by adding stiff springs

in the entrance positions.

[1] For the angle to angle entrance, if both angles are less than 180°, the two entrance
lines are defined as the two thick lines shown by Figure 6.1 and 6.2. according
to the following table:

two entrance lines

o < 180° B<180°  OF; OE;
a < 180° [ > 180° OFj3 OF4
a > 180° B <180° OF, OFE,
a > 180° B> 180° OF, OF,

Penetration will occur if the two entrance lines are passed by the vertices of the
other angles. A normal stiff spring is attached between the vertex and its entrance

line where the entrance occurs first.

[2] For an angle to angle entrance, if a angle is larger than 180°, the two entrance
lines are the two edges of the angle greater than 180°. If a entrance line has been
passed by the vertex of another angle, a normal stiff springs is applied to the
vertex and its entrance line. If two entrance lines have been passed, two springs

are applied to the two entrance lines.

[3] For the angle to edge contact, the only entrance line is the edge, as showing by

Figure 7. If the vertex passes its entrance line, a normal stiff spring is applied
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to the entrance line.

the definition of entrance line is still correct even if edges of two sides of the

entrance are parallel or slightly penetrated.

12 Entrance Distances

Assume P, is a point before deformation which moves to point P after deformation;
Py Pj is the entrance line and (z;, y;) and (u;, v;) are the coordinates and displacement
increments of P;, 1 = 1,2, 3 respectively. If points P, P, and Pj rotate in the same
sense as the rotation of ox to oy (see Figure 7.1 and 7.2), then P| has passed line
P, P3 and is stated by the inequality:
1z +ur ypi+n0n .
A=11 zy+us yr+uva| <0, (21)
1 z3+uz yz+us

This simple formula is still correct even when these three points move simultaneously.

Since A is small, distance formula can be simplified

A

a V{(mg + ug — 23 —u3)? + (y2 + v2 — y3 — v3)?
A

- V(@2 — 23)? + (12 — y3)?

The friction law or Coloumb’s law is also inequalities.. F < A tan(¢) + C.

(22)

If a entrance is open in the beginning of a time step and is closed in the end of
the same time step, the entrance time and position in this time step can be computed.
Assume ¢t = 0 in the beginning of the time step, and ¢ = 1 in the end of the time

step, and
1 z14+tur 1 +itn
A(t) =1 Ty +tuz Y2 +ivg (23)
| 1 z3+tus s+ tus
then A(0) > 0 A(1) < 0. The entrance time to satisfies equation A(tg) = 0.

Neglecting the second order infinite small, the entrance time ¢y and the entrance
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position (xg, o) can be computed by simpler formula:

1 o wl /|1 w m 1oz oo\ "

g 1 + U1ty
to=—|1 22 ¥ 1 wy ya|+ |1 z2 v - =
Yo y1 + vito
1 =3

Y3 1 us s 1 z3 w3
(24)

These formulae are still correct even when the three points move simultaneously.

13 Normal Springs

From equation (22}, the distance d from P; of element ¢ to the eiltrance line %P5 of

A
V(@a—z3)2+(y2—ys)?’

element j is d = d should be zero if P passed edge P, P3. Let

1 = w
So=11 z2 wy2i, l= \/(322 - 333)2 + (y2 — y3)?
1 =3 ys

Neglecting the second order infinite small, the distance d can be a linear function of

{Di}:

1 u; 1 = un
d:%sw% 1w oy +% 1 2y v (25)

1 wuz s 1z w3

:-}So-l-%(yz—ys. fﬂs—xz){:i}
+%('y3_yl x1—m3)){:§}+%(yl—yz :1:2*-331){::}
. Dy Djqy
=28 B H[){ Dig 3 +(67 &f GD){ Diy
Dy Dij)
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where

1 Y2 — Y3
{HT} = —l.[l‘rt(?‘)(ml’ yl)]T{ } ) r= 1a21 3;

3 — X9

m}—[ﬂu%mn{”_“}

T1 — &3

=

B~
+ﬂ%@@&%ﬁ{ ‘ }, 5=1,2,3, (26)

T2 — &1

The potential energy of the normal spring is

=l Dy
P
I, = 542 Py Dz(l) Dg?z) Dggg)) Hy y (Hf HI HT) Dy
Hs Dia)
Gy Dja)
p
5 (Djny Dly Diy){ G2 b (6T I af) Djy
Gs Djs
) Djqy
Hs ) Dj(3)
Hi)
So
+r (Diny Difyy Dify)) § He f
Hj
So 2
+p (D .7(1) J(3 { ) (27)
Then
p{-HT}{HS}T — (K z(r)z(s)]: r,s=1,23,
p{HT}{GS}T — [ z(r)g(s)]a r,s=1,2,3,
p{Gr}{HS}T —+ [ (r)z(s)]: rs= ]-) 2: 33
p{GT}{GS}T — [K ](r)g(s)]: rs=1,2,3,
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—p (%) (B} =  {Fnh r=1,2,3,

L (%) G o Eeh r=1,2,3 (28)

14 Shear Springs

In Figure 8, (z0,%o) is on the edge P2P; and is the assumed contact point of vertex
P,. The shear spring is on the direction %P3, and connects vertices P; and Fp.

Denote

Ys — Y2

So = (%1 — zo yl—yo){ma—mz}a (29)

Since Py Py is small, the shear displacement of Py and Py along line P, Pj is

d==FyP PP (30)

m3+u3—$2—u2}

= (a1 +u—To—uo Y1+v1—Yo— Vo)
Ys+v3— Y2 — V2

So , 1 ur 1 4o
ZTO+T($3_$2 yg—yz){ }4—7(3?2—333 yz—ys){ } (31)

1 g
s Dy Dijn
==7‘+(E#W-Hg HTYS Digy ¢ +(GT G GT) S Djy
Di(s) D)
1 T3 — X2
{8} = 7T (o1, 0)T" { } . r=123,
Yz — Y2
i T9 — I3
{GS} = T[T.?(S) (330, yﬂ)]T { } 3 s =‘1:2: 3: (32)
2 — Y3

The formula of the potential energy of the shear spring is same as (27); the submatrices
contributing to simultaneous equations are same as (28) accept that the definition of

H,, G, Sy are different.
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15 Friction Force Matrix

When the Coulomb’s law allows sliding between two sides of the entrances, there exist
the couple of friction forces on the two sliding sides. The friction force is calculated
from the normal compressive force, F = pd tan(¢), where d is the normal penetration
dgétance, tan(¢) is the friction coefficient. The directions of the friction force couple

.. —
are against the movement of P relative to Fp in the direction £ P Fs.

Then the potential energy of friction force pair is

F T3 — Ty F T3 — T2
Hf:--l—(U1 -Ul){ }—T(uo ’Ug){ }
Ys— Y2 Y3 — Y2

Hl G’1

— T T

=F(Dfyy Dy Dig)yHe ¢ =F(Djgy Djy Digy)q G ¢ (33)
Hs G3

where

1 I3 — Iy
{HT‘} = -E[Ti(f‘)(a"lu yl)]T { } : r=1,2,3,

Y — 32
1 T3 — T3
{GS} = I[TJ(S)(:COa yU)]T { Y3 — U } 1 5=1, 2: 31 (34)

the loading matrix of the coupled friction forces are

_‘F{HT} - {FE(T)}i r= 1)2:31

-[-f{G,-} - {Fj(r)}: r=1,2,3,

16 Equation Solver and Open-Close Iterations
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The manifold method computations follow the time steps. The following items are
to be transferred from the end of the previous time step to the beginning of the next
time step: stresses, strains and velocities of each element, current geometry, contact

positions, contact forces and contact states.

The current version of the manifold code is a simple version. In the beginning
of a time step, the dynamic computations inherit the velocity of the end of the last

step. For static computation, the initial velocity of each time step is zero.

Within each time step, the global equations have to be solved repeatedly while
adding and removing stiff springs. This open-close iterations to ensue no-penetrations
in the open contacts, no—tensioﬁs in the contacts with normal springs. If the two
conditions are not fulfilled for all entrances after five times of open-close iterations,

the time step will be reduced to one third, and the open-close iteration continues.

The principles of choosing time steps A are: A is small enough, so that the second
order displacements are neglected; A is small enough, so that the SOR iteration will
converge in less than 30 iterations; A is small enough, so that the opén—close iterations
will converge in less than 5 iterations, A is large enough, so that the computation

will represent larger time span and the displacements are stabilized if possible.

17 Applications of Numerical Manifold Method

Figure 9.1 shows the deformation of the joints and the continuous materials of double
simply supported beams. Figure 9.2 shows the failure of a tunnel lining under the
point load on the arch top. Figure 9.3 shows the ground movements under horizontal
force. Figure 9.4 shows the failure of rocks with horizontal bedding planes. Figure

9.5 shows the deformations of a domain with a spiral joint.
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Figure 1.1 Finite covers on the materials of two blocks

Figure 1.2 Finite covers on the materials with joints
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Figure 2.1 Chain cover system for narrow material shapes

Figure 2.2 Finite covers formed by individual blocks
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Figure 9.2 Failure of a tunnel lining under point loads

219



VAN

RN

VAVA

VANERAN

T

=X K NN
N .
/ N/
/N
\/ W
/\\
AN AN, A YA AN

Figure 9.3 Ground movements under horizontal force

220



\\/ NS N/ 7 N

AN AN AN VAN 7N AN AN AN

RN AN AN AN FARRN AN FAERN AN FARRN
/ ! N/ N/ N 7 N 7 N/ N /£ N AN
N N
N N A

Figure 9.4 Failure of rocks with horizontal bedding planes

221



NN N N N N NSNS NS TN N NS

/NN NN NN NN NN/ N

222



Proceedings of ICADD-1, pec. 21-23, 1995, Taiwan, R.0.C.

Continuous and Discontinuous Analysis Using the
Manifold Method

Jeen-Shang Lin

Department of Civil and Environmental Engineering, University of Pittsburgh, USA

1. INTRODUCTION

Materials often are characterized very differently depending upon the nature of a
problem, the scale or dimension of interest, or even the focus of an investigation.
Under some circumstances a material may be modeled as a continuous medium, while
under others as a discontinuous medium. Then there are occasions to characterize it as
a mixture of both. For the purposes of analysis, the available methods of analysis
frequently dictate how a material is to be modeled. Time and again, we find ourselves
forced to neglect some important features of a problem in order to attain a solution.
This, in turn, casts doubts on the validity of the analysis results.

The manifold method is a novel concept that when implemented gives us a better grip
on the modeling. The method was conceptualized by Shi [1, 2]. In the manifold
method, the independent response variables, such as displacements, can be continuous
or discontinuous throughout a problem domain. This paper provides an overview of
the method and presents a computational procedure. Some results from a on-going
study are also given. ‘

The term "manifold" originates from topology. Topology is a branch of geometry
which studies the properties of geometric figures under continuous transformation [3].
The manifolds is one of the most important geometric figures it studies. Briefly stated,
a manifold is simply a collection of objects, such as points, that satisfies certain
homogeneity and continuity requirements. For instance, a two-dimensional manifold,
or 2-manifold, is a geometric figure in that every point has a neighborhood equivalent
to the interior of a disk. Therefore,surfaces of a sphere and torus are both 2-manifold.
In a broad view, engineering analysis also falls into the general areas studied by
topology. This is because a problem domain of an engineering analysis is,
mathematically speaking, a manifold, and its response such as deformation is simply
a transformation of the manifold. It is therefore not surprising that the methods of
topology also have important bearings. For example, when a manifold is subjected to
a complicated transformation, it is frequently decomposed into simpler shapes such as
triangles or polygons through a process called triangulation. These simpler shapes are
then covered by other figures that are easier to analyze. By so doing, a complicated
problem is converted into smaller and simpler problems on these covering figures. For
problems of engineering interests, often the number of the covering figures is finite.
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The concept of finite covers is the basis of the manifold method. In the case of two-
dimensional plane strain problems, the tangent plane coincides with the problem
domain, the compatibility among the covers are automatically satisfied insofar as the
coordinate patches are concerned.

Because the concepts involved may be abstract and , at times, difficult to engineers,
this paper also presents an explanation as to how different parts of the manifold method
are formulated and put together. Whenever possible this study employs the finite
element analogy to facilitate the explanation. The essential issues addressed include
how to cover a manifold, what constitute the generalized elements and the generalized
nodes, how to derive the stiffness matrix and the force vector, and how to obtain a
solution.

2. A TWO-LAYER DESCRIPTION OF A PROBLEM

Shi’s proposal of using a two-layer description for a problem is perhaps one of the
most innovative features of the manifold method. The first layer of the description is
called a physical mesh. A physical mesh is a unique portrait of the physical domain
of a problem that should include all the discontinuities. It defines the manifold whose
response is being sought. The second layer of description is called a mathematical
mesh. A mathematical mesh can be a mesh of some regular pattern, or a combinations
of some of arbitrary figures. The mesh or shape size may be chosen according to the
' problem geometry, solution accuracy requirements, and the physical property zoning.

The mathematical mesh is used for building covers and has to be large enough to cover
every point of the physical mesh.

This two-layer description concept is illustrated here with a retaining wall example.
The soil behind the retaining wall above the potential sliding plane is modeled as
consists of several thin slices to facilitate the occurrence of a particular mode. These
decisions define a physical mesh for the problem which is depicted in Fig. 1(b). A
triangular mesh, as shown in Fig. 1(a), is arbitrarily selected as the mathematical
mesh. A superposition of these two meshes, shown as Fig. 1(c), gives a covered
manifold of the problem. It is important to note that the manifold method does not
require a mathematical mesh to conform to the physical boundary of a problem. This
greatly simplifies an input preparation.

In the narrow scope of this study the manifold method can be viewed as a
combination of the finite element and the discrete element methods. Thus many features
of the finite elements and the discrete elements, particularly those of the
Discontinuous Deformation Analysis, DDA [4] are incorporated into the current
manifoid method formulation. -

224



{a)

NINNINSNS
CNENSNN N

7

(o

7/
£

FIGURE 1 A manifold example (a) an arbitrary triangular mathematical mesh (b) a
physical description of a retaining wall problem (c) a covered manifold
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3. GENERALIZED NODES AND ELEMENTS

The key to the manifold method as an analysis tool lies in the generalization of the
node and element concepts. The manifold method, by not requiring a mathematical
mesh to coincide with the physical boundary of a problem, departs significantly from
the finite element, or the discrete element methods for that matter. Two generalizations
in the manifold method make it possible for a rather arbitrary selection of the
mathematical mesh. First, it constructs the interpolation on the basis of the
mathematical mesh. Second, it uses weighting functions to track the physical boundary
of a problem.

Without losing generality, the following discussion considers displacements as the only
independent variables. In other words, the so-called assumed displacement method [5]
is adopted here. ‘Other considerations include the use of a triangular mesh as the
mathematical mesh and the use of a linear displacement field within a basic triangle.
To avoid confusion, an intersection point on a physical mesh is denoted as a vertex,
while one on a mathematical mesh is denoted as a node. Also, a basic triangle refers
to a triangle formed by three neighboring nodes.

Within a basic triangle bounded by three nodes, say 0,1, and 2, the assumption of
a linear displacement field leads to the following linear equations,

u(x.y)=ag+ax+azy (1
V(x,y)=by+byx+byy

where, u(x,y) and v(x,y) are the x- and y- displacements, respectively, at a point (x,y)-
Evaluation of u(x,y) at all three nodes gives

uo 1 '.xo yﬂ

w| =11 x4 y||a = (Xila)] (2)

o 1 x Yo 2

The coefficients [2;] can be expressed as a function of nodal displacement [y; ] as
[a]= [4][4] &)

where, [A] is the inverse of the nodal coordinate matrix [X]. A similar relationship can
also be written for thecoefficients [b,]:
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[5]= [4llv] @)

Substituting (4) and (3) to (1}, the internal displacement within a basic triangle can be
wriften in terms of nodal values by

"
v
" J)HNO(;J) 0 NG 0 N 0 |l

vx.y) 0 NG 0 NG&Y 0 NG ®

%

-vz-

where, Ni(x,y) is the so-called interpolation function or shape function of a node i,
which has a peak value of 1 at i, and O at the rest of the nodes. Ni(x,y) can be found
as,

1
N, =
fEN) et

(ny*+n, x+nLy) (6)
and using the arithmetic of mod 3, one can write,

By =Xi Vi XV
y=Yiv1Yisa @)
R Xa X1

Fig. 2 shows a plot of the interpolation function Ni(x,y) and the domain area it
affects. This area affected by a node i is the combined area of all triangles with a
common node i. In topology, such an area is called a star, or a neighborhood star. A
nodal response, such as v, or v;, is but a scaling factor for the interpolation function that
resides on a star. Adopting this geometric view, the manifold method considers stars
as the generalized nodes. The benefits of such a viewpoint become apparent when a
discontinuity is encountered.

Another generalization can be realized from a different interpretation of (5). What
(5) implies is: “Within a basic trangle bounded by three nodes, the internal
displacement is determined once the nodal displacements are known." If the statement
is recasted in terms of stars, a generalization emerges. (5) may be interpreted as—
"Any physical area that is covered by three stars has its displacement field defined.”
This is significant: Within any such an area, the strain, stress, strain energy can all be
computed from the defined displacement field, and it is, therefore, possible to apply to
it mechanical theories such as the minimum energy principle. Using the finite element
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FIGURE 2 A geometric view of an interpolation function and the star it covers.

FIGURE 3 A path-connected domain.
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analogy, such a physical area constitutes an element. In the manifold method, a
generalized element is hence defined as "any physical area that is covered
simultaneously by a certain number of stars". This number of covering stars required
depends upon the type of interpolation functions used. Using a triangular mesh with a
linear interpolation function, a generalized element is an area covered by three stars.
If, however, a rectangular mesh is used together with a four-term bilinear interpolation
function, a generalized element becomes a physical area covered by four stars. On the
other hands, a rigid object is a star by itself.

Thus from this very simple generalization, a new way of generating elements is
established. Considering the basically infinite ways of defining response functions--
which may be different physical entities, the possibility of coming up new elements are
therefore without limit.

4. DISCONTINUITIES AND WEIGHTING FUNCTIONS

In order to conduct a continuous-discontinuous analysis, the issue of continuity and
discontinuity has to be clarified first. This study finds the issue can easily be resolved
using the concept of "connectedness” from topology which is central to question such
as if a figure is of one piece [5]. Among the various types of connectedness, the
concept of path-connectedness is found particularly useful. A domain is called path-
connected if any pair of its points can be connected by a path in it. For example, the
domain as depicted in Fig. 3 is path-connected because any pair of points, such as 1
and 2, can be connected by a path. It can readily be shown that a path-connected
domain has a continuous response. On the other hand, a discontinuity is a figure, or
a curve in a 2-dimensional case, that makes it impossible for a domain to stay path-
connected. Thus a discontinuity always divides a domain into components each of
which is path-connected, and no points from different components can be connected
without crossing the discontinuity.

Discontinuities may enter an analysis because they are present physically. Or, they
may be introduced by a mathematical mesh. This study is concerned mainly with the
star discontinuity. Because whenever a star is divided, its components may response
independently, and the interpolation function resides on the divided star becomes
discontinuous. '

Fig. 4 shows a physical domain a-b-c-d which contains a physical discontinuity e-f
that divides it into two components a-e-f-d and e-b-c-f. A partial mathematical mesh is
also depict on it. The star associated with the node 5, shown in hatch, covers the
polygon of 1-2-6-9-8-4, is divided by e-f into two components. This reflects the fact
that a physical discontinuity always causes a discontinuity in the star it crosses. On the
other hand, the curves g-h and mn are not physical discontinuities since the
components they are in remain path-connected. But g-h nonetheless introduces a
discontinuity in the star associated with the node 6 that covers the polygon 2-3-7-10-9-
5, while m-n does not introduce and discontinuity in the stars that cover it. This clearly
illustrates that the selection of a mathematical mesh reflects our view of the scale
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Figure 4 Physical discontinuities and star discontinuities.

N (x,y)

W, (X,y) ~—

FIGURE 5 Construction of the interpolation function for the star 5,.
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effects. We would choose a mathematical mesh with a size compatible to the scale of
discontinuity of concern to us.

The manifold method uses an elegant approach to model a discontinuous interpolation
over a divided star. Whenever a star is divided a new star is added for each -additional
component. Following Shi’s notation, this study denotes a star with a node number and
a subscript that starts from 1 onward to distinguishes all its components. In the case of
the node 5 of the above example, two independent stars are needed since two
components are formed. Two stars are independent only if they are scaled by two
independent nodal values. To accomplish this, two sets of nodal values are stored at
node 5. For the two stars at 5, let 5, represent the component to the left of e-f and 5,
to its right. For each one of them, its interpolation function is constructed in two steps.
First, the same interpolation function, N;(x,y), as defined by (2) are used for both -5,
and 5,. Second, different weighting functions, ws,(x,y)and we,{x.y), are then introduced.
Each weighting function has the value of 1 over its corresponding component area, and
0 elsewhere. For example, the weighting function, ws,(x,y), for 5, is depicted in Fig.
5. The actual interpolation function used in an analysis is obtained by multiplying the
interpolation function with the weighting function. That is, the actual displacement
field, say u(x,y), due to 5, is

uxy)=ws YN (xy)us, 3)

where us, is nodal value assigned for scaling the star 5; Similar equation can be
written for 5,. The displacement over the combined 5, and 5, area, i.e., the polygon 1-
2-6-9-8-4 due to these two 5 stars becomes

HEY)=Ws QN ey + W (XYINSCey)us, ©)

which is continuous within 5, or 5,, but becomes discontinuous when crossing e-f. In
general, the displacement u(x,y) within an element can be written as,

u(xJ)=E§)w§(x,y)N,(x,y)ug (10)
i

where 1 is a sum over all the covering stars on an element, j is a sum over all the
component within an i star,

Fig. 6 further illustrates how to integrate the concepts of stars and discontinuities into
identifying the generalized elements. Just to illustrate the liberty we have in selecting
the mathematical mesh, a rectangular mesh is adopted here for . this example. The
underlying response is assumed to be bi-linear within each star. Here except for the
node 2, each node is associated with one star only. A 2 star covers the quadrilateral
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FIGURE 6 Identification of stars and elements

FIGURE 7 Modeling the constraints between element boundaries.
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area 1-4-6-3 which is divided into two components by e-f. Here, the star 2, is designate
as the cover over the domain left of e-f, while star 2, to its right. There are therefore
10 stars in this problem: 1, ,2,,2,,3,,4,,5,,6,,7,,8,, and 9, . Each
generalized element in this example is an area covered by four stars. There are,
therefore, five elements for this problem. Element 1 is covered by 1,, 2, ,4; and 5, ;
element 2 by 2, , 3,, 5, and 6,; element 3 by 2,, 3, , 5;and 6;; element 4 by 4,, 5, ,
7;and &,; and element S by 5, , 6, , 8, and 9, . It is important to note that each
element can take a rather arbitrary physical shape.

5. BASIC FORMULATIONS ON ELEMENTS

Since most engineers are familiar with the finite element method, the following
discussions use the finite element terminology. Stiffness matrix of an element due to the
strain energy is derived here to illustrate the basic formulations. Here, the strain energy
over a basic triangle is derived first, which is then modified by a weighting function to
give the real strain energy over its physical domain.

In a plane strain small deformation problem, the strain-displacement relationship can
be expressed as follows,

Ou
e ax
= ov
Fenl] 2 an
Y
I _1_(@ + av)
|2 9y &)
Rewriting (5) as
Gl = NG [u] 12)
the element strain can be related to the nodal displacement with
[e1=[BG)][x ] (13)

where, [B(x,y)] is a linear derivative of [N(x,y)]. Furthermore, let the constitutive
‘relationship be

[o]=[Cl[e] ' (14)

then the strain energy density, u,(x,y), may be written as
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u,(x,y)=-;-[e]’tol =%[u,-1’tﬁ(x.y)]’[q[3(x.y)][ui] (15)

and the total strain energy of an element can be obtained through integration. To
account for the physical area of a generalized element, again, the weighting function
is introduced. The true total strain energy of an element is obtained as follows,

U= f wxy)u (xy)dA (16)
4

Employing the minimum potential energy principle, the stiffness matrix associate with
the straining of the element can be found as follows,

[K]= f W) BEITCIBEY)IdA an
A

In a similar fashion, other components of the stiffness matrix and the force vectors
can be derived. Among the factors that are considered for a general applications are
inifial strains, initial stresses, body forces, inertia forces, interactions through contacts,
boundary loadings, and other structures components such as earth anchors or rock bolts.

6. FORMULATIONS ACROSS DISCONTINUITIES

Discontinuities pose two sets of constraints. First, objects should not penetrate each
other across the discontinuities that separate them. Second, the motion of one object
against another along a discontinuity is affected by the surface strength characteristics.
In the manifold method, the first constraint is modeled via the use of a penalty
formulation, namely, a very stiff normal spring is inserted at the point of contact. Any
tendency to penetrate is restrained by the spring’s high stiffness. The second constraint
is modeled by inserting a shear spring which yields if its strength governed by Mohr-
Coulomb’s Iaw is reached. The strain energy in the contact springs is modeled as part
of the overall potential energy of the system. This results in the coupling of the stiffness
matrices of the elements that are in contact. It is important that the stiffness matrices
are coupled because it allows the motion constraints be imposed as soon as
interactions take place.

A simple example is depicted in Fig.7 to illustrate how a discontinuity is modeled.
Here only the physical boundaries of elements are shown. Initially, edge 2-3 of an
element I is in contact with edge 5-8 of an element J. As the loading is applied, both -
elements may move. Before a constraint across the discontinuity is imposed, the edge
2-3 may move, say to 2’-3’, while the edge 5-8 to 5°-8’. In the manifold method, just
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like in DDA, edge contacts are modeled via vertex-edge contacts. For this example, the
two edge contacts are modeled as two contacts, one between vertex 2’ and edge 5°-8’,
and the other between vertex 3’ and edge 5°-8’. Here only the formulation for the first
one is detailed. If the vertex 2 penetrates the edge 5°-8°, the movement from 2 to 2’
is first decomposed into a normal and a shear components against the edge 5’-8’ and
they are denoted as d and s respectively. From a geometric consideration using vector
cross product, d can be written as [4],

1 x,tu, y,+v.
d=2 -0 xu yov] 1s)
Iy Tyl °
1 x;+u, y,+v,

where, L is the length of 5-8, y; and v; are unknown vertex displacements, x; and y;are
known vertex coordinates and A can be expressed as

A=d,+[(y5-yy) (xg-xs)][l:jﬂ(vs-yz) (xz‘xs)][ij]+[@2'}’5) (xs-xz)][z:] 19

In this expression, d, is a function of known vertex coordinates and is a constant; while
the displacements at vertices 2, 5 and 8 are functions of the unknown nodal
displacements. For instance, u, and v, can be expressed in terms of the nodal
displacements of the element I by substituting the (X,,y,) coordinates into the
interpolation relationship of element I as follows,

[ﬁ‘,‘j NG, 91, T, (20)

Similarly, u,,v, and us, v5 can be expressed in terms of those of the element J. Thus d
can be expressed as a linear functions of unknown nodal displacements of elements I
and J in the following form,

d=d,+{allu], +[bllx], 1)

where, [a] and [b] are constant row vectors. Since 2’ is not to penetrate 5’-8’, a correct
solution should make this normal penetration d zero. As stated, this is carried out by
inserting a very stiff spring in the penalty formulation. The potential energy, II, of a
contact spring is
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2
=5l (22)
2

A solution obtained from a minimum potential energy of the complete system generally
gives negligible penetration. It is important to note that in a penalty formulation, which
is an approximation to the Lagrange multiplier [7], a constraint is only approximately
satisfied. A small penetration always takes place. If the penetration is deemed too large,
improvements can be made by increasing the spring stiffness or by reducing the time
step size. The penalty method has the advantage, however, that the spring constant does
have physical meaning and can be selected to match laboratory test results be they
linear or nonlinear.

The shear deformation, s, of point 2’ along 5°-8’ causes shear stresses which is
modeled by a shear spring, k,. Expressing s in terms of nodal displacements, the
potential energy of the spring is also formulated. The corresponding stiffness and
forcing terms can be similarly determined. Again, the stiffness matrices due to shear
movements are coupled in this approach. Iteration is required if the shear spring yields.

Elements may form new contacts or may disengage from existing contacts. Because
of the coupling in the stiffness matrix, how large a memory area should be reserved for
an analysis becomes an important issue as the number of elements increases.

7. CONSTRUCTION OF PHYSICAL BOUNDARIES OF ELEMENTS

To show that the computational geometry also plays an important role in the manifold
method, the construction of the physical boundaries of elements from a covered
manifold is described here.

1) First of all, the physical mesh is obtained which includes the boundary of blocks
and discontinuities with them. A computational algorithm devised by Shi for DDA can
be adopted for this purpose. The algorithm uses tree-cutting analogy and the “coherent
orientation” scheme in topology [8].

2) One may choose to work on all blocks simultaneously, or one block a time. The
latter approach is described here. For instance, Fig. 8 (a) depicts a rather general block.
One may easily determine a rectangular box that covers the block. Let the lower left
corner be (x_min,y_min) and the upper right corner be (x_max,y_max).

3) According to the size of the mathematical mesh selected, the mathematical mesh
may be generated starting from (x_min,y_min), until the mesh covers (x_max,y_max).

4) For each point on the mesh, determines if the point or its immediate neighbors fall

on the boundary or within the interior of the block. If so, the point is retained for
constructing stars. In Fig. 8(b), it shows 12 points are retained. This means that at least
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(a)

FIGURE 8 Construction of physical boundaries of elements (a)A typical object (b) after
identifying the relevant nodes (c) construction of stars.
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12 stars are need fo cover the block.

5) For each point retained, the corresponding star or stars are constructed. If a star
falls completely within the block, no thing needs to be done. If it intersects with the
block, the intersected region is the real star area. This step can be achieved with some
polygon intersection algorithm. If a star is divided by discontinuities, the number of
components are determined. For instance, there are two 2-stars as depicted in Fig. 8

©.

6) Obtain the total number of elements and their physical boundaries. This is
equivalent to obtain the area overlapped by three stars associated with the triangles of
the underlying mesh. . '

8. EXAMPLE APPLICATIONS

Two problems are solved here for illustration. For the purpose of illustration, these
examples are much simplified: large size mathematical meshes are used together with
linear interpolation functions. All the elastic objects have a Poisson ratio of 0.3, a mass
density of 1.8 Mg/m?, a unit weight of 18 kN/m?, and elastic moduli ranging from 1500
to 4000 kN/m?. All the rigid bodies are marked by hatch dots in the following
drawings. .

The first problem tackles an elastic medium with rigid inclusions. In this problem
the elastic medium has both exterior and interior boundaries. Here, two rigid plates are
pressed against an elastic medium with two rigid inclusions placed unsymmetrically.
Initially, there are perfect contacts between the elastic medium and the rigid inclusions,
as well as between the elastic medium and the rigid plates. The covered manifold is
depicted in Fig. 9 (a). All contacts are modeled as frictional with a friction angle of 5°.
The deformed configuration after experiencing a 14.7% vertical strain is shown in Fig.
9(b). Because of the way inclusions are placed, the elastic medium deformed
unsymmetrically, Part of the contacts between the inclusions and the medium are
separated. The contacts between the rigid plates and the elastic medium also shift.

The second problem, as shown in Fig. 10(a), studies an elastic object, which contains
a set of well-defined fissures, and is being pressed from the sides. Surfaces of the
fissures are characterized by a friction angle of 5°. This problem is presented here to
illustrate the capability of the manifold method in modeling discontinuities. For this
purpose, tips of the fissures are not allowed to propagate. Even with this
simplification, this is still a rather difficult problem. Pressing the sample from sides,
the fissures show a complicated movement pattern. The side rigid blocks in this
example are assumed smooth frictionless surfaces. The deformed configuration at a
horizontal strain of 20.8 % is summarized in Fig. 10(b). In order to show the
deformed configuration clearly, the mathematical mesh is not shown in this plot.
Because of the rough mesh used, this result is only a crude approximation. Although
much simplified, the example shows the manifold method may have a potential use in
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FIGURE 9 An elastic medium with rigid inclusion problem (a) a covered manifold (b)
its deformed configuration. |
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FIGURE 10 An elastic medium with non-propagating fissures (a) a covered manifold
(b) its deformed configuration.
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solving problems involving clusters of discontinuities in various arrangements.

9. CONCLUSIONS

This paper explains the fundamentals of the manifold method using concepts with
which engineers are familiar, and shows how different parts are put together for an
engineering analysis. The illustrative examples may also shed lights on what problems
may be benefited from its use. ‘

The manifold method has several distinctive features that are important from
engineering analysis point of view. First and foremost, by using a covered manifold it
opens up a new way for the continuous and the discontinuous methods of analysis.
Second, it satisfies the minimum energy principle globally, namely both within elements
and across elements. Except for the discretization simplifications, the procedure is
rigorous both analytically and numerically. Third, the unifying underlying formulations
allows extensions be introduced, such as the inclusion of rigid bodies, in a consistent
manner.
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Abstract

To elucidate the Discontinuous Deformation Analysis (DDA) method for other
researchers, the exploration of the concepts, theories, and approximations used to formulate
this method are presented. The mechanical response of bodies in a discontinuous system
is a nonlinear problem since there is energy dissipation involved in the process of frictional
sliding. Two main issues about how to formulate a nonlinear contact problem in the DDA
method are addressed in this paper: (1) how to post mathematically the nonlinear contact
problem using /inear equations; and (2) how to select the correct solution.

1. INTRODUCTION

The Discontinuous Deformation Analysis (DDA) method[1] is a numerical method for
simulating the dynamic mechanical response of a discontinuous system. A discontinuous
system is a system of multiple continuous bodies which are in motion under external loads
and interact with each other through contacts. In a discontinuous system, any pair of bodies
in a small neighborhood may either be detached or in contact. If two bodies are detached,
they are in free body motion independent from each other. If two bodies are in contact, the
Coulomb's frictional law can be used to govern the relative motion from one to another.
If the shear component of the contact force is less than the shear strength, these two bodies
are locked together by the frictional constraint. Otherwise, they are sliding on each other.
There is always energy dissipation involved in the process of frictional sliding even when
bodies in contact deform elastically. The shear strength is defined as the product of the
frictional coefficient between the contact surfaces and the normal component of the contact
force. The contact interaction is generated by the bodies' motion which is the result of
external loads and boundary constraints. Simuitaneously, there are reactional contact forces
generated by the contact interaction. Considering a body in the system as a free body, its
motion is induced simultaneously by the external loads and the contact forces. The motion
of a body includes not only the rigid body motion according to Newton's law of motion but
also the deformation of the body according to the continuum mechanics.

The above described mechanical response of bodies in a discontinuous system must be
presented as a nonlinear problem. The solution is always unique in linear problems, but this
is no longer the case in many nonfinear situations. Thus, if a solution is achieved it may not
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necessarily be the solution sought. To obtaining a solution using a numerical method,
presenting the nonlinear problem in a series of linear equations is essential. Physical insight
into the nature of the problem in the solution process is essential to obtaining physically
significant answers. The questions "how the nonlinear contact problem is posted
mathematically using linear equations" and "how the correct solution of the nonlinear
contact problem is selected" have always been interesting subjects. To provide answers to
these two questions and to expedite the understanding of the DDA method for other
researchers, the physical insight of the solution process formulated in the method is
presented in this paper.

In order to present a nonlinear contact problem using a series of sets of linear equations,
the DDA method implements the following aspects: the approximation of a dynamic
phenomenon as a recurrence relation over discrete time intervals, the decomposition of
displacement into a linear combination of translation, rotation, and deformation, the
constant acceleration within a discrete time interval, the elastic behavior for all bodies,
Newton's law for rigid body motions, the minimum total potential energy theory with
conserved boundary constraints of forces and displacements, the contact analogy using stiff
springs and/or substituted external forces, the conserved contact positions within a time
interval, and the selection of contact positions iteratively by trial-and-error. The solution
at the end of a time-step for the nonlinear contact problem is determined to be correct if
Coulomb's frictional law is satisfied at each contact, each final contact position converges
to its trial position, and the equilibrium condition is satisfied at each contact and at all
particles of each body.

In this paper, the development background of the DDA method is first introduced to
illustrate its major improvement as a material analysis method for the discontinuous system.
Second, the basic concepts and analogies used to formulate the nonlinear contact problem

'in a linear form are discussed. Then, the physical theories and numerical approximations
adopted in the method are organized in three sections: the displacement decomposition, the
time discretization, and the minimum total potential energy.

2. NUMERICAL METHOD DEVELOPMENT BACKGROUND

To model the mechanical behavior of a discontinuous system, Cundall [2, 3] created the
distinct element method in early 70's. Since then, this method has been continuously
developed and widely accepted in the mining and civil engineering industries for simulations
of the behavior of jointed rock masses. The distinct element method uses an explicit
iterative solution procedure to solve the nonlinear problem. Using the body position and
the contact forces produced in the previous iteration, the main calculation sequence in the
current iteration can be stated as follows:

1.  Block centroid forces are accumulated from the contact forces, internal nodal forces,
and external boundary forces;

2.  The block centroid forces determine the block centroid accelerations based on the law
of motion;

3. Block velocities and displacements are then determined by the integration of
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accelerations over the time increment, and thus, new block positions are obtained,

4.  For each contact, the relative velocities/displacements of a contact corner of a block
and of an edge of a neighboring block determine the new contact force based on the
contact constitutive model;

5. The strain rates (increment strains) and the rotation rates (increment rotations) can
be computed based on the grid point velocities of blocks; and

6. The strain rates determine the incremental stresses based on the block constitutive
model, and the incremental internal nodal point forces can be integrated from the
incremental stresses.

Following this procedure, three sets of governing equations for the law of motion, the
contact constitutive model, and the block constitutive model are formulated and solved
sequentially using fictitious forces as unknowns of governing equations. The iterative
solution process is repeated until all bodies are at equilibrium state or until such time as the
system undergoes unstable motion, i.e., the solution diverges.

The above described formulation method adopted in the distinct element method is
fundamentally different from the one adopted in the finite element method. Hence, the
future development of this method for the application in many other engineering fields is
limited. To analyze the mechanical behavior of 2 material system, the finite element method
has been proved to be the most powerful tool ever developed. It has been adopted widely
by many disciplines of engineering and science. The finite element method represented a
revolution in developing numerical methods for the material analysis. In the last four
decades, a vast amount of research and development effort has been devoted into the
improvement of the finite element method. To create a new numerical method, one may
take the advantage of such an existing effort.

The finite element method was first introduced using an analogy between real discrete
elements and finite portions of a continuum. A real discrete system is formed using a finite
number of well-defined members (elements) and connections. The well-defined members
and the connections require that only certain special types of forces and deformations may
occur in the elements and at the connections. A standard matrix method may be used for
the analysis of problems of a real discrete system[4]. As an analogy of the real discrete
elements, the behavior of elements in the finite element method is specified by a finite
number of parameters, and the solution of the complete system is obtained from a direct
assemblage, in the form of the standard matrix method, of its elements. It converted the
differentiation problem into the problem of integration which is much easier solved using
computers. As a result, the finite element method provides a unified computational
procedure for the approximation of the discrete analogy[5].

In the displacement-based finite element method, the force-displacement relationships
for each element is first calculated. Then it proceeds to assemble a set of simultaneous
equations by following a well-defined procedure for establishing the local equilibrium
conditions at each connecting point (node) of the structure. This original finite element
concept established using the local equilibrium at nodes was abandoned in later
development. The advanced concept considers a displacement function that is defined as
a continuous function over the whole continuum, and the global equilibrium of the entire
structure is based on the virtual work theory, the minimum potential energy theory, or
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variational principle[5]. After the displacement function for the whole structure is defined,
the problem of establishing governing equations for the system equilibrium becomes one of
how to obtain the total work or the total potential energy for the entire structure. The
definite integral of the physical term in the global equilibrium equations require that the total
is the sum of its parts: fv(A ydv -1 fve(A ¢}dv, where Vv © is the element volume and A ®

is the physical term in the corresponding element volume.

This approximation of the finite element method for the behavior of a discretized system
lies simply in the requirement of writing the approximation in integral form. The assembly
rule as well as the whole derivation has been achieved without involving the concept of
"inter-element forces". The properties of the discretized system are recovered if the
approximating equation is written in an integral form. The adopted thermodynamic theory
ensures satisfaction of equilibrium conditions within the limits prescribed by the assumed
displacement pattern. If'the number of parameters that describe the displacement increases,
an ever closer approximation to the equilibrium conditions can be ensured.

In a discontinuous system, stiff springs are inserted between continuous bodies to model
the contact interactions. Since there is only one degree of freedom assigned to the motion
of a spring, the displacement of the entire discontinuous system can not be described using
a single continuous function. Hence, the global equilibrium established using energy
theories for setting up the governing of the entire system can not directly applied.
However, it can be applied separately to formulate the particle motion in each continuous
body in the system. Since a discontinuous system is a real discrete system, the local
equilibrium concept can be adopted to formulate the equilibrium condition at all contact
points for the relative motion among bodies. While contacts are modeled using stiff springs
inserted between bodies at the contact points (if the contact points are known), the
displacements of end points of springs are identical to the displacements of the connecting
particles in the bodies. With respect to a single body, a contact interaction can then be
considered as a prescribed displacement boundary constraint which is determined by the
behavior of contact springs. Hence, in a displacement-based numerical method, the motion
of all particles in a body can be formulated into the standard matrices using the direct
summation of the energy computed from each discretized displacement parameter. Since
the local equilibrium between bodies is expressed in terms of the displacement of end points
of springs, the matrices representing the particle motion of each body can again be
formulated into global matrices representing the motion of the entire discontinuous system
using the direct summation based on the local equilibrium at contact points.

As an improvement comparing to the distinct element method, the DDA method was
developed based on the computation procedure established in the finite element method.
Using the global equilibrium (with respect to each body) and the local equilibrium (with
respect to each contact point) developed in the finite element method, the particle motion
within each continuous body and the relative motion among bodies can be simultaneously
formulated into one set of equations using the minimum total potential energy theory.
Hence, an implicit solution scheme can be established for the nonlinear contact problem.
Most of all, the future development of the DDA method can be in parallel with the
development of the finite element method. In fact, to discretize the displacement function
over each continuous body, the finite element discretization, i.e., each continuous body can
be discretized into a number of elements, can be directly applied in the DDA method[6].
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3. BASIC CONCEPTS AND ANALOGIES

In a discrete time system[7], the dynamic response of the system is described by a series
of instantaneous responses at discrete instants of time. The time interval between two
consecutive instants is referred to as a time-step. The recurrence relation is the identical
mathematical description in functional form to describe the mapping from the initial state
to the final state for every time-step. In any given time-step, the mapping is expressed as
a function of the initial state and the history of external condition. System equations are
developed to express such a function of the recurrence relation. Solving the system
equations with the initial state and the boundary constraints, the final state at the final
instant of the time-step is obtained. Then, the final state of the current time-step is inherited
as the initial state at the beginning instant of the next time-step. The DDA method is such
a numerical model which describes the dynamic response of multiple bodies in a given
domain using the discrete time system and the recurrence relation.

In the DDA method, a contact is always referred by the interaction between a vertex of
a body and an edge of another body. An edge-to-edge contact is simply treated as two
vertex-to-edge contacts. Let us define the term "open contact” as the state of two bodies
which are detached with the condition that a vertex of one body is in the small
neighborhood of an edge of another body. Hence, the status of a contact at any instant may
be open, locked, or sliding. Within a time-step, an open contact may become a locked
frictional contact or a sliding contact and a locked or sliding contact may become open. In
the meantime, a locked contact may change to a sliding one or vice versus. Due to the
possible sliding between bodies occurred within a time-step, the positions of all contacts in
a dynamic process are a part of the system configuration. However, it is almost impossible
to include the contact positions as a part of unknowns in the system equations. To
overcome this problem, the system equations are formulated by pre-determining the contact
positions and by keeping the contact positions conserved within the entire time-step.
Hence, the system equations derived using the minimum total potential energy theory can
be formulated in a simple mathematical form due to the conserved external condition within
the entire time-step.

Using the conserved contact positions, together with a linear strain-displacement
approximation and a linear stress-strain material behavior in each continuous body, the
mechanical behavior of a discontinuous system occurring within a time-step can be
formulated as a "linear" problem. Traditionally, engineers use physical intuitions as the
analogy to establish the simple mathematical description of a complicated process. The
trial-and-error concept and a simple physical analogy are adopted to solve the nonlinear
contact problem. A trial set of contact positions based on the geometric relationships
among bodies are first selected for all contacts in the system. The trial contact positions are
the estimated final contact positions at the final instant of the current time-step. Then, each
contact 1s modeled with stiff spring(s) and/or shding forces inserted between bodies at the
trial contact position. Hence, a set of linear equations can be established for the motion of
each continuous body and each spring. These linear equations are established based on the
minimum total potential energy theory to represent the equilibrium of particles in the body. -
Applying the local equilibrium at each contact point, all sets of linear equations for all
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bodies are directly summed together to form a large set of linear equations. The final set
of linear equations represents simultaneously the equilibrium of particles in each body and
the contact equilibrium between bodies at the final instant of the time-step.

At the first iteration of the current time-step, the trial position and the status of each
contact are inherited from the result of the previous time-step. In addition, all sets of vertex
-to -edge reference which may possibly become a contact at the end of the current time-step
are defined as open contacts. Each locked contact is modeled using a pair of stiff springs
inserted at the trial contact position in the directions normal and parallel to the reference
edge of the contact. Each sliding contact is modeled by a stiff spring normal to the
reference edge and a substituted external force couple acting on two bodies in the direction
parallel to the reference edge at the trial contact position. The magnitude of the substituted
sliding forces are determined by the on site of the frictional law. Then, the system equations
of the system of multiple bodies with trial contacts are formulated and solved.

The result of each iteration is checked according to three contact status adjustment rules:
first, comparing the contact forces at all locked contacts with the sliding criterion , second,
comparing the sliding direction against the direction of the substituted sliding force for each
sliding contact, and third, evaluating the vertex-to-edge penetration for each open contact.
If the normal contact force is compressive and the shear force of each locked contact is less
than the shear strength, the contact remains to be locked and its trial contact position
remains the same in the next iteration. If the normal contact force is compressive and the
shear force 1s equal to or greater than the shear strength, the locked contact becomes a
sliding one and its trial contact position remains the same for the next iteration
computations. If the normal contact force of a locked contact is tensile, it becomes an open
contact in the next iteration.

If the shear movement of a sliding contact is in the reverse direction of the substituted
sliding force, it remains to be a sliding contact in the next iteration. The displaced contact
position 1s considered as the trial contact position in the next.iteration. If the shear
movement is in the same direction of the substituted sliding force, a sliding contact becomes
a locked one and its trial contact position remains the same in the next iteration. If the
vertex-to-edge penetration of an open contact is positive, it remains to be an open one for
the next iteration. If the vertex-to-penetration is negative, an open contact becomes a
locked one in the next iteration. Its trial comtact position in the next iteration is the
projection of the vertex on the reference edge.

Since the contact position of a sliding contact may change within an iteration, its trial
contact position is not conserved, i.e., the points of application of the substituted external
force couple (the shear contact forces) acting on bodies is not conserved. Therefore, the
motion of continuous body formulated using the minimum potential energy does not
corresponding to the equilibrium condition at the final instant of a time-step. The iteration
process should continue not until only there is no more change of the contact status for all
contacts but also the relative position between the vertex and the reference edge of each
sliding contact converges to the condition that the final contact position is the same as the
initial one. In such a case, the trial contact position for all contacts represents the final
positions. Upon the convergence of the contact status of all contacts and the contact
position of all sliding contacts, the set of trial contact positions is correct and the solution
correctly represents the instantaneous motion of ail bodies.
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The above described solution analogy brings to light an important point. The
formulation of system equations with stiff spring(s) and/or substituted external contact
forces at the trial contact position assumes that the contact positions are fixed during the
entire time-step. In other words, the trial contact positions are a part of the conserved
" system configuration. This approach adopts not only the concept of trial-and-error but also
the concept of creating a perturbation of the system configuration before the beginning
instant of a time-step and after the final instant of the previous time-step. Generally, in
other numerical models, the initial configuration/state of a system at the current time-step
is inherited entirely from the final one at the previous time-step. This configuration
perturbation between two consecutive time-steps is one of the unique features introduced
in the DDA Method.

While the position of a contact changes, the point of application of the contact force is
displaced. Hence, the work, which equals the contact force times the distance between the
original and the change points of application, is done and the energy has been dissipated.
However, the formulation of the system equations does not include the change of positions
for sliding contacts because fixed contact positions during the entire time-step are assumed.
In other words, the energy dissipation due to the frictional sliding between two bodies is not
computed in the system equations that represent the response of the system within a time-
step. It is implicitly included at the instant before the current time-step and after the
previous time-step. The formulation of system equations for each iteration computation is
obtained on the condition that the system energy is conservative within a time-step (if the
constitutive behavior of the material of all bodies is reversible). The amount of energy
dissipated within a time-step is implicitly represented by the change of the contact positions
between the selected trial positions and the final positions obtained in the previous time-
step. It is assumed that the correct amount of energy dissipation occurring within a time-
step is reflected in the model if all bodies in the system are in equilibrium, each final contact
position converge to its trial position, and the Coulombs frictional law is satisfied in each
contact at the final instant of the time-step.

In the process of developing the DDA method, Shif8] created the simplex integration
which is an analytical integration of any n-dimensional polynomial function on any n-
dimensional generally shaped domain. The simplex integration can significantly improve
the numerical method for the material analysis. Since the finite element method converts
a problem represented by differential equations into an integration problem, the success of
a numerical approximation method lies simply in the requirement of writing the
approximation in integral form. Before the simplex integration is established, numerical
integrations, such as Gauss integration, are usually used. This is the reason that 2 domain
to be analyzed must be discretized into some regular shaped subdivisions and the mapping
of the subdomain of the function to be integrated into even more restricted regular shaped
subdomain must be implemented in the finite element method. '

In order to integrate the potential energy as a function of displacement over a material
domain, an arbitrary continuous displacement function of coordinates over the entire
domain is approximated by a piecewise linear function of nodal displacements in the four-
nodes isoparametric finite element method. Hence, nodes are used not only to specify the
nodal displacements as the unknown parameters of system equations and the nodal force
as the known parameters, but also used to specify the subdomain of the integration. These
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constraints make the discretization of the finite element very difficult. Often, they cause
unnecessary increase in the degree of freedom of the approximation due to the complex
shape of the material domain rather than the desire of a more accurate approximation.

Using the simplex integration and the global equilibrium, a high order polynomial
function (rather than the piecewise linear function) can be assigned to the continuous
material domain to describe the displacement field. Thus, the discretization of the domain
may not be necessary. The higher order of polynomial is chosen, the higher degrees of
freedom of the approximation is made. In the analysis of a discontinuous system, the
interactions between bodies are the main subject to be analyzed. Hence, we may chose the
least order polynomial displacement function for each continuous body so that we can study
the motion of a system of many bodies within a limited computer resource. The DDA
method adopted the linear displacement function (zero order approximation of strain field)
which is the least order of approximation of the deformable continuous body of an arbitrary
complex shape for any numerical method. This can only achieved by using the simplex
integration and the formulation of the global equilibrium with respect to a single body. The
use of a second order displacement function in each body for the higher degrees of freedom
approximation in a discontinuous system has been illustrated by Chern, Koo, and Chen[9].
If a much higher order of polynomial function is adopted, physical meaning can no longer
be designated on the unknown parameters in the governing equations. Nevertheless, the
solution of this pure mathematical process for the approximation of mechanical behavior
of a continuous body remains to be physically valid.

4, LINEAR DECOMPOSED DISPLACEMENT FUNCTION

This section discusses the motion of particles in a continuous body of a discontinuous
system. The domain of a discontinuous system is a Euclidean space. A continuous body
is composed of particles. When some physical action is imposed, the body as a whole
moves in a Euclidean space and particles in the body move relative to each other. A
description of the instantaneous locations of all particles must include both the movement
of the body as a whole and the relative movement between particles. The movement of the
body as a whole is referred to as the rigid body motion which consists of translation and
rotation. The relative movement between particles is defined as the body deformation.

Rigid body translation is characterized by the constant displacements and velocities for
all particles in the body at any given instant of time. The motion of rotation is the self
spinning motion without considering any relative motion between particles. Although there
is no stretching (change of length) between any pair of particles in the course of rigid body
rotation, the rigid body rotation displacement of each particle measured with respect to a
given rotation axis is a function of its position vector. Consequently, the rotation
displacements of particles are coordinate dependent. The body deformation is the change
of body configuration which is characterized by the change of the length between any pair
of particles in the body. Measured with respect to a given reference point, each particle has
a unique deformation displacement which is a function of the particle position in relationship
to the reference point. Hence, the deformation displacement of particles in a body is also
coordinate dependent.
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Based on the motions defined above, the displacement vector u,, where i refers the axes

of the reference frame, of all particles used to characterize the motion of a body is
composed of the displacement of rigid body translation, v, the displacement of rigid body

rotation, u;’, and the displacément of body deformation, v,". To obtain the most simple

displacement function, we like to express the displacement of a particle as a simple
superposition of its components:

t 4
u= s ey . (1)

For any admissible displacement function vu;, an admissible function must be sought for each
T

of the displacement components, v, v, and v . Furthermore, the displacement

components must be defined independent from each other if they will be used as unknown
variables of a set of system equations for describing a2 dynamic process. The main object
of this section is to define the composed displacement function shown in Equation 1 that
displacement components, v, v, and u,* are admissible and independent.

Let u,(P) be the displacement of 2 point P in the time interval from instant t, to t.
Consider a neighboring point P in the body. Let the coordinates of P and P be x, and
x;+dx;, respectively. The displacement u, of particle P at the instant of time t can be
obtained by a line integral along a continuous curve joining P and P as

u=u(P). f;dui @)

By the ordinary rule of differentiation, the relative displacement of P with respect to P is

odu,
du;= —dx, (3)

axj

This can be rewritten as

1{oun, odu; 1{8u du
du, = — L,—dtdx.+— oAl dx, (4)
T2 ox; 9%,  2{0x; 0% I

Due to the algebraic operation, two terms on the right-hand side of the above equation are
always independent from each other. These two terms are identical to the Cauchy's
infinitesimal strain tensor ;; and the infinitesimal rotation tensor o, that

1{ 0w, du,
eif;{ ‘ ] )

axj axi
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and

1{du; odu
®.=-— —-—
Yoo2lex, ox ©)

From this antisymmetric rotation tensor we can always build a dual rotation vector w,

as wp= -%e.ﬁjm ;j> where e, is the permutation tensor. Using the délta identity operation,
€jx€is” 8558~ 8548y, (8 18 the Kronocker Delta), the rotation vector can be written as

1 . ; . . .
&5 O = a—(mij-mji). Since w;; is antisymmetric, o-e;w,. Therefore, the relative

displacement of point P with respect to point P shown in Equation 4 can be rewritten as
du; = €;dx; - ey 0,0, )
Inserting Equation 7 into Equation 2, yields

u, = ui(f)'f;:eijkmkdxj+ffpeijdxj ' (8)

Because u,(P) is the given displacement of an arbitrary specified point P, it is a

coordinate independent prior. As indicated by Equation 5, each element of the strain tensor
- of any particle is a single-valued function of the particle position so that &5~ €45(X10 %20 Xy)-
Equation 6 shows that each element of the dual rotation vector «, is single-valued and the
vector itself is coordinate independent. Hence, the integrations of &5 and o, from P to P
are admissible for any arbitrary particle P(x,, x,.x,) in the domain of a continuum.

The first term u,(P) in Equation 8 is the absolute displacement of the specified particle P

with respect to the system frame of reference. It may includes all displacement components
defined in Equation 1. The displacement of body deformation of a single particle vanishes
due to the basic concept of the theorem of continuum that a physical particle is
approximated by a mathematical point. Therefore, the absolute displacement u,(P) of
particle P with respect to the system frame of reference can be decomposed into a
component of translation vu;'(P) and a component of rotation w,"(P) that

u -1, (P )eu(P)- f;cijkmkdqu» f;eij dx, (9)

The third term on the right-hand side of Equation 9 is only a portion of the rotation
component of the absolute displacement of the particle P with respect to the system frame
of reference. Another part of the rotation component is represented by the rotation
component of the absolute displacement of the reference particle u{P}.

To simplify Equation 9, we select the centroid, 0, of the body as the reference particle.
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Since all rotation axes of a free body pass through the centroid, the rotation displacement
of centroid O always vanishes. Hence, v, ()} in the right-hand side of Equation 9 is omitted

and - [ Peijkmkdx ; is the only term representing the rotation displacement of any particle in
the body. The translation displacement component of any particle P in the body is identical

to the translation displacement of the centroid v;°. Expressing all independent variables of

coordinates and time, we can rewrite the displacement decomposition shown in Equation
9 in a simple form as

u(x xz,x3,t fcuk o dx+f x xz,x3,t)d ; (10)

Relating Equation 10 to Equation 1, the translation, rotation, and deformation d1splacement
components are defined as

o8 (xl,xz,xa,t) u,’(t) an

(%, %,, %, t) = - f:eiﬁm:(t)dxj (12)
and

ud(xl,xz,x t) f:’e (x 1{2,713,t)dx_I (13)

While using the displacement method for the formulation of the system equations, the
independent parameters used to express the displacement functions are adopted as the
unknown variables. In the Discontinuous Deformation Analysis method, ¢;; in the entire

continuum domain is assumed to be constant. Hence, the independent parameters u;’, of,
and &;; can be used as the unknown variables. If the small rotation approximation shown

in Equation 6 is adopted and the line integration of the strain field (the deformation
displacement field) can be approximated using a linear function of a number of independent
parameters, the set of system equations established to describe the motion of a continuous
body can be linear. In the finite element method, the deformation displacement field can be
approximated by a piecewise linear function of nodal displacements. Hence, each body in
a discontinuous system can be discretized using the finite element method to increase the
degrees of freedom of the approximation within each body.

The velocity field of a body is the material derivation of the displacement field. Since the
translation displacement u;" is coordinate independent, and the rotation displacement u;" and

the deformation displacement u,* are the integration of infinitesimal terms, the distinction

between the Lagrangian and Eulerian strain tensor disappears. It is immaterial whether a
derivative of the displacement is executed using the initial particle position or the current
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particle position as the independent variables. Therefore, the velocity is just a partial
derivative of the displacement with respect to the time. Similarly, the acceleration is just
a partial derivative of the velocity with respect to the time. Following the same method
used for the displacement decomposition, the velocity and acceleration can be decomposed
into functions of some independent variables.

5. THE TIME DISCRETIZATION

in a dynamic analysis, independent variables may be coordinates and time. In the finite
element method, the displacement approximation is a partial discretization that the
displacement is only discretized with respect to independent variables of coordinates. Let
a;, where i~ 1,2,...,n and n is the total number of independent parameters, represents u;’,
wg, and the adopted deformation displacement parameters for describing the strain field.
After this spatial discretization, the derivatives of a; with respect to time will remain in the
final expression of the governing equations which are a set of ordinary differential
equations. Time t is the independent variable of these equations. Approximating the
differential equations into a set of algebraic equations with unknown parameters a, using

the weighted residuals method or the variational principle, the general form of such
equations for a linear problem can be expressed as

pé;+qd,+Ta,+f =0 (14)

da, dd,
where 4;- — and 4, - )
dt dt )

If coefficients p, q, and r in the above differential equation are independent from timet ,
the solution of the system can frequently be carried out efficiently by standard analytical
methods. Systems of ordinary, linear, differential equations can always be solved
analytically, in principle, as an eigenvalue problem, without introducing additional
approximations. However, the solution of the eigenvalue problem provides the behavior
patterns of the dynamic motion of a body rather than the transient dynamic phenomena.
The transient dynamic process can be simulated using the recurrence relation in the discrete
time domain.

The recurrence relation of a transient dynamic problem{7] within a small time increment
[- t) Telates the initial conditions at t, to those at time t . The algorithm of the recurrence
relation in a small time increment {t;,t) can be obtained by introducing additional
approximations for velocities and accelerations. Displacements u;{t,) at the initial instant
of the time increment are updated to a null vector. Final velocities u,(t) of the previous
time-step computations are considered as initial velocities u(t,) of the current time-step.
Initial accelerations w,{t,) correspond to the loading and boundary conditions at the initial
instant of time t,. Becauseit is a nonanticipatory deterministic system, initial accelerations u;{t,)

remain unknown. If the loading and boundary conditions remain conserved during the
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entire time increment, the acceleration of each particle is constant with respect to time and
can be represented as unknown ;. Since ¢, and u,(t;) are prescribed, time independent

unknown u; can be expressed in terms of unknown displacement field wyt). Using
unknown parameters a, to express displacement u,,

a;= (ALY a;(t) - mai(to) (15)
and
d;(t)- (Azt) a,(t)- é‘i(to) (16)

where At-t-t,.

Inserting Equations 15 and 16 into Equation 14, the general form of the governing
differential equation of a linear transient dynamic problem apprommated usmg the discrete-
time system can then be expressed as

2p 2q

] 2p .
a;+ a+ra+f - ——d (t,}-qd,ft)- 0. 17
(aty = (At) (At) o) a8ifo) ()
This equation is rewritten as
Ka+f=0 (18)
where
2p 2q
K- + +T 19
(At (At) (19)
and
;2 . .
fi-%- TAPT) d;(t)- 4 3;(t) (20)

The mathematical form of the general governing equation of the transient dynamic process
in a small time increment shown by Equation 18 is identical to the one for the general
governing equation for a time independent linear continuum problem.
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6. MINIMUM TOTAL POTENTIAL ENERGY THEOREM

In the DDA method, the transient state (equilibrium under D'Alembert's principle) of a
discontinuous system at an instant of time is found by seeking the minimum of the total
potential energy of the system at the end of a time-step. The application of the minimum
potential energy theory in a discontinuous system is similar to its application in the
structural analysis of a truss where continuous truss components are connected with
structural connectors. Since there are simplified degrees of freedom assigned to the
connectors, the global displacement finction assigned to the entire discontinuous domain
or the truss system can not be a continuous one. In general, the analytic mathematical
expression of the minimum potential energy theory in classic mechanics is only valid within
the domain of a continuum. However, the physical meaning of the theory extends far
beyond its mathematical representation. In the level of treatment for the entire system, the
potential of a discontinuous system can be expressed as fv( A}V -Y fve(A °}av , where v ©

is the volume of a continuous body, A ¢ is the potential energy in the body, and the
summation represents all continuous bodies of the system. Then, the minimum of the total
potential energy of the entire system at an instant of time can be computed. This concept
of integrated potential energy can also be applied in the level of treatment for each
continuum or connector in the system.

In the DDA method, the potential energy of a block is not only contributed by all
external loads, boundary constraints, initial stresses, initial velocities, and strain energy, but
also is contributed by the contact interactions between bodies. Using the contact spring(s)
and/or the substituted shear contact forces for simulating the contact interactions, the
potential energy of the contact springs and bodies can be computed using the displacements
of the contact points of two bodies in contact. However, to obtain an analytic mathematical
expression of the minimum total potential energy theorem, the trial contact positions must
be a part of the conserved system configuration within a time-step.

In order to adopt some thermodynamic energy theories expressed in a simple
mathematical form for modeling the response of a system, the requirement for a constant
external condition within a time-step is necessary. Furthermore, if a lower order
approximation for the displacement function is used for simplifying the system equations,
the small time-step is also required to ensure that only small strains and rotations are
generated in each time-step. The small time-step is defined as the time interval
corresponding to a small change of the system state and the external condition. Hence, the
external restraints imposed on the system must be presented with a step function that only
a small change of the functional value may occur at the instant between two consecutive
small time-steps.

In the continuum mechanicsf10], the principle of virtual work based on Eulerian equation
of motion can be expressed as

frbibuidr+fngibuidn -fn pi,du, dQ -fuoijbe’.jdﬂ =0 (21)

where p is the density of the homogeneous material, g, is the body force, b, is the surface
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traction, o 5 is the differentiable stress field, r is the surface of the continuum, and q is the

volume. Applying the principle of virtual work to a dynamic process which changes the
initial state at the instant of time t, to the state at the instant of time t, all terms in Equation

21 should be evaluated at the instant of time t, particularly su; means suyt). Time
independent acceleration 1, may be approximated as shown in Equation 15. Replacing
stress o;; With Dy e,,, Where Dy, is the material constants for the elastic continuum body,
the principle of virtual work becomes

2 2
frbibuidl‘+fngi6uidﬂ—fneijDimb eﬂdQ—@fﬂpuiauidQ-A—tfnptii(to)&uid9= 0 (22)

where At is a scalar representing a time increment of a discrete time interval. Since the
conserved applied forces over the small time increment and the infinitesimal strain and
rotation theories are adopted, all forces acting on the body are time independent. The
expression of the principle of virtual work can then be simplified as

1 1 2
6frbiuidf+6fngiuidﬂ—6-Z—fneﬁDmeHdQ—bwfnpuiuidQ-bA—thp ﬂi(to)uidg=0 (23)

where u; and e, at the instant of time t, are the unknown displacement and deformation
occurring within the time increment [t,,t), and w,(t,) is the known initial velocity at the
instant of time t,. This may be written as

d3I-0 (24)

The function 1 is called the total potential energy of the system so that

1
H=frbiuidI‘+fngiuidQ——2—fne D.e.d0Q-

2
Pt fﬂpuiuidﬂ—zfn pu fp,d0 (25)

(at)?

Equation 24 is the mathematical statement of the principle of minimum total potential
energy. It states that all displacements u(t) satisfying the given boundary conditions that

satisfy the equation of motion are distinguished by a stationary (extreme) value of the total
potential energy at the instant of time t . The above function 1 is driven by a given set of
traction, body forces, strain energies, and kinetic energies. It may also include other types
of potential energy which can be defined (measured) independently at a given state of the
system, such as heat input or mechanically dissipated energy[11}. The strains at any point
in the continuum can be determined in terms of the displacement field as shown in Equation
5. Since all displacement terms in Equation 25 can be decomposed into translation,
rotation, and deformation displacements, the potential energy can be decomposed into
potential energy of translation, rotation, and deformation.
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Let the displacement field is approximated by a linear function of independent parameters
a;, where i-1,2,...,n and n is the total number of parameters. The variational principle can

be expressed as the variation of the potential energy 1 in the differential form:

ol
6I[=ga'—-6&i=0 (26)

This being true for any variation, 8a, yields a set of equations

i,
32 . 27

These equations are of an integral form necessary for the discretization approximation
where the original specification of I was given in terms of a volume and surface integral.
If the functional 1 is quadratic, i.e., if the displacement function w, and its derivatives

occur in powers not exceeding 2, then Equation 27 reduces to a standard linear form:
ol

- Kija'j + fi =0 (28)

aal.

where X, and f; are scalar coefficients. Differentiating these equations again yields

on
K.-
Y9 2,0a, (29)

This equation shows that X;-X; , i.e., K;; is symmetric. f; represents the free terms of
differentiation in Equation 28 so that

£ - oII(0)
da.

1

(30)

7. SUMMARY

Due to the energy dissipation associated with a frictional sliding process, the contact
problem is nonfinear. The DDA method adopts the displacement method to solve the
contact problem without reformulation of the discretization process, i.e., without rewriting
the basic variational statements. The unified computational procedure, i.e., the direction
summatton of the function values integrated within each discretized sub-domain into a
matrix form, developed in the finite element is adopted. A solution to the "linear" problem
is reached by a trial and error process in which the contact positions at the final instant of
a time-step are so adjusted that the Coulomb's frictional law and the equilibrium are satisfied
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everywhere in the system.

Solving the contact problem using the trial-and-error iteration scheme the correct resuit
of the mechanical response of a discontinuous system at the final instant of a time-step is
formulated and solved in the last iteration. All other iterations are just a part of the trial
process. The change of contact positions obtained in the previous time-step to the trial
positions selected for the last iteration of the current time-step is a perturbation of the
system configuration since the contact positions can not be included as unknowns in the
system equations. After the trial set of contact positions have been selected, computations
in each iteration are fairly independent from others. The only substitution process required
from one iteration to another is the shear contact force couple applied on each sliding
contact. The shear force of a sliding contact substituted in the current iteration, which is
treated as an external applied force, is updated using the normal contact force computed in
the previous iteration.

As demonstrated in this paper, the DDA method implements the following aspects to
post the nonlinear contact problem mathematically using linear equations:

The recurrence relation in a discrete time system,

. Decomposed displacements including translation, rotation, and deformation,
The small time discretization with constant acceleration,

. The elastic behavior of continuous bodies,

. Newton's law for the ngid body motion,

. The minimum total potential energy with the conserved external constraints,

. Conserved contact positions selected iteratively by trial-and-error scheme, and
. Contact interactions modeled by stiff spring(s) and/or substituted shear forces.

[~ I N R VAR O
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Modification of DDA with respect to Rigid-body Rotation

Te-Chih Ke'
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ABSTRACT: In the original form of DDA, the separation of rigid-body rotation term
from the other deformation variables is a breakthrough idea. However, without
precaution to update physical terms after each step computation, severe distortions
associated with non-zero rigid-body rotation may be encountered. They include
insufficient rotation updating, free expansion, disturbed stress and velocity fields.
More importantly, these distortions are accumulative, regardless of rotation direction.
This paper presents the concise procedures to correct up these rotation-related
distortions. The same laws described can be easily applied to the traditional DDA
formulation with a higher-order displacement function. Several numerical examples
are included to examine the sensitivity of physical terms to rigid-body rotation.

KEYWORDS: discontinuous deformation analysis, rigid-body rotation, free expansion

1. INTRODUCTION

Since Shi [1] pioneered to introduce the forward model of two-dimensional
discontinuous deformation analysis (abbreviated as DDA) in 1988, DDA has received
increasing attention from international researchers in both academic and industrial
societies. Through years’ verifications, DDA has shown its excellent ability to deal
with complex interactions between discrete deformable blocks. Great efforts have also
been made to continuously improve the capabilities of DDA in dealing with various
problems in rock mechanics, material science and structural engineering. Based on the
increasing cooperation of researchers in the related fields, it is expected that the
potential of DDA would be fully explored upon the advent of the 21th century, making
it be extensively used in the real world of engineering design. Table 1 provides a
partial list of the current and future developments of DDA, according to the personal
opinion of the author (some of which are extracted from the reference [2]). This paper
addresses the study of DDA on the subject of rigid-body rotation and the corresponding
treatments.
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Table 1 Partial list of current and future developments of DDA

Group

Sub-group

Contributors

DDA Blocks

Block contacts/
Joints

Various constraints

Insight studies

Applications

Refined stress field

Non-linearity
Fragmentation
Fracture propagation
3D DDA blocks
Circular blocks
Coupled flows
Strength properties
Joint dilation
Non-linear laws
Lagrange multiplier
Displacement const.
Force constraints
Time integration
Rigid-body rotation
Simplex integration
Rock slopes
Underground works
Rock foundations
Particulate media
Composite materials
Fracturing

Impact

Joint flows
Reliability-coupling

Shyu [3], Ke [4], Chang [5], Koo etc. [6],
Ma [7], Shi [8]

Chang {5], Ohnishi etc. [9]

Lee [10], Lin etc. [11]

Ke [4], Lin etc. [11]

Shi 112]

Lin [13], Ke [14]

Shi [15], Ke [4]

Thapa [16]

Hilbert etc, [17], Lin etc. [11}

Ke {4], Ohnishi etc. [9]

Ke [4]

Ke [4]

Yeung [18], Ke {4]

Shi [19]

Yeung [18], Ke [20], Chen & Lin [21]

Ke [4], Chang [5], Yeung etc. [22]

Yeung [18]

Lin [13], Ke [13]}

Shyu [3], Ke [23]

Ke {4], Lin etc. [11]

In the original formulation of DDA, a complete first-order displacement function is
used. That is, the displacement increments (u,v) of a point (x,y) within Block i can

be expressed by

(x,¥)

)i = [Ty [D7] = (E?ﬂt” dj} M

M
Zjat,; dy

in which the number of block unknowns M is six in this case, [T'] is the first-order
displacement function given by
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[T4] = [tu ti2 L3 Lia Cis 'tls)l
’ Ea1 Cap Loy Taa Los Lae
10 -(y-y,) (x-X,) 0 (v-¥,) /2 :
=(o 1 (x-x3) 0 (y-¥,) (x-xo)/z]

2)

where (Xo,yo) are the centroid coordinates of Block i, and [D'] is the corresponding
displacement vector of Block i, including two rigid-body translations, one rigid-body
rotation, and three 2D strain components defined by

(dl 1 "ub l
gz -V
i Yo | 3
Di] =P =
[D*] d, e,
d €,
\dGJ A\Yxy

Among several advantages of adopting Eqn(1-3)s, the separation of the rigid-body
rotation term v, from the other deformation variables is a breakthrough, since this term
can not be easily and simply computed using the traditional finite element or boundary
element methods. Following the basic format of Eqn(3), the displacement vector (D'l
corresponding to the complete second-order displacement function with M=12 is given
by

i1 T _ c ,.C .C
[D*)2na = (Uy Vo Yo €x € Yxy €x,x €y.x Yxy.x €x.v G,y Yay.y) @)

where the six first-derivatives of strain components are added, and which still contains
the rigid-body rotation term v, (but now associated with the block centroid). For a
much higher-order DDA, [D will contain other higher-order derivatives of strain
components. The following lists the relationship between the order of DDA
displacement function and the number of block unknowns M.

Order 0 | 2 3 .. n

M 3 6 12 20 .. (@+D@O+2)

After each step computation, DDA updates block vertex coordinates, initial stresses
and block velocity vectors according to the solution of [D']s. However, without
precaution to update these tensor terms, the above advantage may be totally impaired
by the severe distortions associated with the rigid-body rotation vy, (especially when it
is large). This problem includes two types of distortions. Type I relates to the
linearization error of rigid-body rotation in the DDA formulation, leading to
insufficient rotation updating and free expansion. Type II corresponds to the rotation
of local reference frames, resulting in distortion of stress and velocity fields, which are
subsequently regarded as external forces for the next step calculation. The following
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two sections will describe these detailed phenomena and provide the strategies to
correct them up. A toppling block system will then be presented to examine the effect
of rigid-body rotation before and after the proposed correction.

2. INSUFFICIENT ROTATION AND FREE EXPANSION

The free expansion phenomenon of a DDA block can be easily observed if it has a
rotation-dominant motion mode. This problem was first addressed by Yeung [18].
Even when a small maximum displacement ratio, say 0.001, is used, the increase in
the area of a rotating DDA block is considerable and it remains as long as the block
rotates. 'This weird phenomenon can be clarified by investigating the linearization
procedure used in the original DDA formulation for a rigid-body rotation. The initial
discussions on this subject can be found in Appendix A of the reference [4].

Figure 1 depicts a rigid square block' subjected to a known rigid-body rotation
increment vy,, with respect to the block centroid, O(xo,Ys). A local Polar coordinate
system is set with its origin centered at Point O. Given a v,, Point P(x,y) moves to
PE(xE,y®). The exact displacement increments of P(x,y) due to -y, are given by

u _ cos (B+y,) - cos (0)
( v )P(x,y)_ L sin (0+y,) - sin(0)

Q)
cos (B) cos (¥,) - sin(0)sin(y,) - cos(0)
sin(0) cos (y,) + cos () sin(y,) - sin(8)

where L = the square root of (x-Xo)*+(y-Yo)* and § = tan ((y-yo)/ (X-Xo)); OT
(u) _ {x-x,) (CIOSYo‘l) - (y-y,) siny, 6
V ipxy (x-x%,) siny, + {¥-¥,) (cosy,-1)

Obviously, Eqn(5-6)s are non-linear with respect to v, (because of involving
trigonometric functions of ). In order to manipulate a system of linear equilibrium
equations in DDA, linearization must be employed. By assuming a very small 7,
Eqn(5) is approximated as

u o[ -L*sin(B)\ .

( V)P(x,y) ( L cos(8) ) Yo -
- (Y_YO) ) .
Yo

T (x-x,)

Eqn(7) is exactly the form given in the first-order displacement function of DDA (see
Eqn(1-3)s). According to Eqn(7), P(x,y) moves to PL(xt,yY), instead of P*(x",y®) as
shown in Figure 1. '

L It is also good for blocks of other shape.
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Figure 1 Linearized Error Induced by Rigid-body Rotation

2.2 Insufficient Rotation Updating

Denote ZP"OP in Figure 1 as v,°, which is the actual rotation defined by Eqn(7).
From Eqn(7), the length of line PP equals to L and Z QPP is a right angle. As
a result, " is equal to tan”(y,). As a trigonometric rule, it can be easily shown that
Yo is always smaller than ~, In other words, an insufficient rotation error is
introduced according to Eqn(7). However, this error becomes negligible if v, < 0.1
radian. :

2.2 Free Expansion
A free expansion AL along the direction of OP", is observed in Figure 1, The
amount of free expansion is given by

AL =y3L? + L2 - L= (Y2 +1 -1)- L @

and the corresponding area expansion AA equals to

AA =2 (Y2 +1-1) =AY’ )

where A is the block area of the previous step. The normalized free expansions in
terms of length and area can be expressed by
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% = Jyi+ 1-1

Aa _ a0
2 Yo

both of which are always positive, regardless .of the sign of . If the block
experiences N steps of identical rigid body rotation +, then the accumulated
normalized free expansions in terms of length and area are

N ' N
w = (Yg+ 1)3_ 1
san an
M = (Y§+ 1)¥- 1.
Ao

where L, is the initial length of line OP, and A, the initial block area.

2.3 Remedy - :

Here, the concept of post-adjustment is used. For each step, the system of linear
equilibrium equations is formulated based on the linearized form of Eqn(1-3)s and the
[Di]s are solved. But the yg-induced displacement increments of the relevant points
(x,y), including block vertices, are calculated using Eqn(6). Accordingly, Eqn(l)
becomes the sum of +yg-induced and ~yg-unrelated contributions, expressed by

v (x-x,) siny, + (y-¥,) (cosy,-1) B t,,d;

(u) _ ((X—xo) {cosyy,-1) - (y-¥,} sinyo) . (2?=1t1jdj) 12)
{x, ¥}
F#3

Using Eqn(12) can overcome both the distortions mentioned in this section.
However, since the penetrations of normal contact springs and the shear movements
along the reference lines are still computed based on Eqn(1-3)s, a maximum rotation
limit per step G,, say 0.1 radian, should be set up to reduce the errors in computing
contact forces. That is, once the maximum step block rotation computed exceeds this
limit, At will be reduced and the step computation is re-started.

2.4 Bxample I

Figure 2a shows the initial position of a square block at t=0, which is assigned a
constant angular velocity of 1 radian/sec with respect to its centroid O. No other
external load is present. At used in the DDA run is 0.1sec, and the DDA is run until
.t=0.5sec. Table 1 compares the results of the normalized free expansions in area, in
which the values of the second column are computed by Eqn(11), the third column by
the DDA without correction and the 4th column by the DDA with Eqn(12)’s
correction. It is found that Eqn(11) and the DDA without correction yield the same
free expansion values, and the DDA with Eqn(12)’s correction gives zero free
expansion. Besides, an insufficient rotation phenomenon is observed for the DDA
without correction because its computed value of Zvy, is always less than that of the
DDA with correction. Figures 2b,c display the final block geometries of the DDA

265



without and with correction at t=0.5sec (solid lines).

(@)
A=1rad/sec

2

Figure 2 Example I: a) initial geometry; b) final geometry at t=0.5s (DDA without
correction); ¢) final geometry at t=0.5s (DDA with correction)

Table 1 Comparison of Results for Example I

Time (sec) AA/A, (%) AA/AZ (%) AAJAP (%) Eyg (radian) vy, (radian)

0.1 1.0 1.0 0.0 0.0997 0.1
0.2 2,01 2.01 0.0 0.1993 0.2
0.3 3.0301 3.0301 0.0 0.2990 0.3
0.4 4.0604 4.0604 0.0 0.3987 0.4
0.5 5.1010 5.1010 0.0 0.4983 0.5

! defined by Eqn(11); ? computed by DDA without correction; > by DDA with Eqn(12)’s
correction.

2.5 Example I

Figure 3a shows the initial position of a square block at t=0, which is fixed at its
lower-right corner. Gravity as the only external load turns on at t=0 and the block is
assumed to be rigid. At used in the DDA run is 0.1sec, and the DDA is run until
t=0.5sec. Table 2 compares the results of normalized free expansion in area, in which
the values of the second column are computed by the DDA without correction, and the
third column by the DDA with Eqn(12)’s correction. It is seen that the DDA with
Eqn(12)’s correction gives negligible free expansion but the DDA without correction
does not. Also, an insufficient rotation phenomenon is observed for the DDA without
correction, when comparing the values of vy, computed by the DDA with and without
correction. Figures 3b,c depict the final block geometries of the DDA without and
with correction at t=0.5sec (solid lines).
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fixed point

Figure 3 Example II: a) initial geometry; b) final geometry at t=0.5s (DDA without
correction); ¢) final geometry at t=0.5s (DDA with correction)

Table 2 Comparison of Results for Example IT

Time {sec) AA/A,' (%) AA/A2 (%) Iv, (radian) Iv,? (radian)

0.1 0.0338 ~0.0 0.0184 0.0184
0.2 0.3420 ~0.0 0.0738 0.0739
0.3 1.2236 ~0.0 0.1673 0.1678
0.4 3.0820 ~0.0 0.3004 0.3024
0.5 6.2322 ~0.0 0.4747 0.4812

! computed by DDA without correction; 2 by DDA with Eqn(12)’s correction.

3. DISTORTION OF STRESS AND VELOCITY FIELDS

At the end of each step computation, initial stresses, block velocity vectors as well
as the block vertex coordinates are updated according to the solved [D]s. However,
once the block vertex coordinates are updated, all updated components of initial
stresses and block velocity vectors must be referred to the new local axes of each
block. No adjustment of these tensor terms with respect to the rotation of the local
reference frames will cause the accumulated distortion of stress and velocity fields.

Figure 4a shows that the local x,y axes and the global X,Y axes for Block i are
parallel in the beginning of Step j. If the [D7] solved for Step j contains a non-zero +,,
then Block i will rotates around its centroid by this amount at the end of Step j (after
updating the coordinates of block vertices), i.e., at the start of Step j+1, the local x,y
axes inclines with the global X,Y axes by 7y, as shown in Figure 4b.
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Figure 4 Rotation of Reference Frames between Step Computanons a) at the start of
- Step j; b) at the start of Step j+1

3.1 Initial Stress Distortion
In the DDA formulation, initial stresses [o,] are converted into force terms. At the

end of Step j, the initial stresses of Block i [o}*! for the next step can be computed
by

[0,19*% = [0,]17 + Afo] (13)

where Afo], the stress increments is equal to the product of the elastic matrix and the
strain increments A[e] in [D7 of Eqn(3). After updating the coordinates of block
vertices, the initial stresses defined by Eqn(13) are associated with the local axes, i.e.
[oo} 'y =[0o}*!. However, all of the DDA computations are performed on the basis
of the global axes, so that using [o,}*",, in place of [0} *'xy to compute the force terms
will cause the stress distortion for Step j+1.

3.2 Velocity Vector Distortion
Velocity vector [H,] at the start of each step will be converted into one part of irertia
force. At the end of Step j, [HJ'*! for the next step can be computed by

] = 225 a9 T

Similarly, after updating the coordinates of block vertices at the end of Step j, the
components of velocity defined by Eqn(14) are also associated with the local axes, i.e.
[HoF*',,=[H*'. Using [H}*,, in place of [HoF*'xy to compute the inertia force will
also result in the distortion of velocity field for Step j-+1.

3.3 Remedy

To overcome the stress distortion correspondm g to rotation, the components of [go]'*
with respect to the global axes have to be computed, which can be given by
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[0, 3 = [T 7[00 5t T (13)

where [T] is the transformation matrix

- =(cosyo sirryo] 16)

-siny, cosy,
By denoting s=siny, and c=cosy,, Eqn(15) becomes explicitly
[o,1% J+1 _ ( c?a,,-2c50, +s%0 - cs(o,~0,) +(c?-5?) onyjﬂ(”)

o 2_ o2 ' 2 2
cs (o, oyy) +(c?-8 )cxy 840+ 2080, +c?0,,

If v, is small, Eqn(14) can be approximated as

02Y00,, O Y7 (18)
[og]i;’l o R

Owy .2yooxy+oyy

Since [HoF*' in DDA contains the velocity components as well as 2D strain rate
components, the corrections must be conducted separately as follows. For the three

velocity components,
ﬂo J+1 c -8 0 ao F+1
(ffo] =|s c ¢ {T'fo] 19)
Yo/yr 0 0 1)\Yo),,

For the three strain rate components,

&\ ci, -2c8y,,+s%, Y
(ey] = [cs(é,~¢,) +(c?-52) ¥, - 20)
\ s, +208Y,,+C?e,

If -y, is small, Eqn(20) can be approximated as

&V (e 27,7,

?xy Xy 2?0?;¢y+éy'.

For the displacement vector [DY] corresponding to a higher-order displacement
function, the velocity vector will contain the higher-order derivatives of strain rates.
Computing the components with respect to the global axes needs the tensor operation.

3.4 Example III _

Figure 5 shows the initial position of a square block at t=0, which has initial stresses
(0%, 0y, Ty )o=(-1,0,0)MPa and the two side walls are always subjected to a normal
compression of 1MPa (a follower loading). The block is rotating at a constant angular
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velocity of 1 radian/sec, and it has a Young’s modulus of 100MPa and a Poisson’s
ratio of 0.2. At used in the DDA run is 0.1sec, and the DDA is run until the block
rotates by 90°. Table 3 compares the initial stresses (ox,0y,7y,) With respect to the
global axes versus time, in which the values of the second column are the theoretical
solutions® using the Mohr’s circle, the third column computed by the DDA without
correction, and the 4th column by the DDA with Eqn(12,17,19,20)s’ correction. It is
found that DDA with the correction yields the same (oy,0y,7yy) as the theoretical
solution, whiles DDA without correction yields a seriously disturbed stress state.

6=1radlsec\

(0%,0y, T )=(-1,0,0)

1MPa IMPa

JEREN
HENEEE

X

Figure 5 Example III: initial geometry and loading

Table 3 Comparison of Results for Example III

Time (s) Zyy (0,0,7,) (MPa) (0,,0,,T)* (MPa) (0,,0,,7,) (MPa)
0.0 0.0 (-1,0,0) (-1,0,0) (-1,0,0)

0.5 0.5 (-~770,-.230,-421)  (-.855,-.123,-.387)  (-.770,-.230,-.421)
1.0 1.0 (-.292,-.708,-.455)  (-.370,-.585,-.468)  (-.292,-.708,-.455)
1.5708 1.5708 (0,-1,0) (0.009,-.935,-.096)  (~0.0,-1.0,~0.0)

! theoretical solution; 2 computed by DDA with no correction; * by DDA with
Eqn(12,17,19,20)’s correction.

4. ILLUSTRATIVE EXAMPLE

This section provides an example of multiple blocks involving rotation mode, in order
to evaluate the error magnitude associated with the original DDA formation and
computer program. Figure 6 depicts a system of 14 discrete blocks sitting on a slope.
Gravity is the only external force, and the block has a Young’s modulus of 1000MPa
and a Poisson’s ratio of 0.2. The friction angle along all block sides is selected as 26°

2 (0,0, Ty) =(-12-12C0S2Ey,,-'4 + 12052 Ly, - ¥25IN2 Lyo)MPa
y* Ixy.
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such that the blocks near the middle (specially Block 9) are under toppling. The
following lists the horizontal displacement of the toe and the stresses of Block 9 at
t=1sec, computed by the DDA without and with correction. The difference is not
significant but still recognizable.

DDA without correction DDA with correction
Toe horizontal displacement ©.1639m 0.1657m

(0,,8,,7,,)" of Block 9 (-19.74,-.369.82,-40.76) (-16.13,-383.67,-45.49)

! in units of MPa

Toe point

Figure 6 Illustrative example: initial geometry

5. CONCLUSIONS

This paper discussed the distortions associated with rigid-body rotation in DDA when
updating physical terms without precaution. Table 4 summarizes the strategies to
correct up these distortions. The same laws can also be applied to the traditional DDA
formulation with a higher-order displacement function. For the corrections of the
higher-order derivatives of strain rate components, tensor operation may be used.
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Table 4 Summary of Correction Stratégies to Rotation-induced Distortions

Distortion Type Remedy
Linearization Error
Insufficient rotation Using Eqn(12) to compute (u,v)
Free expansion Setting up G,==0.1 radian
Rotation of Reference Frames '
Stress distortion '~ Using Eqn(17) to adjust [oo]
Velocity distortion Using Eqn(19) for adjustment
Strain rate distortion Using Eqn(20) for adjustment’

8.

! for higher-order displacement functions, tensor operation is needed.
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The Discontinuous Deformation Analysis of ~H” Block
Retaining Wall
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National Chung-Hsing University, Taichung, Taiwan, R. O. C.

1. INTRODUCTION

Retaining walls are used to prevent excessive movement of retained soils. Typical
retaining walls, such as gravity, reinforced concrete, reinforced earth, tieback and
other walls, have been widely used. However, from practical viewpoint, there are
still drawbacks among these often constructed retaining walls. -

While rigid gravity and reinforced concrete walls are less susceptible to differen-
tial settlements, their drainage pipes are often blocked with age, which allows high
water pressure and excessive saturation of the base soils to develop. The inherent
flexibility of reinforced earth walls allow them to function despite differential settle-
ments. However, more space than for other walls is necessary to accommodate the
reinforced earth wall and corrosion of reinforcing materials may become a problem.
Tieback walls are also flexible, but the tensile metal and anchor parts are highly
susceptible to corrosions. High costs can be expected to overcome corrosion as well
as to ensure adequate anchorage. |

Other type of retaining walls, such as mortared blocks and gabionade, etc. are used
very often in the slopes of country road. However, the height of mortared blocks
is limited to about 3 meters due to stability consideration and they are weakened
with large settlements. The gabionade can sustain large settlement and provide a
good drainage, but corrosion of the network will lead to the final failure.

A new type of retaining wall constructed with H-type concrete blocks is proposed.
This type of retaining wall incorporates two H-type of concrete blocks interconnected
to build up a flexible retaining wall system. Shearing or compressive resistance in
the concrete blocks is developed in the stress transfer between blocks. Proper space
between concrete blocks provide a non-blocked drainage path and a good front view
can be obtained by adjusting the interconnection of concrete blocks in a specific
way. .

This paper introduces the proposed retaining walls and describes briefly the princi-
ples of discontinuous deformation analysis(DDA) method employed to calculate the
wall performance. The DDA method, another numerical procedure in the family of
discrete element method(DEM) is well suited for studying the mechanical behavior
of the distinct concrete block system. The method fully considers the kinematic
behaviors and frictional properties among the distinct blocks. Then, models of "H”
block walls were presented to study their behavior. To verify the adequacy of DDA
method on the analysis of "H” block wall, a field test was conducted and compar-
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isons were also made between the analytical and monitoring results.

2. PROPOSED RETAINING WALLS

Two types of "H” concrete blocks shown in Fig.1 are proposed to construct the
retaining walls. A typical wall is illustrated in Fig.2, in which each layer of the pro-
posed retaining wall is composed of concrete blocks of type I or type 11. For the type
I layers, two-way intercounection as shown in Fig.3, is developed in the adjacent
concrete blocks, while the type I layers only connect adjacent concrete blocks in the
direction of the wall section. Additional space between type I concrete blocks in any
layers can be obtained to increase drainage of a large quantity of water.

TypeI - Type I

FIG. 1 "H” Concrete Blocks

FIG. 3 Interconnection between Type II Blocks

YIG. 2 Typical "II" Block Wall

The proposed retaining structure shown in Fig.2, is flexible and allows large dis-
placements and differential settlements. Stresses are transferred between concrete
blocks through compression and shear. Since no tensile stress is induced in the
concrete blocks, no reinforcing steel is needed. Appearance can be improved at the
front indented portion of concrete by planting.

Concrete blocks basically one meter in length in all three directions are considered
in the model analysis. The overall size along the horizontal direction of the wall
section can vary to fit the retaining wall requirements. Detailed dimensions of the
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concrete blocks are schematically shown in Figs.4 and 5. For general engineering
projects, the size of the concrete blocks can' be proportionally changed to meet the
practical requirements.

FIG. 5 (Continued} (II5 - 118)

3. THE DISCRETE ELEMENT METHOD

Since Cundall{l] first introduced discrete element method(DEM) to simulate pro-
gressive movements in blocky rock system, DEM has been developed rapidly. The
early version of DEM only handled a system of discrete rigid blocks. After later
extension and development[2] [3] (4], the capability of current DEM allows the mod-
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elling of 3D geometry, large deformations and displacements, heterogenous rocks,
nonlinear rocks and joints, rock fracturing and coupled joint flows.

DEM employs an explicit central difference time-marching scheme to generalize
the equations of motion directly[5]. At every step, contacts are detacted from the
current penetration between blocks. Given the elastic contact stiffness, the amount
of penetration at each contact determines the contact forces between blocks, which
are regarded as additional external forces in the system. Then, unbalanced forces
drive the solution process, and a mathematical damping is used to dissipate the
extra kinetic energy. The current block kinematics in DEM can not handle complex
contact situations, and the explicit scheme used in DEM may result in a question-
able equilibrium of the system at any step. Nevertheless, the method has made
great contributions to many aspects of rock mechanics problems.

The discontinious deformation analysis(DDA) method employed in this paper was
originally developed by Shi and Goodman|[6] for analyzing the discontinuous behav-
ior of block systems. Since then, DDA has become another numerical procedure in
the family of discrete element method[5]. Although both DEM and DDA can sim-
ulate the complex behavior of block system, they are different theroetically. DDA
method is a displacement and an implicit method, in which the unknowns in the
equilibrium equations are displacement-based variables. Shi[7] addressed five unique
features of DDA including: (1) complete block kinematics and its realization; (2)
perfect first-order displacement approximation; (3) strict postulate of equation; (4)
correct energy consumption; and (5) high computing efficiency.

In the DDA method, a practical problem is modelled as an assemblage of blocks.
It allows individual blocks to separate or slide away from each other, satisfying the
conditions of no tension and no penetration between blocks. The interactions be-
tween blocks are simulated by contact springs. A system of equilibrium equations
for the block assemblage is derived through the minimization of the total poten-
tial energy. These equations are then solved iteratively within each step to achieve
the convergence of opening-closing contraints between blocks. The equation solver
used in DDA is based on graph theory, which is highly efficient because it stores
and operates on non-zero elements in the triangular decomposition of the coefficient
matrix. The Coulomb’s friction law is applied on the contact surfaces to model
friction. A complete kinematic theory in DDA method is developed to deal with
complex contact sitnations hetween blocks.

The DDA method can handle large deformation and large displacement using the
deformed block shape in the generation of equilibrium equation and solution for the
updated block geometry. Practical applications of the DDA method can be used
to perform the stability analyses and support designs for tunnels, slopes, retaining
walls, dam abutments and foundations, etc. In the following, the principles of the
DDA method are briefly summarized. More detailed descriptions about the DDA
method can be referred to the Shi’s thesis or book[7] [8].
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3.1 Block Deformation

Assuming each block has constant stresses throughout, the displacement (u,v) of
any point (z,y) of block i for two-dimensional case can be represented as :

{ :J‘ } = T;D; (1)

where
|10 —(y=yo) (z—x0) 0 1/2(y—vo) |
T“‘o 1 (@) 0 (o) 1/2(z-xo) ’ @
D?:{ Up Vo To Ez Ey Yay },— (3)

(uo, vo) is the rigid body translation of the centroid (zo,yo) within the block ; ro
is the rotation angle with center at (2o,¥o) ; €z &y, Yoy are the normal and shear
strains of this block. The strains used in the matrix of deformation variables [); in-
corporating with the corresponding elements in matrix 77 will result in displacement
componenets. In the establishment of a system of equilibrium equations, the global
force matrix and displacement matrix can be related through the introduction of
global stiffness matrix.

3.2 Generation of Block System

In the DDA method, the block system is generated from discontinuous joints. Us-
ing the sectioning method, the block system is produced and represented by the
ordered vertices. The procedures for generating the block system can be summa-
rized as follows:

(1). Input the coordinates of end points for each joint.

2). Compute the intersections of all joints.
. Delete the irrelevant intersection and remove the dead ends of some joints.

(
(3)
(4). Trace the block system.

An example to illustrate the procedure for generating the block system from joints
is shown in Fig.6.

3.3 Simultaneous Equations
The movements and deformations of a block are defined by the given displacement
functions (see Eq.(1)). The total potential energy can be computed based on the

stresses, external load, body force, inertia force, contact spring deformation, and
displacement constraint, etc. within a single block. The derivatives with respect
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FIG. 6 Example Procedure for Generating Block System

to the deformation variables D;(in Eq.(1)) of individual potential energy for block i
are calculated and the corresponding submatrices are formed separately. The global
simultaneous equations are established by assembling the individual submatrices to
the matrices of the global equations. The global simultaneous equilibrium equations
have the form:

Ki K -+ K D; F,
Ky Kz -0 Ko D> Fa

: : .. : : = : (4)
Kul 1{112 Tt K:m Dn Fu

where K;; is the stiffness submatrix influenced by blocks i and j ; D; represents
the deformation variables (ug v 70 €2 £y Yzy) of block i ; Fy is the loading on block
i distributed to the six deformation variables.

3.4 Block System Kinematics

In the DDA method, no tension aud no penctration are allowed between blocks
for block movement. When the block system moves or deforms, the blocks are in
contact along the boundary and non-penetration inequalities can be transformed
in the equilibrium equations by adding springs or penalties to regulate the contact
movement. If two blocks have a tensile contact force between them, the non-tension
inequalities can be added to reduce the locking. The global equilibrium equations
have to be solved with opening-closing iterations within each step under the con-
straints of no interpenetration and no tension.

The solution procedure of DDA method is shown in Fig.7.
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FIG. 7 Flow Chart of DDA Method

4. NUMERICAL STUDIES

For the understanding of the mechanical behavior of "H” type retaining walls,
three typical models 4, 6.25 and 9.25 meters respectively in height are studied. The
material properties used in the three models are summarized as:

For concrete blocks

unit weight 23 KN/m?

Young’s modulus 2.1 x 107 K N/m?

Poisson’s ratio  0.15

Compressive strength 210 kg/em?
IFor soils

unit weight 18K N/m3

Young’s modulus 2.1 x 10* K N/m?

Poisson’s ratio  0.25

{rictional angle 30°

cohesion 0

The frictional angles developed between concrete blocks, soil and block walls are
taken as 20°. The values of spring stiffness in the contact are one hundred times
the block stiffness. The proposed retaining wall is composed of two types (I and
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IT) of "H"” concrete blocks. In the upper layers, small quantities of concrete blocks
(usually type I) are placed in the wall cross section. While in the lower part, more
quantities of concrete blocks (type I or II) are needed to provide enough resistance
for the large lateral earth pressure in the bottom area. As for the placement of
concrete blocks, they are arranged in such a way to develop more effectively the
shear resistance between block connections.

The generation of block system in the "H” block retaining wall can be divided into
two parts. The concrete block system is obtained by directly introducing the vertex
coordinates of each block. While the block system in the backsoil is generated by
assuming logspiral-sandwich failure mechanism([9] and sectioning the sliding mass
along the base of failure mechanism. More detatled descriptions for generating the
critical logspiral-sandwich failure surface in the backsoil of retaining wall can be
found in the book by Chen[9].

Figures 8-10 show the cross sections of three "H” block walls 4.0, 6.25 and 9.25
meters in height, respectively. The placements of concrete blocks are also included
in the figures. The block systems of soils for three "H” block walls are sectioned
along the assumed failure mechanisms and discretized as shown in Figs.11-13 for
further analyses. Some corners of the soil blocks, especially close to the "7 block
walls are reduced in the block system. The reason is that extra energy is required
to lift and rotate blocks for excessively stiff and locking in block contacts, resulting
in high resistance[10].

4.0 m
6.25 m

F—2.0 m—-{

FIG. 8 4-m-ITigh "H" Block Wall

FIG. 9 6.25-m-High "H" Block Wall
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Imposing the constraints on the soil boundary and assuming a plane-strain con-
dition, the mechanical behaviors for three "H” block or rigid retaining walls under
gravity load of concrete and soil can be evaluated. All the analyses are performed
in the workstation of HP 9000-720 computer series and are proceeded in more time
steps for producing enough movement to mobilize the wall friction.

The relationships of the lateral earth pressure of the backsoil developed versus dis-
placement at the toe of the wall for three "H” block walls were shown in Figs.14-16,
respectively. The corresponding block number in the backsoil of three "H” block
walls can be referred to IFigs.11-13. More movements of the backsoil in the lower
area are needed to reach the active stage. I'rom Figs.14-16, the active states of three
"H” block walls can be estimated for further study and discussion.
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The analyzed results of the active earth pressure distributions for three”H”
block walls were shown in IMigs.17-19, respectively. The I, and I, earth pressure
distributions from Coulomb theory are also included in the related figures. The
resultant forces and their locations for three "H” block walls were calculated and
summarized in Table 1. The resultant forces of rigid and massive walls replaced
for the "H” block walls were evaluated by the limit analysis method. Those results
were included in the last column of Table 1. As for the stress states in the concrete
blocks, the calculated average maximum values of compression, tension and shear
in all blocks of the three "H” block walls are shown in Table 2 and design values of
concrete are also included. Discussions on various results are summarized as follows:
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Table 1. Summary of Resultant Forces and Locations

Locations Resultant forces (KN /m)

(from the bottom) | "H” block wall | Massive wall
4-m-High 0.35H 60 : 53
6.25-m-High 0.36H 129 129
9.25-m-High 0.33H 237 283

H : Height of the wall

(1)-

(2).

Table 2. Summary of Maximum Values in Concrete Blocks

Compression | Tension Shear
4-m-High 47.7 0 25.4
6.25-m-High 117.3 0 47.3
9.25-m-High 132.2 0 52.5
Design value 9270.5 927.1 412.3

unit : KPa

The active earth pressure distributions of "H” block walls follow the K, line
in the upper part of the wall and reduce in the lower area. The reduction is
relatively apparent for higher "H” block walls.

When compared with the rigid wall system, the resultant force is of sigificant
reduction for higher "H” block walls. There is no apparent difference for the
medium-height "H” block walls.

. Asfor the locations of resultant forces, they are about 0.35H above the bottom

of the wall. The design height of the rigid wall is commonly on the order of
0.4 to 0.5H[11]. This will effectively improve the overturning stability for *H?”
block walls.

. The average maximum values of compression, tension and shear in concrete

blocks of "H” block walls are much less than the design values.

5. FIELD TEST

To

confirm the adequacy of DDA method on the analysis of "H” block wall, a

full-scale field test was carried out. Figure 20 shows the cross section of the test
wall, in which four soil pressure cells were installed. The material properties used
in the test wall are obtained by in-situ sampling and laboratory testing. The block
system after sectioning is shown in Fig. 21 and the analyzed results of active earth
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pressure distributions on the wall and base are obtained as in Figs. 22-23, in which
the monitoring values are also included. On the whole, the DDA method performs
suitably in the analysis of discretized "H” block wall system. Lower lateral earth
pressure was measured at the bottom area of the wall may be due to the incomplete
action. It is hard in practice to develop full action on the wall for soils near the
bottom area of the wall.

cx  Pressure cell

Fixed point

85 m

r 4.5 m l

FIG. 21 Block System of Field Test Wall
FIG. 20 "H" Block Wall in Field Test
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6. CONCLUSIONS

A new retaining wall is proposed in this paper. Advantages in using this type of
retaining wall in engineering practice and design are discussed. The wall provides
proper drainage system, is capable of sustaining differential settlement, develops a
good stress transfer mechanism, and is cost effectiveness and ease of constructability.
The DDA method is used to perform numerical studies in which three "H” block
walls are investigated. Numerical results indicate that the proposed retaining wall
has the features of providing good stability and earth pressure distribution. Through
the field performance and verification, the "H” block wall is suitable for practical
construction.
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ABSTRACT: The structural behaviors of masonry structures are investigated by the
method of discontinuous deformation analysis (DDA). The artificial joint is adopted to
model the behavior of mortar, and its characteristics are specified by the Mohr-Coulomb
failure criterion. The numerical results are compared with previous research and possess
satisfactory agreement. In addition, the numerical results show that the behaviors of the
masonry structures are highly influenced by the failure of mortar. The nonlinear
behaviors become dominant when the mortar is fractured.

1. INTRODUCTION

Masonry structures are constructed with brittle materials and the failure of which is
frequently initiated from the cracking of mortar and separation of brick. Structure failure
induced by cracking and separation characterizes distinctive block elements and
nonlinear behaviors.

Abrams and Paulson [1] studied the earthquake response of masonry built structures
by the method of seismic testing. Similar studies were presented by Gulkan et al. [2] and
Clough et al. [3]. Dhanasekr et al. [4] investigated the stress-strain relation for brick
masonry and its deformation characteristics by the method of biaxial testing. Al and
Page [5] studied the stress distributions and failure behaviors of masonry structures by
the finite element method. Similar numerical model'was proposed by Lotfi and Shing [6].
Smith [7] examined the behavior of infilled frames by the finite difference method and
proposed a simplified equivalent single strut model to replace the wall. Lisuw [8]
proposed an approximate equivalent frame method to analyze the infilled frames.
Thiruvengadam [9] used the finite element method, the equivalent single strut model,
and the equivalent multiple strut model to study the natural frequencies of infilled frames
with opening and separation of wall. El Haddad [10] studied the cracking and stress
redistribution of infilled frames by the finite element method.

The compatibility condition of finite element method is not valid for cracking and
separation phenomena occurring in the masonry structures. This study applied the
method of discontinuous deformation analysis (DDA} [11] to investigate the structure
behaviors of masonry structures. ~ The artificial joint [12] is adopted to model the
behavior of mortar and to refine the stress distribution within a block. The Mohr-
Coulomb failure criterion is used to analyze the cracking and separation phenomena.
The proposed numerical method is verified by investigating the deflection of a
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homogeneous beam. Then the discontinuous deformation behaviors of the masonry wall
and reinforced concrete beam are fully studied.

2. PROBLEM FORMULATION

In the method of discontinuous deformation analysis (DDA) [11], the variables are
displacements and the equilibrium equations are solved in the same way as finite element
method does. However, DDA does not imply continuity at block boundaries. The
blocks are independent and they only have connections while in contact with one another.
These connections are performed by adding springs to the contacting positions. The
compatibility conditions for the block systems are no-tension and no-penetration
between any two blocks. These two constraints are inequalities in mathematical forms.
However, the blocks are in contact only along the block boundaries so these inequalities
can be transformed into a set of equalities upon which the equilibrium equations can be
set up and solved. A complete first order polynomial is chosen as the displacement
function for a two-dimensional block, and this displacement function restricts the block
to constant stress.

Referring to Figure 1, the displacements (u, v) of any point (%, y) in a representative
block i [11] are given as

()
Vo
u =|:1 0 '(Y'YO) (X—XO) 0 (Y_YO)/Z< I [ (13)
v 0 1 (x—xy) 0 0-vo) (x—x%)/2]| &,
Ey
(¥ )
or
a :
{ }=['I}][D;] (Ib)
v

where (X, Vo) are the coordinates of block centroid, [T,] is the first order displacement
function, [D.]= (ug,Vo,fo,ex:Sy:'}’xy) is the displacement vector of block 7, (u,, Vo) are

the rigid body translation, fois the rigid body rotation, and (g_,e ,7,,) are the strain

components in a two-dimensional geometry. By minimizing the total potential energy,
the equilibrium equations for n blocks [11] are
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where K; is the component of stiffness matrix, K; depends on the material modulus and
inertia effect of block #, K; (7 # j) depends on the contacts or bolt connection between
block 7 and block j; D, is the displacement vector of block 7, and F; is the force vector of
block i.

The artificial joint {12] is adopted to study the behavior of mortar and to refine the
stress distribution within a block. The cracking and separation phenomena of the
artificial joints are analyzed by the Mohr-Coulomb failure criterion.

T=c+0, tan ¢ (3)
where T is the shear strength, ¢ is the cohesion, &, is the normal stress, and ¢ is the
friction angle. In addition, on the investigation of the reinforced concrete structures, the
steel is modeled as a bolt connection whereas the bond slip is neglected. The force
vectors induced by the bolt with initial force f, are

F, = —fo[E;] @
Fj=+f0[Gj] (5)
where

[El]=[T,-]T{;‘} | (©)
[GJ]=[TJ-]T{§:} ™

[T.] is the first order displacement function defined in equation (1), / and /, are the

direction cosines. The components of stiffness matrix induced by the bolt connection are
the same as those given by Shi [11].

3. RESULTS AND DISCUSSION

The modified DDA method is verified first by investigating the static deflection of a
homogeneous beam. Referring to Figure 2, a tip-loaded cantilever beam [12] subjected
to a concentrated load P = 1 ton was analyzed by the currently modified DDA method.
The length of the beam (L) is 8m, the height (/) is 1m, the thickness (B) is 1m, the
Young’s modulus (E) is 10° fon/m?, and the Poisson’s ratio (V) is 0.2. Figures (3a)-(3d)
show the element meshes divided by the artificial joints into rectangular and triangular
blocks. Referring to Figure 4, it is found that the deflection calculated by the
rectangular block of Figure (3a) is smaller than the exact analytical solution, while the
deflection calculated by the triangular block of Figure (3b) agree well with the exact
solution. However, the spring constant (K, = K, = 1.65E) used in Figure 4 sounds too
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small, and this small spring constant might induce inter penetration between two
adjacent blocks. The deflections calculated by the various triangular blocks (Figures
(3b)-(3d)) with large spring constant (X, = X, = 100E) are shown in Figure 5. As
expected, the deflection calculated by the finer mesh is closer to the exact solution. One
can see that the deflection calculated by the mesh of 800 triangular blocks agrees
satisfactorily with the exact solution.

Figure 6 shows a masonry wall constructed with 71 bricks [5]. The dimension of a
brick is 4.5 in X 1.5 in X 2.1 in (or 11.43 cm X 3.81 cm X 5.33 cm). The tensile strength
of the mortar is 42 psi (or 289.38 kN /m’ ), and the shear strength depends on the
status of the normal stress o,.

7=-0.660,+25.58 42psi>c, 20 (8)

T=-0.876,+2558 0>0,2-334 psi %)

1=-0.110,+28142 -334psi>c, (10)
or

7=-0.660,+0176  0289N/mm*>0_ >0 (11)

7=-0870,+0176 0>0,2-23N/mm* (12)

T=-0116,+194  -23N/mm’ >0, (13)

Referring to Figure 7, the masonry wall is divided by the artificial joints into 134 blocks.
The mortar is modeled by the artificial joint, and the whole brick is divided into two sub-
blocks by the artificial joints. The failure of the mortar is determined by equations (8)-
(10) (or equations (11)-(13)). The distribution of vertical normal stress is shown in
Figures 8 and 9. It is found that when the load is small (P = 4.5 kips or 20 kN), the
nonlinear phenomenon is less important, the stresses calculated by the currently modified
DDA method approach those by the linear finite element method [5]. However, as the
load increases, the nonlinear phenomenon becomes dominant and the stresses near the
center region characterize high stress state. Referring to Figure 9, one can see that when
the applied load is high (P = 18 kips or 80 kN), the stresses calculated by the currently
modified DDA method are closer to the experimental measured values. The distribution
of principal stress induced by P = 18 kips (80 k) is shown in Figure 10. One observes
that the principal stresses tend to arch shape distribution. Figure 11 shows the failure of
the masonry wall subjected to P = 18 kips (80 kN). It is found that cracks occur in the
mortar in which the fracture is in either shear failure mode or tensile failure mode. -

The bolt connection is adopted to model the steel in the reinforced concrete. The
steel and the concrete are assumed to be perfect bond, and the constitutive relation of
the steel is accepted to be bi-linear.

o)

E, =E—:, 0,50, (14)
o, 1

g€, =—7+—(0,-0,), o0,>0, (15)
E, »

where 0 , is the yield stress of steel. The moduli of the steel, E, and E,, are taken as

E; =29000000 psi (or 2.04 x10% kg / cm® )
E,=002E,
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In addition, the shear strength of concrete is assumed to follow the model of the
modified shear friction method {13, 14].

v, =400+08 (p, f, +0,) but <03f, (psi) (16)

or

v, =28+08(p,f, +0,) but <03/, (N/mm) (17)
where p, is the area ratio of shear friction (transfer) reinforcement, f, is the specified

yield strength of reinforcing steel, and fc' is the cylinder compressive strength of
concrete (6 X 12 in, or 152 X 305 mm).

Referring to Figure 12, a reinforced concrete beam was analyzed by the finite element
method and the experimental method [15]. The length of the beam is 156 in (or 3962
mm ), the height is 20 in (or 508 mm ), and the thickness is 8 in (or 203 mm ). The steel

area is 1.58 in* (or 1019 mm® ), and the tensile strength of the concrete is 546 psi (or
376 N /mm® ). This reinforced concrete beam is analyzed by the currently modified
DDA method, and its element mesh is shown in Figure 13. The concrete is divided by
the artificial joints into 295 blocks, and the steel is modeled by 67 bolt connections. The

Young’s modulus of the concrete is taken as K. =57000 « fc' (psi) (or

5121\/2 (kg/cm*) ). The load-deflection relation of this reinforced concrete beam is

shown in Figure 14. It is found that the current result agrees well with the experimental
result. The discrepancy between the current result and the experimental result increases
for the reinforced concrete beam with yielding of steel. This discrepancy is induced by
the rapid growth of depth of crack penetration and rapid change of stress after the
yielding of steel. The constant stress element can not simulate the rapid stress change
exactly, but it can be improved by refining the element mesh.

4. CONCLUSIONS

The modified DDA method is proposed to study the structural behaviors of the
masonry structure and the reinforced concrete beam. The numerical method is verified
first by investigating the deflection of a homogeneous beam, and the numerical solution
agrees satisfactorily with the exact solution. Then the numerical modeling of the
masonry wall and the reinforced concrete beam are investigated, and their solutions are
compared with previous research. The proposed method is demonstrated to be
appropriate for analyzing behaviors of masonry structure and reinforced concrete beam.
The numerical results show that the behavior of the masonry structure is highly
influenced by the failure of mortar. The nonlinear behaviors become dominant when the
mortar is fractured.
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Recent Advances in Granular Mechanics

Ching S. Chang

University of Massachusetts, Amherst, Massachusetts, U. S. A.

1. INTRODUCTION

Tn granular mechanics, stress-strain behavior has been a study focus for last
ceveral decades. However, the conventional models have been confined to a
‘phenomenological approach within the restrictive framework of classic continuum
mechanics without considerations of either the microstructure or the discrete
nature of granular materials. '

A realistic mathenmtical model for granular materials must be micro-mechanics
based which treats the material as a collection of individual particles and satisfies
physical principles governing the interaction of particles. In general, micro-mech-
anics of granular media has the following three broadly categorized areas of
study:

(1) At the micro-scale level, studies involve the mechanical behavior of
individual particles (e.g. deformation, plasticity, crushing), and the mechanical
behavior of two interacting particles with or without a binder (e.g. compliance,
viscous, sliding), etc. The relationships that depict the behavior at the micro-scale
level are termed as contact laws.

(2) At the meso-scale level, studies are devoted to the mechanical behavior of
a representative volume of granular media. The representative volume consists of
a large number of particles such that it's behavior is representative of the granular
media The relationships that depict the behavior at the meso-scale level are
termed as constitutive laws for a representative volume.

(3) At the macro-scale level, studies concern field problems with boundary and
initial conditions. The scale of a field problem is much larger than that of a repre-
sentative volume.

The aforementioned three areas are closely inter-related. The knowledge of
micro-scale behavior is the basis for deriving the constitutive law for a representa-
tive volume at the meso-scale. The constitutive law of a representative volume is
a necessary input for the macro-scale analysis. This article presents a brief review
of recent work on granular mechanics addressed at the three Jevels of scale.

2. CONTACT LAW

In order to deliberate the particulate nature of material, the behavior at micro-
scale must be considered and adequately modelled. It is useful to have a plausible
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and simple model that delineates the deformation of individual particles and the
interaction between two particles. In the context of granular mechanics, very few
attention has been given to the plasticity and crushing of individual particles .
Existing contact laws have been developed mainly for the cases of elastic par-
ticles. The work on contact Iaw is briefly reviewed in the following two cat-
egories, namely, the direct contact and the contact bonded by a binder.

2.1 Direct Contact

Theory for the contact stiffness of two elastic spheres of different sizes under
compression has been described in the well known Hertz contact law. The tangen-
tial contact stiffness of two elastic spheres with a frictional contact can be found
in the work by Mindlin and Deresiewicz {1] and Walton [2]. For two elastic
spheres with a surface adhesion at the contact, contact laws have been investi-
gated by Johnson [3] and Thornton [4]. The contact laws for two elastic spheres
of different curvatures have been used to approximate the contact stiffness of two
ellipsoids [5]. In the past decade, there has been very few research development
in the contact laws for particles with direct contact. Most conventional types of
problem have already been solved. The remaining problems are difficult ones
such as contact laws for two arbitrary convexed surfaces including flat surface
and angular surface.

2.2 Contact with a Binder

Recent development on contact laws has been mostly focused on the two-phase
material. Other than a dry particle system, recent work [6] have considered a
particle system partly saturated with immobile viscous liquid held at the contacts
between particles. The contact forces in the partly saturated system include capil-
lary tension and viscous resistance of the fluid. In a system saturated with fluid,
the squirt flow mechanism has been investigated where the pore fluid is squeezed
away from the contact due to the effect of hydrodynanncs [7].

For the purpose of sunulating cemented particulates, the contact law for two
- particles with an elastic binder has been studied by Dvorkin et al. {8, 9]. They
formulated the governing equations and presented numerical solutions for both
‘normal and tangential stiffness of the system. Zhu et al. [10] provided useful
closed-form solutions for the stiffness of two elastic particles with an elastic
binder. The solutions have also been extended for the tire-dependent stiffness of
two elastic particles with a visco-elastic binder. Contact laws of this type are
useful in the study of particulate composite such as asphalt concrete or cemented
sand.

3. CONSTITUTIVE LAW
There are two approaches for modelling the constitutive law of a representative
volume for granular materials, namely, the discrete element method (DEM), and

the microstructural continuum method (MCM). This review briefly identifies the
difficulties encountered in the DEM approach. Many innovative methods in the

299



analysis of discontinuous deformation have been developed recently. However,
the emphasis of the review is focused on the recent development in the area of
microstructural continuun method.

3.1 DEM Approach

In the DEM approach, Newton's second law is accepted as the basic premise.
Given a pertinent mechanism of two interacting particles, the movement of each
particle in an assembly can be precisely calculated. This type of computer
stimulation is a direct method towards understanding the behavior of a meso-scale
representative volume of granular material. A number of work have been
addressed along this approach [12].

There are several difficulties involved in this approach:

(1) Granular material is a complex system, usually composed an enormous
number of particles. The initial position of each particles and the boundary condi-
tions are usually unknown.

(2) Even if the initial position of each particles and the boundary conditions
are known so that the subsequent particle movements can be predicted. It 1s
evident that the computational efforts are excessive if movements were to be
followed through extended number of loading steps for millions of particles. The
excessive computational effort makes it infeasible for the analysis of a large
systeim.

(3) Results from the computer simulation supply a vast amount of informa-
tion. It is desirable to interpret the behavior of a representative volume using
continuum notions such as stress, strain and modulus. Thus constitutive laws of
continuum type is needed which can provide insights to the nature of micro-scale
process and meso-scale response.

3.2 MCM Approach

In a micro-structural continnum (MCM) approach, a set micro-systems are
identified to statistically characterize the microstructure. Each micro-system has a
different configuration/structure. A micro-system can be selected as a pair of
particles or a group of particles. The material is an epsemble of the set of micro-
systems.

In this approach, a continuum field is introduced in the beginning of the
analysis. The continuum variables are linked to the discrete variables of each
micro-systern. The continuum variables can be used to retrieve and keep track the
mean field movement of each discrete particles, at least in an approximate
manner. Thus the influence of discontinuous deformation and microstructure are
constdered in the analysis.

From the behavior of each micro-system, predictions can then be made as to
what may be expected on the average behavior for the entire system. On this
basts, constitutive laws can be established for granular materials beyond the frame
of conventional continuum mechanics.

This approach is useful in providing a conceptual link between the discon-
tinuous deformation at micro-scale and the equivalent continuous deformation at
meso-scale. This link cultivates fundamental understanding of the plasticity and
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damage in continuum mechanics. Thus the approach is likely to manifest a
physically realistic framework for the continuum modelling of granular materials.
Several areas of development along this approach are briefly reviewed in the
following sections.

3.2.1 Link between continutm and discrete variables

To treat the granular material as an equivalent continuum, it requires a rela-
tionship between the continuum variables and the discrete variables such that the
continuum variables are capable of representing the discontinuous deformation
behavior at the micro-scale level. There exists two types of hypothesis to provide
the link: the kinematic hypothesis and the static hypothesis.

(1) Kinematic hvpothesis
‘The commonly used relationship is a kinematic hypothesis providing a link
between the strain and the mean field of displacements, given by

8= €y, @

in which the displacements are related to the strain in a linear form, correspon-
ding to a uniform strain assumption. According to Eq. (1) and the principle of
energy conservation, the mean stress can be derived as a function of contact

forces by
o=y 5 0]

In a micromechanical approach for the constitutive' modelling of granular material,
the kinematic hypothesis of uniform strain has often been made to describe the
displacement field of discrete particles [e.g. 2, 13, 14, 15].

. The kinematic hypothesis furnishes a useful relationship for estimating the
movement of particles. However, the approach leads to an upper bound solution
due to the kinematic constraint of the system

(2) Static hvpothesis

Opposite to the kinematic hypothesis of uniform strain, a static hypothesis can
be made providing the link between the stress and the mean field of contact
forces. In the literature, very little attention has been paid to the formulation of a
static hypothesis for granular systems. To this end, a static hypothesis has been
recently proposed that delineates the distribution of forces at inter-particle con-
tacts in a system of discrete particles [16, 17], given by

f=0,4, 0 3)
where A, is the inverse of fabric tensor defined by
-1_ 1
Ay =23 Ll (4)

i

in which the forces are related to the stress in a linear form, corresponding to a
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uniform stress assumption. According to Eq. (3) and the principle of energy
conservation, the mean strain can be derived as a function of the contact displace-
ments

€;= Z 5;"4_;211; (5)

The static hypothesis model utilizes the uniform stress assumption, consequently
leads to a lower-bound stress-strain relationship due to the static constraint of the
System.

Following the approach of a static hypothesis, stress-strain relationships of
granular material can be derived. The elastic moduli have been derived in closed-
form for assemblies of spheres with isotropic and anisotropic packing structures
[18].

The stress-strain behavior derived based on the static hypothesis is quite differ-
ent from that based on the kinematic hypothesis especially for particles with low
tangential contact stiffness. In an elastic case, for particles with very low tangen-
tial contact stiffness, the static model predicts a very low value for the shear
modulus and 0.5 for the Poisson's ratio. On the other hand, the kinematic model
predicts a considerably high value for the shear modulus and 0.25 for the
Poisson's ratio. In terms of inter-particle movement, under a given strain, the
kinematic model over-predicts the nonmal compression between particles while
the static model over-predicts the tangential displacements between particles.

In the formulation of static hypothesis, the derived stress-strain relationship is
corresponding to a lower bound solution, in contrast to the upper bound solution
from the kinematic hypothesis. The set of bounds is useful in estimating the exact
solution. The bounds are particularly useful when the information on
microstructure is limited so that an exact solution cannot be determined.

3.2.2 Small strain models

Studies have shown that the uniform strain assuroption is reasonably good for
estimating behavior of sands under certain loading conditions [19]. For exanple,
the derived initial modulus of an assembly of sand under a confining pressure is

given by [20]
62374\ (B0 4 ), 3 ©
S| 2-v, jlan(l-v) & <

where G, and v, are respectively the shear modulus and Poisson's ratio for the
sand grain. ¢ is the porosity, z is the coordination number, and o, is the
confining stress of the assembly. Eq. (6) has been found in good agreement with
the measured initial moduli from experiments [20].

The Potsson's ratio of the assembly of sand is given by

v
v = £
2(5-3\:8)

The unifonmn strain model has also been used for estimating secant modulus and

™
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damping ratio under small amplitude cyclic Ioads [21]; and for estimating volume
change under isotropic compression loading [22]. In all aforementioned loading
conditions, particles may experience partial slip but very few sliding have
occurred at inter-particle contacts.

3.2.3 Elastic-plastic models

Under a loading condition with high deviatoric stress, large shear deformation
occurs accompanying with a significant amount of particle sliding, In this case, it
has been found that the strain exhibits non-uniformity within the material sample
and the overall behavior is no longer a straight volume average of the local
behavior [23, 24]. Thus it is important to account for the non-uniformity of strain
int the constitutive modelling of granular media under high deviatoric stress. To
account for the strain heterogeneity, two models have been considered, namely,
(1) branch model, and (2) cell model. An overview of these two models js given
below.

(1) Branch model

Liao et al. [25] has developed an elastic-plastic model considering a set of
particle pairs as the micro-systems for granular media. Thus the branch vectors
connecting each pair of particles were used to characterize the microstructure. The
plasticity model assumed the elastic strain is uniform. The plastic strain results
from the sliding between particles when the contact shear force exceeds the fric-
tional resistance. Thus the overall strain in the sample is not uniform. The model
has been used in stress-strain predictions for steel and concrete. Physical phenom-
enon such as dilation, necking and effect of confinement can be predicted by the
model.

(2) Cell model _

"To model the heferogeneity, material is divided into cells (i.e. micro-elements).
Each cell represents a particle group and has its distinctive configuration. A statis-
tical set of cells of different configurations is used to characterize the packing
structure of the granular material. Under a deformation of the material, each cell
is allowed to have a different value of strain depending on the stiffness of each
cell. Thus the constramt of uniform strain assumption is relaxed in the cell model.

Self consistence method

The key issue of this model is a reliable method that correctly determine the
strain for each cell under the application of a given meso-scale strain. Being
conceptually viewed as a cell structure, the granular material in certain respects is
analogous to the polycrystalline material. The self-consistent method used in
polycrystalline was applied in the granular material to relate the strain of each cell
and the meso-scale strain of the representative element. Consequently, stress-strain
relationships were derived based on the self-consistent method for a two dimen-
sional granular packing considering plastic sliding {26, 27]. The predicted stress-
strain curves and the predicted volume change behavior show great improvement
over the results predicted from uniform strain approach.
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The self-consistent method can not be readily extended to a three-dimensional
problem because it requires a Green's function for general anisotropic media
which 1s not available for three-dimensional condition in the current literature.
For this purpose, we recently developed an explicit series expression of a Green's
function for a general three-dimensional anisotropic media [28].

Statistical method

Other than the self-consistent method, a canonical ensemble average technique
used in statistical mechanics was adopted for developing the stress-strain relation-
ship. A partition function was used to relate the strain of each cell and the meso-
scale strain of the representative element. On this basis, a constitutive theory was
derived considering the strain fluctuation and particle sliding [19, 23, 29]. The
method was applied to the analysis of an idealized simple packing. The results
have shown that the plastic yielding and the non-associated plastic flow behavior
for this packing resemble those observed from experiments on sand.

The cell model allows the strain field to fluctuate within a representative
volume of granular media under an applied meso-scale strain. The model greatly
improves its performance over the model with uniform strain assumption [19, 29].
It is noted that, although the strains are different for all cells, the strain within
each cell is still assumed to be uniform. Further investigation is needed to relax
the constraint within a cell.

3.2.4 Micro-polar model

To treat granular media as equivalent continua, it requires a continuum
representation for the discrete particulate system Many processes can be utilized
for the continuurmization. A convenient one is to represent the deformation of
granular materials by higher-order derivatives of displacement and rotation [30].
Using these continuum variables, a granular medium can be treated as a general-
ized continuum.

By selecting suitable continuum variables, a discrete granular system can be
represented by an equivalent contimmum of various type, for example, the micro-
polar continuum, the high-gradient continuium, the non-local continuum, etc.
These equivalent continua of different types model different aspects of granular
media A more complex continuum captures more features of the deformation
behavior for the granular material.

For example, a micro-polar continuum captures the rotation mode of particles,
thus models the consequence of asyrmmetric stress in granular material [31]. A
high-gradient continuum, on the other hand, models the effects of heterogeneous
strain field. Differed from the classic continua in solid mechanics, these continua
display effects of internal characteristic length. When the particle size is relative-
ly large compared to the sample size, the notion of classic continua is no longer
adequate to represent the granular system.

For a granular media of micro-polar type, there are two sets of stresses: the
usual Cauchy stress o;; and the polar stress p;4; and two sets of strains: the
usual strain €;; and the polar strain y ;. For an isotropic medium of granular
material, the constitutive law was derived to be [32]
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a.=Ad e +tue. +Iu.

i it gy (i (8)
My =2 04 xe + Bty + 2, O

In Eq. (8a), the Cauchy stress and strain are related by the Lame constants A and

i, and the spin modulusz. In Eq. (b), The material constants 4., p, and =z,

govern the behavior of polar stress and polar strain. These material constants can

be obtained from the normal and tangential inter-particle stiffness (k, and k),

and the rolling and twisting inter-particle stiffness (g, and g,), given by

h=4a(k k) ; p=2a(2k -3k)
A'r=£"l'0‘(grz"g:) » By =20 (2311_33:)

z=2(n-2) 5 z.=2(p.-2) (10)

®)

where ¢ =Mr2/30; M is the number of contacts per unit volume and r is the
radius of particle.

3.2.5 High-gradient model

For a granular media of high-gradient type, the constitutive law has been
derived in which the stress is a function of not only strain but also the higher
gradient of strain and rigid body rotation [33]. For media with isotropic
microstructure, the constitutive law is expressed as follows:

cg=1§yekk+2pey+clSfVZekkJrCz(Vzegﬁakw) +CSV2“[1',{] (11}

where the constitutive constants A and p are the Lame constants which can be
obtained from Eq. (9) using the normal and tangential inter-particle stiffness (k,
and k). The values of C, and C, can also be determined from the normal and
tangential inter-particle stiffness, thus are dependent of the Lame constants and
the internal length r of the material, given by

2 2
C, =7r21, C, =§r2(7p. ~34) 12)
The value of material constant C, represents the moment transfer ability of the
material which can be determined from the rolling and twisting inter-particle

stiffness (g, and g,), thus is independent of the Lame constants, given by

C,=2a(g,-8) (13)

There are two implications associated with the use of high-gradient strains: (1)
the strain is not uniform within a representative volume; and (2) the stress of a
representative volume depends not only on the strain of this representative volume
but also on the strains of neighbouring volume. Thus the high-gradient model can
be regarded as a non-local model in a differential form as oppose to the local-
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model where stress of a representative volume depends solely on the strain of the
same representative volume,

The high-gradient continuum is useful in representing phenomena associated
with internal characteristic length of the granular material [34]. Material with
same equivalent l.ame constants behave differently depending on the size of
particles. Thus the stress-strain relationship displays the effect of sample size.
Although plastic behavior for such continua has not yet been studied, it is
expected that the continua are useful in modelling localized deformation in plastic
region due to microstructure effect.

4. BOUNDARY VALUE PROBLEM

Again, modelling of boundary value problems for granular material can be
approached by the DEM approach or the microstructural continnum (MCM)
approach . In the DEM approach, the same difficulties involved in the computer
simulation at meso-scale are carried over to the macro-scale. Questions still exdst
on handling the enormous number of particles, the insurmountable effort of
computation, and on interpreting the vast amount of data. Nevertheless, the com-
puter simulation method is still atiractive that can directly provide solutions to the
behavior of macro-scale problems. A number of work have been addressed along
this approach [12].

The MCM approach for constitutive law solves for the macro-scale problems
using a continuum approach. For a macro-scale boundary value problem, the use
of equivalent media leads to governing equations which are different from the
classic governing equations. Therefore, the constitutive laws is not only useful in
describing the meso-scale behavior of a representative volume but also show
significant influence on the formulation of governing equation for macro-scale
phenomena.

4.1 Micro-polar Model
The govemning equation for a micro-polar media cons,lders not only the force
ethbnum
6,1~ (149
but also the moment equilibrium,

i €T =0 as)

where e, is the permutation tensor.

Based on these two governing equations and using the constitutive law that
treats a granular medium as an equivalent continuum of micro-polar type, a finite
element analysis was performed for a granular medium under a surface boundary
pressure [32]. It has been found that particle rotations play an important role in
the amount of deflection and pattern of stress distribution. The rolling and
twisting inter-particle stiffness are responsible for the transmit of couple stress in
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the media The effects of particle rotation are not displayed in the usual classic
confimuum models.

4.2 High-gradient Model

Using the high-~gradient constitutive law, the derived governing equation for
the wave propagation in granular media is a fourth-order partial differential equa-
tion rather than the usual second-order partial differential equation in classic
continuum mechanics. In a one dimensional case, the governing equation of wave
propagation is in the following form

p H0E = (A2 (k) + c a9 (x,0) (16)

where the variable ¢ corresponding to the higher-order strain has the unit of
length tven byc=Cyr? and €, = 2t 2k
ength-square, given byc=C_r* and C, 7\ 3 2% |

When the mfluence of higher gradient behavior is neglected, i.e. ¢ =0, the
wave equation in Eq. (16) is reduced to the usual second-order differential
equation of wave propagation as that in the theory of elasto-dynamics. The high-
gradient model has recently been used to analyze a boundary value problem of
wave propagation in a bar of finite length fixed at one end and subjected to a
dynamical traction at the other.

Solutions of the higher-order wave equation show several distinctive phenorm-
ena of waves in granular media that can not be obtained from solutions of the
usual second-order wave equation [35]: )

(1) granular material is a natural filter, in which short length waves and high
frequency waves can not transmit through. The minimum admissible wave length
for non-zero phase velocity is approximately two times of particle size for longi-
tudinal wave, and 1.5 times of particle size for transverse wave. Inter-particle
stiffness has a significant effect on the ranges of wave lengths and frequencies in
which the wave can propagate.

(2) In the classic continuum theory, the wave excited by a dynamic impact is a
stmple compression wave propagating along the bar with a constant peak stress.

In the high-gradient granular media, the solutions show a decay of the peak of
stress wave propagating along the bar. This phenomenon is similar to the decay of
“peak contact force observed from experiments and from Discrete Element Analy-
sis for a chain of disks [36, 37]. The decay of the peak stress and the dispersion
of waves are influenced by the size of particles.

5. SUMMARY

This article presents a brief review of recent work on granular mechanics
addressed at three different levels of scale: (1) contact laws at the micro-scale
level, (2) constitutive laws at the meso-scale level, and (3) boundary value
problems at the macro-scale level. Emphasis of the review is focused on the
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recent development in the area of microstructural continum method.

Granular media in nature is a discrete system in which discontinuous deforma-
tion occurs at inter-particle contacts. At the meso-scale level, the microstructural
continuum method perceives the discontinuous system as an equivalent continuous
system. The MCM approach aims to develop a meso-scale continuum theory that
includes the effects of discontinuous deformation at the micro-scale of a granular
medium.

This approach is useful in providing a conceptual link between discontinuous
and continuous systems which is essential for a fundamental understanding of the
plasticity and damage in continuum mechanics. This research area is a fruittul
field with very little exploration. Cultivation of this field is in a great need from
investigators with different disciplines and skills. The modest progress achieved in
the recent years may be served as foundations for further development towards a
physically realistic framework for the modelling of granular materials.
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A 3D Constitutive Model for Rock Joints and DEM
Analysis

L. Jing
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1. INTRODUCTION

Discontinuities in rocks play a dominant role in the performance of engineering
structures of fractured rocks. Proper understanding of the mechanical behaviour of rock
joints is often the key factor considered in the numerical analyses of rock engineering
problems. Since closed-form solutions do not exist in general for problems of fractured
rocks, numerical methods must be used to establish and solve the governing equations
with properly defined initial and boundary conditions. The constitutive equations (or
laws) for rock joints define the changes of contact stresses with changes of relative
displacements of the two opposite surfaces of a rock joint, using a set of material
properties and under certain assumptions. These constitutive equations are also often
called models, or laws, of rock discontinuities and are important part of any numerical
methods applied for fractured rocks, especially the Discrete Element Method (DEM).

Discrete Element Method (DEM) is a family of numerical tools which represent the
fractured rocks as an assemblage of discrete rock blocks interfaced by joints. According
to the principles used in formulating and solving the governing equations, the DEM can
be divided into two groups: the explicit DEM and implicit DEM. The explicit DEM
group, represented by the now widely applied computer codes UDEC and 3DEC (1, 2],
uses a central finite difference scheme to solve the equations of motions of the blocks
through a time marching process. Both the external forces and contact forces between
blocks, which are determined by applying the proper constitutive models of rock joints,
are calculated at each time step to determine the displacements and strain rates of
blocks for the next time step. No matrix equation is needed for this approach and the
integration of constitutive models of joints over the displacement paths is
straightforward with no necessity to use iteration. The equilibrium of the system is,
however, conditional to the choice of time step and damping terms used. The implicit
group, represented by Discontinuous Deformation Analysis [3], uses the minimum
potential energy principle to derive the equations of motion of blocks in matrix form,
and solves this matrix equation by using an optimal storage algorithm of non-zero
elements by graph theory. The equilibrium of the system by this approach is
unconditional, but iteration must be used for integration of the constitutive models for
rock joints over the displacement paths. In either case, the constitutive models for rock
joints play a key role for determination of contact forces (or stresses) and displacement
paths of blocks, are integral parts of the governing equations of the whole system, and
must be properly defined and implemented.
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In this paper, a three-dimensional constitutive model for rock joints are developed,
based on the theory of piasticity and special characteristics of rock joints discovered in
< laboratory tests [4, 5, 6]. The model is then implemented in a 3D DEM code, verified
against labotary test results and appkied to study the effects of fraction anisotropy of
rock joints on the stability of a mine stope. The joint surface is assumed to be
macroscopically planar and only the isothermal condition is considered. The convention
of summation over repeated subindices is adopted unless stated otherwise. The tensile
stress is taken as positive.

2. SPECIAL CHARACTERISTICS OF ROCK JOINTS IN THREE-DIMENSIONS

In general, problems with rock joints are three-dimensional problems. Two-
dimensional idealization is rarely realistic for practical problems. One of the three-
dimensional properties of a rock joint is the anisotropy in its shear strength and
deformability. To characterize the three-dimensional effects, a local coordinate system
is defined on the joint surface so that the x-axis is in plane and along the strike, z-axis is
also in-plane but along the plunge (upward positive) and n-axis is along the outward
normal direction of the surface (Fig. 1a). The experimental results reported in [4] and
[7] show that the shear strength and shear stiffness of rough rock joints are both
anisotropic in the nominal planes of the joints, and depend on the magnitude of normal
stress (Fig. 1¢). Assuming that the total friction angle of a rock joint equal to the sum of

an isotropic residual friction angle, ¢,, and an asperity angle ¢, in a particular

direction angel 6, measured from x-axis, an elliptical approximation of asperity angle
(Fig. Ib), written as [4]

o Tilting test
s ¢,=3MPa
A Op= 6 MPa
x 0,=9MPa
e 0,=1MPa

©)

Fig. 1 a) Local coordinate system, b) polar diagrams of the friction angle (c) ellipse of
the asperity angle [4].
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o, =\/[C, cosy —C, siny]’ +[C, siny +C, cosy]’ (0

where C, =« cos(6 —y), C, =, sin{0@—-y), and o, and «, are the asperity angles in
the principal directions, respectively. Similar anisotropy was also observed for shear

stiffness, &, and an elliptical expression was proposed for shear stiffness,

ky = \/[Bl cosy — B, sin \pr]2 + [B[ siny + B, cos \p]2 (2)

where B, =k, cos(0—v), B, =k, sin(0 —y),and &, and £, are the shear stiffness in the
principal directions for shear stiffness ellipse, respectively. The shear stiffness was
found to increase with the increase of the normal stress magmtude during shear tests
and this effect was approximated as

k =k (2 —-‘-’-"—]& 3)
c,)o

4

where & is the maximum value of shear stiffness, &, in the principal direction i (= 1,

2) and o, is the uniaxial compressive strength of the rock material and 6, is the normal
stress of the joint..

The roughness of the joint surface, represented by the asperity angle «.,, will undergo
a monotonic degradation due to damage accumulated on the asperities during the
deformation process. This degradation 1s represented by an exponential law [8], given
in the principal components of the asperity angles as [4, 6]

a’l = 10 exp[_dm (G" /GC)WP ]icos(e - l‘p )I (4)
o, =0t exp[~d, (G, /o )" sin® ~y)
where o (i = 1,2) are the initial principal asperity angle, d,, is a material constant and
W? is the dissipated energy accumulated over the deformation paths.

The normal stiffness of the joint, £,, is derived from a hyperbolic function between
normal stress and normal displacement [9], given as

k, =k /(-u,/u"y (5)

where k. is the initial normal stiffness, #, is the normal displacement of the joint, and
u is the maximum closure.

The peak shear stress,o’, of the joint, taking as the limiting constraint for the shear
stress in the model formulation, is given as [4]
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of =0, tan(9, +cx,) ©

where 0 is the shear direction angle and is equal to 0 in positive x-direction and n/2 in
positive z-direction.

The equations (1) - (6) forms the physical basis for the formulation of the constitutive
model for rock joints developed in the next section.

3. MODEL FORMULATION AND VERIFICATION

The formulation of constitutive models for rock joints follows either an empirical
approach or a theoretical approach. By the empirical approach, an model is defined by
fitting the laboratory test results to mathematical functions, using usually the total stress
and displacement components as the basic variables. The empirical models thus
established usually have simpler functional forms, but have two major shortcomings: 1)
the models may not conform with some physical laws commonly accepted as axioms in
physics, such as the second law of thermodynamics, and ii) the range of validity of
material constants in the empirical models cannot be completely covered by laboratory
tests. Extrapolation of the material constants often needs to be made and this may
introduce unpredictable uncertainties. The theoretical approach, on the other hand, is
based on the point of view that basic physical laws must be obeyed. The model is
usually formulated within the framework of one branch of mechanics such as theory of
plasticity, damage mechanics, theory of elastic contacts, etc. The fundamental laws in
these branches of mechanics are then obeyed in the formulation. The increments of
stress and displacements are usually used as the basic variables. However, models
formulated in this approach may suffer from the limitation that no perfect theory exists
today which can represent all aspects of the rock joint behaviour perfectly. Certain
measures must be taken to ensure that the model behaviour is in agreement with test
results when simulating laboratory test conditions. Therefore, a theoretical description
with special considerations for characteristics of rough rock joints observed during
experiments is a more reasonable approach. In this paper, the non-associative plasticity
is used as a mathematical basis for developing a general solid interface model, and the
mathematical functions representing special characteristics of three-dimensional rock
joints are then introduced to yield a special model for three-dimensional rough rock
joints. The second law of thermodynamics is used to limit the values of material
constants used in the model to ensure that energy is dissipated through the deformation
process. '

A general model is developed, using a slip function F and a sliding potential Q,
written

F= [(G,;/ux)2 +(Gz/u,)2:f +0,~C 7

1
0=[(o./n.) +(o./n, )] +o,sina, ®
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where ¢, and o, are the shear stress components in x and z-direction, respectively, and

u, =tan(¢, +a,), and p, = tan(¢, +cc,) represent the mobilized friction in the
respective coordinate directions. The Functions F and () play similar roles as the
yielding function and plastic potential for a plastic solid.

The general model was developed based on an earlier work for two-dimensional
problems without using the second law of thermodynamics [10]. The details for the
derivation of this model can be seen in [4]. The resultant general model can be given in
an incremental form as

oQ oF
kir
do, =] k %,%, " __|; ©)
o, =1 k; — .
oF, 20 o0 |
doc. 7 oo do

where i, j, r, and p have ranges (X, z, n) for three-dimensional model as defined above
and (t, n) for two-dimensional model (representing the tangential and normal directions,

respectively). k; is the stiffness tensor, and do; and du, are the increments of stresses

and displacements, respectively. The three diagonal elements of £; are k,, =%,

k. =k, and k,, = k,, representing the normal stiffness and two shear stiffness in x and
z-directions, respectively. The other off-diagonal elements are all zero. m is a modulus
defining shear strengthening (m>0) and shear-weakening (m < 0), is analog to work-

hardening and work-softening in the theory of plasticity and is assumed in this model as

m = h,sina,(k,/Q) (10)

where 4, is a material constant. The dissipative energy during the sliding, dW?, is
given by

g—Fk,J.duj 80

o

dW? =o,dul = . o; (1)
oF k 0 +moc %0 oc;

dc, 7 bo, " 8o,

The second law of thermodynamics requires that the entropy production of the sliding
system, dE, be positive, i.e.

dE =(dH +dW*?)/T 20 (12)
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where H is the heat source and T is the absolute temperature, respectively. Due to the
assumption of an isothermal condition (i.e. without considering the heat source and
conversion between the mechanical energy and thermal energy), equation (12) is
simplified into

awr =0 (13)
Values of material constants in the model should be restricted by the inequality (13).

After introducing the special functions (1) - (8) and (10}, the resultant constitutive
model can be written in an explicit, incremental form as

' dcx = }R_[(ézzkz +kﬂ Sina’e )kxdux _gzaxkxkzduz —éxkxkndun]
ldo, = -i;[——);zﬁxkxk,dux +(8,7k, +k,sino k,du, &k k,du, | (14)
do, = %[—gxkxk" Sincgdu, - & K.k, sinogd, + (8K, +&,7k, )k,du, |

where &, = 25 (o, /.Y o,/ . = 25 o, )" +lo.m ) | s

X b4

R=Ek +Ek +k, sinog +hQ

The second law of thermodynamics is obeyed when the inequality 4, > —1 holds. The
joint models was developed for joints under normal stress constraint. To consider
effects of deformability of surrounding rocks on the joint behaviour, additional
increment of normat stress due to dilatancy and local stiffness of the surrounding rocks
should be formulated properly in the criterion of the peak shear stress and the total
increment of normal stress.

The three-dimensional model was implemented into a three-dimensional distinct
element code 3DEC, and was verified against experimental results. Figures 2 and 3
show the model prediction against experiment results for a cyclic shear test under -

constant normal stress (o, =2 MPa) in x and z -directions consecutively.

5. APPLICATION FOR STABILITY ANALYSIS OF A MINE STOPE

A site was selected in the Kiirunavaara Mine, Northern Sweden, to test the potential of
the sublevel stoping method for reducing the ore losses and waste dilution, and
increasing productivity. The test area is located in the central part of the orebody
between level -598 m (drilling level) and -654 m (loading level) (Fig. 4). The three-
dimensional Distinct Element Method code 3DEC [11], with the implementation of the
developed joint model, was used to analyze the stability of one of the rib pillars of the

316



0.16m _ /& T
a) Vx A S 0.1m
v
VZ/O.III] S
¥ VS
S/ $
; S
1o 02m 5/
2 3
1 Fixed boundary
LTI ridy
b)

Fig. 2 Simulation of a laboratory shear test with the code 3DEC (Jing, 1990). a) sample

size and test conditions; b) discretization of sample blocks; ¢) shear paths on the
joint plane;
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Fig. 3 Comparison of calculated and measured results, a) calculated and measured
shear stress during shear in the x and z-directions; b) calculated and measured
normal dilatancy during shear in the x and z-directions.

test stopes. Figure 5 shows the configuration of the computational model (called the
regional model) used for the analysis, whose boundary stresses were calculated from
simulation of a larger global model with in situ stress boundary conditions given by

c, =8.0+004H
c, =89+0.036H (14)
o, =—ph

where H is the mining level (e.g. -654 m), 4 is the thickness of the overburden and p is
the unit weight of the rock mass. The coordinate system (see Fig. 4a) is defined that y is
the vertical direction, z is horizontal along the strike and x is also horizontal but across
the orebody. The test area was divided into four stopes (AD, B, C and E) which are
further divided into rooms (AD1, B1, C1 and C1) and crown and rib pillars (AD2, B2,
C2 and E2) (Fig. 5). Only primary room B1 is excavated in this simulation to test the
stability of pillar B2 to the friction angle anisotropy.
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300m
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Fig. 4 Location of the test area in the Kiirunavaara orebody and rock structures. a)
location of the test area; b) major faults in the test area.

The material properties are given in Table 1. The three values of inclination angle of

the asperity ellipse, w = 90°,45°,0°, are used for a sensitivity analysis of the test stopes
on the anisotropy of the friction angle of rock faults. The computational model contains
265 blocks and 10048 finite difference elements.

The numerical results show that the magnitudes and patterns of deformations of rock
block system of the test stopes are very sensitive to the friction angle anisotropy of the
joints. Figure 6 shows the shear displacements in the crown pillar B2 when the

calculation stops. The maximum shear displacement is 10.22 mm for y = 90° and

16.45 mm for y =45°, respectively, but 48.61 mm for y =0° leading to a unstable
crown pillar B1. Figure 7 shows the deformation paths of the mass center of a block
04812 in the rib pillar AD2 during mining of the primary room B1. The condition

y = 0° again shows the largest deformation magnitude in this nearby stope.
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c) d)

Fig. 5 Configurations of the computational model. a) locations of test stopes in the
regional model (the hanging wall is hidden); ¢) division and dimensions of
primary rooms and rib pillars; c) division and dimensions of rib and ¢rown
pillars d) discontinuities in the test stopes; [4].
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Fig. 6 Projections of total displacement vectors of test stopes after the mining of
primary room B1 in the horizontal plane at the drilling level. a) y = 90°; b)
y =45";¢) y =0
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Fig. 7 Displacement paths of the mass center of block 94812 in rib pillar of AD2
during mining of primary room B1. a) vertical displacement Uy versus
horizontal displacement Uz; b) horizontal displacement Uz versus horizontal
displacement Ux.
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Table 1. Material properties

Intact rock properties
Orebody (B) | Orebody (C) | Hanging wall | Foot wall
p (kg/m*) (Density) 4500 4500 2700 2700
K (GPa) (Bulk modulus) |32 40 40 40
G (GPa) (Shear modulus) | 19 24 24 24
Rock faults properties

k=041 GPa/m, k' =021GPalm, k,=k° =026 GPa/m, o, =~100 MPa,

C (Cohesion) =0, A, =0, ¢, =20°, o, =10° a, =3°, y =90°,45°,0°.

6. CONCLUDING REMARKS

A three-dimensional constitutive model for rock joints is developed, using theory of
plasticity as the mathematical framework. Some special characteristics of three-
dimensional rock joints, found from laboratory tests, are represented by special
mathematical functions in the 3-D joint model. The model was implemented in a three-
dimensional Distinct Element code 3DEC, validated against laboratory test results and
applied to a sensitivity analysis of the stope stability in the Kiirunavaara Mine, Sweden.
The results show that friction anisotropy of joints does have significant impact on the
stability of the examined test stopes, and should be considered in the rock mechanics
experiments and design and analysis of mine works.

An important issue about the anisotropy in the shear properties of rock joints is that
care should be taken when joint samples are taken in situ. The strikes and dip directions
of the samples should be recorded and marked on the samples so that the samples are
"oriented" according to the in situ conditions. The shear test then should be performed
in the most probable shear direction if it can be estimated with confidence. Otherwise
tilting tests in multiple directions should be performed first to determine the anisotropic
characteristics of the shear properties. Shear tests under estimated magnitudes of in situ
normal stresses then should be performed in the principal directions of the sample to
determine true shear properties. Blind tests without considering probable shear
directions may lead to incorrect estimation of shear properties.

Although much effort has been paid to develop constitutive models for rock joints,
using either empirical or theoretical approach, the currently available models have still
very limited capacities of predicting joint behaviour for complex deformation paths.
The major difficulty is the lack of adequate understanding of a number of key factors
which significantly affect the joint behaviour, These factors include the characterization
of joint roughness, scale effect, dynamic properties, time effects (e.g. creeping
properties) and effect of gouge materials. The dominant among them is the unique and
quantitative characterization, and the damage evolution, of joint roughness in three-
dimensions, which remains to be a still poorly understood aspect and a very challenging
research subject. The other factors are closely related to this key uncertainty.

The coupled thermo-hydro-mechanical (T-H-M) behaviour of the rock joints is the
most complex, least experimentally investigated, and not fairly understood, especially
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under heated conditions. Understanding the coupled T-H-M processes in jointed rock
masses is fundamental for many engineering problems, especially for underground
radioactive waste repositories and geothermal energy extraction. More sophisticated
tests on coupled behaviour of rock joints are needed to further our understanding of
coupled T-H-M processes of rock joints, to establish physical laws governing the
thermohydraulic phenomena of jointed rock masses, and to develop more reliable and
general constitutive models for rock joints. A more detailed presentation and analysis of
the experimental study of rock joints for both mechanical and coupled T-H-M processes
can be seen in [12].

The Discrete Element Method {DEM) is now a well established research and
simulation tool for rock engineering problems. The success of DEM applications
depends on basically three conditions: i) proper understanding and adequate data for the
geometry of rock joint network in the area under consideration; ii) proper understanding
of the constitutive models for both rock joints and rock matrix and reliable data for
mechanical properties of rock matrix and joints; and iii) adequate computing capacity
(basically memory storage capacity and speed of computers and efficiency of the
computer codes) for large scale in situ applications. The first condition is difficult to
meet since data base for distributional properties of rock joint networks is usually very
inadequate, especially at the beginning of a project. The difficulty may be partially and
gradually overcome by accumulation of data volume and increasing of data quality with
the progress of the project. Monte Carlo simulation using a large number of realizations
of rock joint network, based on the same set of distributional propetties of joint network
geometry, may also be used to interpret the computational results in a stochastic, rather
than only déterministic, sense. However, a complete knowledge of true geometry of
joint systems is not possible even at the end of the project. Therefore, uncertainties
always remain, although they may be reduced gradually with right steps.

The second condition represents our understanding of the physical behaviour of the
fractured rocks today. As mentioned above, although progresses have been made, there
is still a long way to go for obtaining reliable constitutive models for rock joints, which
represent joint behaviour under any combination of truly three-dimensional loading
paths, complex properties (e.g. roughness and scale effects) and environments(e.g.
coupled T-H-M processes). There are many critical aspects of the joint behaviour to be
investigated, both experimentally and theoretically. Especially important among them
are the unique and quantitative characterization of joint roughness, its damage evolution
in deformation processes, the gouge material production and effect, and the
mathematical representations of these effects in the constitutive models for rock joints.

The constitutive models for rock joints determines the interactive forces and
displacement of contacting blocks for DDA or any other DEM method. It is involved in
each step of the DEM calculation and determine, to a great extent, the performance and
reliability of the DEM codes. Great care should be taken in developing DEM codes to
develop, implement and verify constitutive models for rock joints so that the codes can
be applied to practical problems on a firm physical foundation.
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ABSTRACT

This study investigated the failure mechanism between the contact interface and
nonlinear stress-strain behavior of granular material from the microscopic viewpoint.
Based on the assumptions of an equilibrium condition in the uniform stress field and a
compatibility condition in the uniform strain field, two bounds of constitutive law , in
terms of modules of elasticity, were found for granular materials.

The stiffness obtained from the static analysis for a real packing of granular
materials falls between these two limiting values from both analytical models. In the
nonlinear range, the peak stress and post-peak response from the upper bound solution
model are always higher than those predicted by the Equilibium. For example, the
experimental data for uniaxial compressive strength of concrete are smaller than the
values from the Kinematic model, but higher than those from the Equilibrium model. In
conclusion, those two analytical models predict the range of stiffness of granular
materials: the Kinematic model gives an upper bound solution, while the Equilibrium a
lower bound.

1. INTRODUCTION

Elastic limit is used to check cut whether the material yields or not. The yield
criteria is based on the stress space or strain space from the macro point of view. But,
from the micro point of view, the reason for plasticity is internal micro-cracking in the
material , either separating or sliding increasing relative displacement ,stress release , and
irreversible plastic deformation. Thus, the failure mechanism on the contact interface has
major nonlinear effects for granular material. Concepts of the proposed constitutive
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equations presented in this paper are based on the mechanism of slip and separation
between particles. The concept of slip has been used by Taylor(1938) to model the
stress-strain relationship of face-centered cubic(f.c.c) polycrystalline metals. There are 12
slip systems for f.c.c. crystals, of which only five slip systems are required to define the
strain of aggregate produced by slips alone, while it is assumed that there is no
volumetric change of strain. Bishop and Hill (1951)[1] found out the plastic strain from
the maximum of external work which based on stress space. Chin and
Mamnel(1969){2] » Kallend and Davies (1972)[3] and Dillamore and Katoh (1971)[4]
combined the above two methods to build up a plastic models for b.c.c, f.c.c and h.c.p in
different types of metals. Bazant and Oh, (1985) [5] and Part, (1987) [6] proposed a
microplane model from the particle displacement to find out particle shear strain.

Considering the variation of stress-strain distribution in granular materials, this
paper proposes two analytical models: the first, based on the assumption of uniform
distribution of strain field to derive the constitutive laws for granular materials, is termed
the Kinematics model; the second, based on the uniform distribution of stress variation
for the constitutive derivation is termed the Equilibrium model. From the microscopic
point of view, the failure of interface between particles generally causes the slipping,
spinning and separation of the particles. Including those failure mechanisms in the
constitutive models, the proposed two material models can be properly extended from a

linear to a nonlinear analysis. In other words, those two models analyze the elasto-plastic
behavior of granular materials.

2. FAILURE MECHANISM ON CONTACT INTERFACE

Granular material, such as rock, concrete, ceramics is compressed by high
temperature and compression or consists of cohesive material to make a bond force on
particle interface. These particle interfaces contain a bond strength which can increase
stiffness and strength of granular material. Microscopic observation shows that , when
this interface separates or slips, irreversible plastic strain of material is caused. As a result,
the failure mechanism on contact interface is due to material nonlinearity.
Cundall(1987)[7] Proposed Phenomenological Modal classified three types of failure
models : simple tension, rolling torsion and shearing torsion. This paper discussed the
failure condition on interface and classifis the failures into two types of failure modes:

separating failure mode and shearing failure mode. These two mechanism are shown as
foliows:

2.1 Separating failure mechanism

When interface separates , this releases tension force causing the particle to be
unstable and particles have to move to a new location to reach a new balanced state.
The separating displacement A% satisfies the equilibrium condition:

) -1 o
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Where K¢ is the particle‘s new stiffness tensor and £, %is the force released by the
i p ; : y
separating bond. Then, release stress Ao? can be:
1
v e @

2.2 Shearing-slip failure mechanism .

When particle contact shear force fs is larger than shear strength F; rnax for bond

-material, slip failure occurs. Then, this residue force on the slip plane is the multiplication
of normal contact forcefs and the interface friction factor# :

Fypax =|ful* 8 3)

when f, <F, . the shear spring k is constant. But, f, >F, .. will cause a slipping
failure and decrease the shear spring constant as.

F,
kl’s = 5,max
i .fs 'Ae +F;'.max .AB
2 Es',max .fs (4)
This slip displacement &A™ can be shown as:
¥C e I 1
Ai ':A:"r _Ai =Er,max(';{_;' —"};:) (5)
The release stress is
I c_.C
Sof; = e .?.ff — Jomax|Si X (6)

2.3 Flow chart for the failure mechanism

The failure condition on cohesive inclusion of granular material correlats to the
loading direction , such as ,tensile separating, and shearing sliding. If changing the
loading condition, e.g. reloading and loading , the contact interface will contact again.

But, contact bond strength is changed. Thus, the flow chart of particle contact strength is
show as Fig 1. ‘

2.4 Calculation of plastic strain

On micro-scope , this discontinue micro crack ( shear crack 4;*or tension
crack4;“) is due to irrecoverable plastic deformation, which observation on macro

scope. Defined uf is plastic deformation :

ul = X; F—tx X, A (7
. J &ijk Jk

J
J— .o
=ELX; XX, +
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Fig 1.Flow chart for interface failure mechanism

Here, introducing sliding plastic strain tensors"" and cracking plastic tensors
and according to the least square method [8] the pIastlc strain tensor can be written as:
()" =(&7)" +(£7
1
= Aﬂ‘:’d‘p x; + ZACPx Aj, (8)

Then, average plastic strain tensor for the cracked material is -
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3. NONLINEAR ANALYSIS

3.1 Nonlinear of kinematic model

In small strain conditions, particle strain approaches to micro-element strain and
particle strain can be replaced by the average of micro-element strain. In' large
deformation , slipping or separating cracks on the particle interface make the strain
distribution nonuniform and displacement field discontinuous. Hence, the strain
distribution is uniform in the small strain condition. Whereas in particle contact interface
failure, the displacement is discontinuous . This unrecoverable deformation causes plastic
strain. As a result, the particle strain drives into elastic strain and plastic strain. This is
the same as parallel arrangement of a spring. If one of the contact interface fails, the total
spring will decays but remains stiff . Therefore, this solution of the nonlinear model is
upper bound solution for granular materials.

The nonlinearity of granular material includes elastic strain and plastic strain. On

microscope, the particle is an elastic body. Thus, the elastic part for granular materals
can be written as [8]:

Gy = {( XV Ay Ve +(ZVCH By} (10)

and
Ty =5 {(ZV Dy ey +( XV Fgy Jo,} ()
a a

This plastic strain of granular material can be calculated from Eq.(9),where A4 is
plastic slip. Therefore, the calculation flow chart can be draw in Fig. 2.

During interface failure, contact force becomes a released force(df;*) and remains
as a residual force (f;*). Eq.(6) transforms this release force into release stress(doy).
Above all, the stress-strain nonlinear relationship can be drawn as Fig. 3.

3.2 Nonlinear equilibrium model

The equilibrium mode is based on the uniform stress distribution. The relation
between particle mean stress and contact force is :

[ =xiAj0; (12)

Where f;°is contact force, Xjis contact vector related to particle center, and A};; is

fabric tensor,was defined in Yang(1995)[8]. Assembling the flexibility of contact spring
of each contact this spring model is similar to a series spring system . If failure at contact
interface improves the flexibility of the series spring model and plastic deformation
increases rapidly. This micro-structural is fails. As a result, the equilibrium model is a
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contact law

Release % P-Iasf
contact force shdding

Fig. 2 Kinematic mode] calculation flow chart.

lower bound solution model. But, in real granular material, it combins like the
parallel spring and serial spring models. If one of the contact interface fails, this failed
spring is changed from one of a parallel spring into the other failure collecter. Then,
micro-structural remains stable. This hybrid model seems huge and complicated. Hence,
lower bound solution model combined with a bond of serial spring and parallel to a bond
of failure spring, in order to keeps the stability of structure .

The lower bound solution model is based on the stress field is uniform
distributionand assums each particle has the same effective stress ,07. It can transform
into contact force by fabric tensor. They based on failure criteria, check whether contact
interface failed or not, and then, count plastic deformation 4T and elastic
deformation4}’. Substitute the release contact force into Eq.(9) to count increment of

release stress 00 f}and to find increment plastic strain&'g. The overall nonlinear lower
bound solution analysis flow chart is shown as in fig 4.
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Fig. 3 The nonlinear stress -strain relationship.
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4. EXAMPLES

This paper shoes an exampleof a mortar sample in the size of ScmX5cm. The
mortar materials includs standard sand of the code ASTM C109 and 190, 1st portland
cement, and the water/cement ratio of 0.47. The numerical data for this granular mortar
material, uses a ScmX 5cm fill with 916 particles, which diameter average is 1.710mm
and standard deviation is 0.365mm. From the isotropic materials relationship , assume
the normal contact spring constant k, equals to 478460kg/cm2[8]. Fig. 5 .shows the
tress-strain relation of the experiment data and upper and lower bound solution.

The other example uses the same mortar reinforced with 5X30mm ¢ steel. Fig. 6
shows each stage of the sample during testing from initial conduction proceeding to
failure stage. The stress-strain curve is shown in Fig. 7. Observatain shows the kinematic
solution is near to experiment data, but the equilibrium solution seems relative soft.

5. CONCLUSION

This discussion of the nonlinear behavior of granular materials represented by
kinematic model and equilibrium model we see a range of solution for random packing.
The stiffness in the kinematic model based on uniform strain assumption is higher than
those based on other models. However, the equilibrium model based on a uniform stress
hypothesis is relatively lower than other known solutions. In conclusion , for granular
material, regarding the contact properties of the particle, the proposed upper bound
solution model and lower bound solution model can provide a bound any range of
solutions respectively. ' '

o Experiment(w/c=0.47)
—a&—Kinematic model
¥ Equilibrium model

600

500

400

300

200

l 00 | ¥-¥ ,A.-p..."...“_.'

S A

Compression strength (Kg/cm 2)

0 0.001 0.002 0.003 0004  0.005
Axial strain (mm/mm)

Fig. S Comparison of experiment data and simulation data for the stress-strain curve for

mortar.
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(a) Initial state (b) Yielding state (c) Faliure state

Fig. 6 Reinforced mortar sample.
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Fig. 7 Compared experiment data and simulation data stress-strain curve for reinforced

mortar.
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ABSTRACT

Analysis based on Discrete Element Method (DEM) is presented for geoteéhnical
. problems within the class of limit equilibrium analysis, such as stability of slopes, earth
pressure of retaining walls, and bearing capacity of shallow foundations . Sotl mass in
the present model is treated as comprising of blocks which are connected by elasto-
plastic Winkler-springs. The solution of this method satisfies all equilibrium
conditions and is admissible in accordance with the material strength. Formulation of
the method is presented. Examples are shown to demonstrate the applicability of the
proposed method to the analysis of those geotechnical problems. The advantages of
~ this method over the conventional limit equilibrium analysis are also discussed.

1. INTRODUCTION

In the limit equilibrium analysis of the geotechnical problems, it is conjectured that
a mass of soil mobilized along a failure surface. The objective is to obtain a set of
stresses on the mobilized surface which satisfies equilibrium conditions and is admissible
in accordance with the strength of the material. This set of stresses can be used for
practical purposes to assess the instability of the system such as slopes, retaining walls,

and shallow foundations.
In most limit equilibrium analyses, the soil mass is divided into 2 number of slices.

The stress on the mobilized surface is estimated employing the conditions of static
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equilibrium for each slice. However, the problem is indeterminate and the conditions
of static equilibrium are not sufficient for determining the stresses on the mobilized
surface. As aresult, it is necessary to solve the problem by either neglecting part of the
equilibrium conditions, or making assumptions on the location and inclination of inter-
slice forces. The shortcoming, inherent with the limit equilibrium method, is
unavoidable.

In view of the inept procedures for obtaining the stresses on the mobilized surface
used in the conventional limit equilibrium method, more rigorous methods are desirable
such as finite element techniques. With the advances in computer technology,
extensive computational effort associated with finite element methods is no lonéer a
major concern. However, finite element methods require information about the initial
stress state existing in the soil mass, a correct constitutive model, and correct parameters
for the constitutive model. This greatly increases the complexity of analysis and the
uncertainty of its results.

The analytical model presented in this paper falls within the general class of
discrete element model (Cundall [1], Shi [2], and Barbosa and Ghaboussi [3,4]). The
specific aim of this paper is to employ a more direct and simple approach along the line
of limit equilibrium method. At limit condition, the soil mass is viewed as discrete
blocks sliding along the failure surface. The present approach treats the interfaces
between blocks to be of elasto-plastic nature. This model, a slight extension of the
conventional limit equilibrium analysis, permits a solution that satisfies all equilibrium
and compatibility conditions. A discussion of the applicability of this model in the
analyses of slope stability, earth pressure, and bearing capaéity can be also found in the
references by Chang [5] and Chang and Chao [6,7]. Compared with other discrete
element methods, such as those used by Cundall and Shi in the analysis for movement of
rock blocks, the present method is different in concept in that it is used in connection
with the limit equilibrium analysis for soil mass. | |

In what follows, formulation of the present method is presented. Examples for
slopes, retaining walls, and shallow foundations are shown to demonstrate the usefulness
of this method. The advantages of this method over the conventional limit équilibrium
analysis are also discussed. | |

2. DISCRETE ELEMENT METHOD FOR SOIL AT LIMIT CONDITIONS

2.1 Interface Between Blocks
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To avoid the shortcoming of the conventional limit equilibrium method, the present
method accounts for the compatibility between blocks so that sufficient equations can be
provided for solving the problem. For this purpose, each block and its neighboring
blocks are imagined to be linked together by Winkler-springs as shown in Fig. 1. One
set of springs is in the normal direction to simulate the normal stiffness . The other set
is in the shear direction to simulate the sliding resistance at the interface. Behavior of
the normal and shear springs is elasto-plastic as shown in Fig. 2. The normal springs
do not yield in compression but yield in tension with a tensile capacity {tension cut-off).
The shear springs yield when the shear strength is reached.

Winkler Spring

(w) —

Block a Block b

E) @J%#@

Figure 1. Schematic figure of Winkler-springs at interface between two blocks

an

n
b

PLASTIC

TENSION CUT-OFF

v
o

Figure 2. Behavior of normal and shear Winkler-springs

2.2 Method of Analysis .
Formulation of the present method-follows that of previous research (Chang and

Misra [8]) on the mechanics of discrete particulates. Let #, ', and @, @’ represent
the translations and rotations of block A and block B.  Let point P be the middle point at
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the interface between the blocks as shown in Fig. 3. The relative displacement vector
representing displacements and rotation of block B relative to block A4, at point P, is
expressed as follows:

A7 ; g
x b= (R bR g
AP @’ “
where
1 0 -rF 1 o -r”
[R”]= o 1 r ;[R“]= o 1 r7
0 0 1 0 0

and »% is the vector joining the centroid of the block A4 to point P. If, however, the
block B is immobile the values of #®, ), and «" are taken to be zero.

Block a

o
ta ]
_ — —F

a. Shear and normal stresses between adjacent blocks
due to their relative movement.

3% [

b. Equivalent forces and maments between adjacent
blocks.

Figure 3. (a) Shear and normal stresses; (b) Equivalent fofces and
moment on the interface
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Let 7 be an inward vector normal to the side face of block 4 at point P, defined as
n’ = (cosa,sin @) where « is the angle between the x axis and the vector n”. The
vector perpendicular to s? is defined by (-sina,cosa). Thus the relative
displacement vector on the left side of Eq. 1 can be transformed from the x-y coordinate
to the local #-s coordinate as follows:

AP AP
A7 =[TRA, 2)
A A,
where
cosg sineg 0O
[T]=|-sina cosa O
0 0 1

Due to the relative movements of two neighboring biocks as shown in Fig. 3, at any
point P’ on the interface, the spring stretch in the normal direction &, and in the shear
direction o, are given by

o,=A, +IA,

5o &)

where / = distance from the center point P to point P,

As a result of spring stretch, the normal and shear stresses on the block interface are
shown in Fig. 3. These stresses on the interface can be integrated to obtain the
equivalent forces and moment as follows:

L L L
= (2 k,8,dl =|% kA dl+ [ k0
2 2 2
F = Ji k,5,dl = ji kA dl @
2

L
M:j_z k,18.dl J ke JA Al +| k PA dl

where
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k, = spring constant per unit length of the normal spring

n

k, = spring constant per unit length of the shear spring

5

L = length of the interface

Note that the springs are elasto-plastic, thus the value of these spring constants should be
obtained based on their stress-displacement relationship given in Fig. 2.

Since the terms on the right side of Eq. 4 involving first order of % /are equal to

zero, we have

Er A7
FP o =[K| AL (5)
M?* AP
where
K, 0 0
[K]=| 0 X, ©
0 0 K,
and
3
Kll = kﬂL; KS = kSL; Kﬂ) = ﬁ
12

For convenience, the interface forces £7 and £’ in the local coordinate system are
transtormed to F” and £ in the global coordinate system as follows:

Fr F?
FP4=[TT1 P (6)
MP MP

where
cose¢ —sing O

[T]T= sima cosa O
0 0 1

The forces acting on all sides of a block should sa'ti-sfy the force and moment
equilibrium requirement, given by
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. ¥ F

5 p=— 2[R F (7
m® =t M? -
where
1 0 0

and Nis the total number of sides of the block. The variables s, S, . and m" are the
body forces and moment of the block.

Combining equations 1,2, 5, 6,and 7, a relationship is obtained between the forces
and the movements of the block in the following form:

S ¥ u; uy
5= 2R TITTIKITIIR K o} ¢ ~[R°K ut 1) 8)
m° P=l a)b o°

Based on Eq. 8, three equations of force equilibrium can be set up for each block
and 3N equations for a system of N blocks as follows:

{/1=[Glu} )

where
{/} consists of s, , r ,and m for ail blocks,

{u} consists of u,, u,, and @ for all blocks, and
[G] is the global stiffness matrix.

There are six variables for each block (i.e., body forces f°, s°, and moment m",

and movements z°

X ?

u,, and @“) in which three of the variables are known. Therefore,
the set of 3N simultaneous equations can be solved for the 3V unknown variables. The
relative movement of two adjacent blocks can be determined by Eq. 1. The normat and
shear forces between blocks can be obtained from the force-displacement relationships
(Egs. 2and 5). The normal stress 7, and shear stress 7, of each interface between tWo
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blocks can be determained by dividing the force by the length of the interface

F
= ; == 10
z T = (10)

2.3 Iterative Procedure for Sliding and Separation of Blocks

In the analysis, incremental loading procedure is adopted. In each increment of
load, the material is assumed to be linear. As a result, the stresses at the interface may
exceed the admissible strength. To deal with the non-linearity of this problem, we
employed a Newton-Raphson iteration scheme (Bathe [9]), which is similar to the initial
stresses method in FEM (Naylor and Pande [10]). Figure 4 illustrates the procedure
for the method of iteration. When the shear and normal stresses are in excess of the
allowable strength: 7,.,., OF %, » the iteration process redistributes the excess amount
of stress to neighboring blocks. The iterative procedure is carried out until the stresses
at all interfaces of blocks are compatible with its deformation and completely satisfy the
stress-displacement relationship. )

T
4

v
)

Figure 4. Newton-Raphson iteration scheme

2.4 Stiffness of Winkler-spring

The present method of analysis requires the values of stiffness %, and £, between
the biocks. The ratio of stiffness in the normal and shear directions between blocks
was estimated by taken analogous to the ratio of Young's modulus to the Shear modulus
of the material. For isotropic elastic material, this ratio is given by 2(1+v). For the
range of Poisson's ratio v from O to 0.5, the ratio of k,/k, is suggested to be in the
range from 2 to 3. It was found that the values of stiffness %, and £, fora given ratio
of k,/k,, have insignificant effect on the computed results.
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3. APPLICATION ON LIMIT EQUILIBRIUM PROBLEMS

3.1 Stability of Slopes

In this section, the present method is illustrated by problems of slope stability.
The results are discussed and compared with Bishop's simplified method [11]. The
safety factor, F, of a homogeneous embankment depends on the following factors: the
inctination 3, the height H, the unit weight of soil y, and the shear strength parameters,
cand ¢. Janbu [12] has shown that, by defining a dimensionless parameter A as

;L=7—H~tan¢ (1)

c

The value of FyH/c is unique for a given set of values of 4 and B

Four cases with different values of A and S were selected and analyzed. For
these cases, the unit weight of soil is 123 [b/ft’ and the height of the slope is 148 ft.
The strength parameters, ¢ and ¢, shown in Table 1, were chosen so as to obtain F =
1.2 for all cases. Value of A = 0 represents embankments with cohesive soils and 4
= 20 represents embankments with predominantly cohesionless soils. For comparison
. purpose, the four cases are first analyzed using Bishop's simplified method. The
failure surface obtained from Bishop's simplified method is used for the analysis with
the present method. A schematic representation of the slope and the failure surfaces for
the four cases is shown in Fig. 5.

A=0
B=35:1
CASE 1 CASE 2
A =120
B=35:1

CASE 3 CASE 4

Figure 5. Four embankments and their mobilized surfaces used in example
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FD!EM
Case | ¢ (deg) | c (psf) A B Fisnop | kidk, = 1 |k Jk, = 10
(1) (2) (3) (4) (5) (6) (7) (8
1 0.0 3,319.0 0 3.5:1 [.2 1.19 1.22
2 0.0 | 3.600.0 0 1.5:1 1.2 1.19 1.24
3 14.8 240.6 20 3.5:1 1.2 1.16 [.17
4 26.3 448.6 20 1.5:1 1.2 1.13 1.16

Note: I psf = 47.9 Pa.

Table 1. Soil strength and computed factors of safety for four cases

Comparing the computed factors of safety in Table 1, when the ratio of %/, -is
within the range from 1 to 10, the variation of computed factors of safety is negligible.
It is noted that, although the Bishop's simplified method does not satisfy the overall
force equilibrium and make crude assumptions regarding the inter-slice forces, the
overall factor of safety are in close agreement with that obtained from the present
method.  Although the differences in the factors of safety are insignificant, the
computed stresses along the mobilized surface from the two methods differ significantly.
As shown in Fig. 6, the shear stress calculated by the present method is generally lower
than that determined by Bishop's simplified method in the central portion and higher at
the toe or the heel of the mobilized surface. This shows that the toe or the heel of a
slope are more susceptible to the initiation of failure, and the local failure propagates
from these regions towards the central portion of the slope. It is worth noting that the
distribution of normal stresses along the failure surface as determined by Bishop's
sirriplified method and by the present method are in close agreement although the shear
stresses deviate greatly. In conventional slope stability methods, it is assumed that the
factor of safety is constant for all points on the shear surface. The present discrete
element approach, however, is not limited by this assumption. Therefore, the stress
computed from the present method is more realistic. Fig. 7 shows the variation of the
factor. of safety, along the mobilized surface, computed from the present method. The
computed stress distribution is in agreement with results obtained from field studies and
finite element analysis of embankment (Lo & Lee [13] ).
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3.2 Earth Pressure of Retaining Walls

The present method is then illustrated in the analysis of earth pressure problem for
active condition. In an active condition, the wall moves away from soil to cause
mobilizations along the failure surface in the soil mass and along the interface between
the wall and soil. The soil-wall system is analyzed to obtain the force acting on the
retaining wall. The body forces of the blocks are first applied and followed by moving
the wall away from soil in incremental displacements until the active condition is
reached. The unit weight of soil ¥ used for this example is 16.5 kN/m’ and the height
of the wall H is 4.6 m. The values of stiffness are assumed to be &, = 10000 kN/m
and &, = 5000 kN/m.

To obtain the distribution of earth pressure on the wall, the failure wedge was
divided into a number of blocks as in Fig. 8. Lateral earth pressure distribution against
the retaining wall for three different modes of wall movement are analyzed. The
computed distribution of the horizontal active earth pressure for the three modes of wall
movement are shown in Fig. 9, in which the horizontal earth pressure is normalized by
dividing H. For comparison, the normalized Coulomb's active earth pressure [14]
for ¢ = 30°and § = 20° is plotted by the straight solid line in each case. Although the
earth pressure of mode (a) and mode (b) are in agreement with the linear distribution,
the pressure distribution of mode (c) deviates greatly from it. Similar trends have also
been observed from finite element analysis (Chao [15]) as the comparison shown in

-

Figure 8. Discrete element mesh modelling relative sliding of backfill blocks

Figure 9.

under active condition
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Figure 9. Normalized pressure for the three modes of wall movement under

active condition

Although the results of Fig. 9 were obtained using %, = 10000 kN/m and %, =
5000 kN/m, it was found that the values of %, and %,, with the ratio of %,/k_ ranging
from 2 to 3, have insignificant effect on the computed active pressure against the wall.

The earth pressure distribution depends on the mode of wall movement as a result
of soil arching. Mechanism of arching of the backfill soil can be characterized by both
the pattern and the extent of sliding between backfill blocks. There are two types of
sliding pattern between backfill blocks, namely, active sliding and passive sliding as

shown in Fig. 10.
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Figure 10. Active and passive sliding patterns

The extent of sliding is represented by the degree of the mobilized shear stress as
compared to the shear strength between backfill blocks. Figure 11 shows the degree of
mobilized shear stress between backfill blocks along the elevation of the wall. The
positive ratios represent active sliding while negative ratios represent passive sliding.
It can be found from Fig. 11 that all backfill blocks of modes (a) and (b) experience
active sliding. The mode (c) of wall movement gives a pattern of mobilized shear
stresses different from those of modes (a) and (b). In mode (c), at top of the all, the
backfill blocks slide passively while blocks at the bottom part of the wall experience
active sliding.  This mechanism of mode (c) results to its unique distribution pattern of

earth pressure.
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Figure 11.  Sliding patterns for the three modes of wall movement under active condition
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It is interesting to note that, in the active wall movement, part of the backfill may
experience passive sliding which is opposite to the common concept that active wall
movement must induce active sliding in the backfill as hypothesized by Dubrova [16].

The analysis is then performed to investigate the influence of soil friction angle ¢
and wall friction angle &, on the earth pressure. The influence of ¢ on pressure
distribution is illustrated in Fig. 12 for values of soil friction angle ¢ = 10°, 30°, and 50°,
while the wall friction & is assumed to be 2/3¢. Figure 13 shows the earth pressure
distribution for wall friction angle &, equal to 0, 1/2¢, 2/3¢, and ¢, while ¢ = 30°.
It is observed that the magnitude of earth pressure is reduced with increasing values of
wall friction angle and soil friction angle. The pressure distribution pattern for each
movement mode is not affected by the values of soil and wall friction angles.
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Figure 12. Influence of soil friction angle on earth pressure for the three modes of
wall movement under active condition
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Figure 13. Influence of wall friction angle on earth pressure for the three modes
of wall movement under active condition

3.3 Bearing Capacity of Shallow Foundations

The present method is also illustrated by the analysis of bearing capacity of shallow
foundations. The failure zones of soil mass under a shallow foundation, as shown in
Fig. 14, consist of a Rankine's active zone (zone [}, a radial shear zone (zone II),and a
Rankine's passive zone (zone‘III). The curve CD is an arc of a logarithmic spiral.
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Figure 14. Bearing capacity for general shear failure

The first example is illustrated by considering the bearing capacity of a surcharged
cohesive soil (i.e., angle of internal friction ¢ = 0%). A discrete element mesh of the
problem represented by seven blocks is shown in Fig. 15.  In the mesh, the logarithmic
spiral shear zone, which reduces to be a circular zone for cohesive soil, is modelled by
three triangular blocks. The unit weight of soil 7 used for this example is 120 Ib/ft,
the width of foundation B is 20 ft, and the surcharge g is 1800 Ib/ft*, corresponding to a
. depth D, = 15 ft. The cohesion of soil ¢ is 800 Ib/ft®. The body forces due to
gravitation of the soil blocks (blocks 1 to 5 and block 7) are applied and followed by 2
subsequent loading of the foundation block (block 6) until the failure surface is fully

mobilized.
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n
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g
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Figure 15. Discrete element mesh and computed results with
various stiffness ratios (@4 = 0%
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Various values of stiffness were used in the analysis. The computed results of
collapsing load with different , /%, ratios ranging from 1 to 10 are also plotted in Fig.
15. As the results shown in Fig. 15, the computed collapsing loads are identical to that
obtained from general bearing capacity equation (Meyerhof [17], Vesic [138]) regardléés
of the value of k,/k, ratio. :

The second example is a case with soil cohesion ¢ = 800 Ib/ft* and internal friction
angle @ = 15°. The configuration of failure surface is plotted as shown in Fig. 16 with
log-spiral curve connecting the passive and active zones. It was also found that the
values of %k, and %, have insignificant effect on the computed results. The computed
results with different &,/k, ratios are compared with the results from conventional
method also in Fig. 16. The collapsing loads obtained from the present method are
slightly higher than that obtained from the conventional method.
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: AN
5 3\*
L
o 500 F
o ¢—Qo—o—o—20 g
o
3
250 -
o Discrete Element Method
+ Conventional Method
0 1 1 I 1 1 | 1 1

k /k,

Figure 16. Discrete element mesh and computed results with
various stiffness ratios (¢ = 15° ¢ = 800 Ib/ft})

The discrepancies are affected by the -stiffness used in the present method.
Although, by increasing the k,/k, ratio (i.e., reducing the &, value}, the result
approaches to that obtained from the conventional method, it is believed that the
computed collapsing loads are more realistic for the range of %, /k, ratio between 2 ~3.
However, the difference are not significant for practical purposes.
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It is obvious that the mesh with more blocks simulates better the shape of
logarithmic spiral curve. Figure 17 shows the resulis (%, /k,=2) for meshes with
different number of blocks in the shear zone BCD. It is interesting to note that a small
number of blocks in shear zone appears o be enough for the analysis to reach a

converged solution.
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Figure 17. Effect of the number of blocks in shear zone

For the analysis of bearing capacity problems, the conventional limit equilibrium
method with incorrect assumptions can be erroneous. For problems with complicated
geometry and loading conditions, the knowledge of locations of failure surfaces are not
readily available in literature. For example, in the cases (Fig. 18) such as: eccentric
and inclined load, tilt footing base, footing adjacent to a slope, and footing on a slope,
empirical reduction factors have been frequently used in determining bearing capacity.
The present method is simple and straightforward, without ambiguous assumptions
regarding inter-slice forces. The solution satisfies equilibrium conditions and is
admissible in accordance with the material strength. The present method has the
potential to be a useful tool in the class of collapsing load problems with complicated
geometry and loading conditions where solutions are not readily available. These types
of problem can be solved in a direct manner by the present method through the following
steps:

1. Estimate a failure surface,
2. Discretize the soil mass into discrete elements,
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3. Assign material properties, i.e., strength and stiffness for interface between

blocks, and
4. Apply the gravitational body force and increase the foundation load to achieve

the fully mobilized failure surface.
Repeat steps 1 to 4 for several trial failure surfaces until the critical collapsing load

is determined.

\ |

! 5
2
3 4
Q
Sy g 7 ;
! 5
2 4

(2) Eccentric and inclined loads; (b) Tilt footing base;

Figure 18.
(d) Footing on a slope.

(c) Footing adjacent to a slope;
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4. CONCLUSION

A discrete element method is presented for the analysis of limit equilibrium
problems in geotechnical engineering, such as stability of slopes, earth pressure on
retaining walls, and bearing capacity of shallow foundations. Due to the nature of limit
equilibrium analysis, all the conventional methods must make assumptions with regard
to the inter-slice forces. The current approach, based on the discrete element method,
provides a method of estimating the stresses on a mobilized surface that is both simpler
and more direct. A soil mass, in the present method, is treated as comprising of blocks
connected by elasto-plastic Winkler-springs. The stresses on the failure surface
obtained by the present method satisfy all equilibrium conditions and are admissible in
accordance with the material strength.

Compared with the conventional limit equilibrium methods, the present method
requires material properties %, and %, in addition to the strength of soil. The range of
stiffness ratio %, /%, for soil is suggested to be between 2~3. Under this range of
stiffness ratio, it is found that the values of %k, and %, have negligible influence on the
computed results.

The advantage of the present method over the conventional limit equilibrium
‘methods are summarized as foliows:

1. The present method is theoretically more rigorous. The consideration of
elasto-plastic springs yields a statically deterministic system and facilitates the
treatment of stress distribution along the mobilized surface.

2. The present method is simpler than the conventional limit equilibrium
methods.  The present model is simpler in the sense that no experience is required
for making reasonable assumptions regarding the locations and inclinations of
inter-slice forces.

3. In the conventional limit equilibrium methods for the problems of slope
stability, it is assumed that the factors of safety are the same for all points on the
mobilized surface. The present method, however, is not limited by this
assumption. Therefore, The computed results can show the initiation of failure
beginning at the toe and the heel, and the local failure propagating from these
regions toward the central portion of the slope.

4. The present method is capable of predicting the earth pressure distribution
behind the retaining wall. Earth pressure distribution is illustrated in the analyses
under three different modes of wall movement. Different earth pressure
distributions are caused by different patterns of relative sliding of backfill blocks.
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The analysis of sliding patterns offers a better understanding of the arching
mechanism of backfill that leads to different earth pressure distribution behind the
wall.

5. Bearing capacity of shallow foundations computed using this method is found
to be in good agreement with that obtained from the conventional limit equilibrium
methods. The present method can be a useful tool for analyzing bearing capacity
of shallow foundations with complicated geometry and loading conditions.
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DDA Simulations of a Graded Particulate Assembly under
Shear
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ABSTRACT

Laboratory experiments have demonstrated that the fines content can affect the
behavior of cohesionless soils. Earlier numerical simulations implicated that
there is a possibility that the finer particles in a particulate assembly are subject
to higher stress within the particle. Studies on cohesionless soil have mostly
concentrated in uniformly graded, clean sand or commonly referred to as the
"academic sand". However, the fines content in a natural sand could be signifi-
cant. Little is known as to the mechanisms of fines interacting with lager parti-
cles in sand. A system of Discontinuous Deformation Analysis (DDA) simula-
tion was developed to improve our understanding on the interaction between par-
ticles of different sizes in a graded assembly under shear. The simulated particu-
late assembly has a bimodal size distribution. The particulates were simulated as
octagons. Computer codes were developed to create the particulate assembly and
interpret the data. DDA was used to consolidate the assembly under K condi-
tions and perform simple shear tests on the assembly. The paper describes the
numerical development of the DDA simulations and presents preliminary simu-
lation data.

1. INTRODUCTION

In engineering practice, the strength parameter ¢ of a natural sand deposit is

often determined using in situ testing methods, such as the cone penetration or
standard penetration tests. The boundary conditions created by these in situ
penetration tests are rather complicated. Interpretation of the test results relies
heavily on experience and calibration tests in the laboratory. Available studies
related to field penetration tests and their interpretation have been concentrated
on clean, uniform sand. Natural sands, especially those along the west coast of
Taiwan, have significant amounts of fines (particles passing #200 sieve) content.
Experience indicates that fines can have significant effects on the behavior of a
sand. Researchers {1,2] have recommended to increase the standard penetration
test (SPT) blow count for silty sands when evaluating the liquefaction suscepti-
bility. Tokimatsu and Yoshimi [2] suggested that sands with gravel are more
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likely to liquefy. Been et al. [3] cited triaxial tests on Kogyuk sand with differ-
ent fines content but under similar relative density and stress level. The results
showed that the specimen with 2% fines was dilatant and that with 10% fines
was contractive. Pitman et al. [4] reported that the amount of structural instabil-
ity decreases with increasing fines content. The numerical simulations of cone
penetration tests (CPT) in particulate assemblies using distinct element method
(DEM) [5] showed that cone penetration seams to induce higher stress within
smaller particles. While the physical evidence that demonstrates the effects of
fines is ample, there is little knowledge as to how the fine and coarse particles
interact with one another in sand under shear.

A numerical system was developed to simulate a particulate assembly with a
bimodal size distribution. The particulates are simulated as octagonal blocks us-
ing DDA. The computations determine particle contact forces, contact orienta-
tions (direction of contacts in reference to the center of particles), and stresses
within the particles are recorded. The results enable the assemblies be described
from microscopic point of view as they relate to the size of particles. DDA is
capable of calculating an average stress within each particle, herein after refer to
as the internal stress. The internal stress provides an index as to the possibility
of particle crushing. Previous numerical simulations have mostly concentrated in
circular [6] or elliptical particulates [7]. Natural sands are more likely to have
angularities. Thus to simulate particulates as polygons is believed to be more
realistic. Except for the work by Issa and Nelson [8], studies on the microme-
chanical behavior of blocky or angular particulate assemblies have been limited.

Computer codes were developed to create the particulate assembly and interpret
the data. A simple shear test was performed on the K consolidated assembly.
The main objective of the DDA simulations is to enable microscopic observation
on these assemblies and describe interactions between the coarse and fine parti-
cles during shear. Three assemblies that represent uniform, low and high fines
contents, respectively were used in the simulations. The paper describes the nu-
merical development of the DDA simulations and presents preliminary results.

2. CREATION OF THE PARTICULATE ASSEMBLIES

The particulates are simulated as octagons. To provide a basis for comparison.
three types of gradations were simulated. Table 1 shows the characteristics of
these assemblies. Type I represents a uniform sand, Type II typifies a sand with
bigger particles floating within the matrix of fines, Type III simulates sand with
Just enough fines to fill the voids between bigger particles. The nominal diame-
ter of the coarse particles is 9 times that of the fines. According to author's ex-
perience, further increase of the diameter ratio would result in numerical instabil-
ity in DDA computations. Since the DDA simulations do not consider surface
tractions, the absolute dimensions of these particles have no physical meaning.
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Table 1. Characteristics of the DDA simulated particulate assemblies.

Type | Nominal Particle Diameter, cm | Number of Particles
Small Big Small Big
1 0.01 - 900 -
11 0.01 0.09 624 4
111 0.01 (.09 124 16
Physical input parameters are listed below:
Unit mass of the particles: 300 kg/m’
Young‘s modulus, E of the particles: 6.6x10" MPa
Poisson‘s ratio, v of the particles: 0.15
Friction angle between particles: 207
Gravity: 333 m/sec’

The unit mass was set low to minimize inertia effects. A low gravity was used
to reduce the downward acceleration of all the particles. The assembly is
bounded by frictionless walls as shown in Figure 1. The top block is used to pro-
vide the vertical stress and confinement. The bottom block is allowed to slide
horizontally. The side blocks are free to rotate and displace horizontally.

3. CONSOLIDATION AND SHEARING OF THE ASSEMBLY

The assemblies are normally consolidated with a vertical stress, o, 0of 15 MPa
under K conditions prior to shearing. The vertical stress is applied through the

three loading points on the Top Block 1 as shown in Figures 1. The coordinate
system 1s depicted in Figure 1. The overall stress and strain of the assembly are
monitored during computation. The assembly stress tensor, o, is computed us-

ing the particulate contact forces according to Christoffersen et al. [9].
= A< e e, paa
O'B.=?Z§(f,. i+ frd?) (1)
a=1

where
J;= contact force between particulates,

d,= vector connecting the centers of particulates in contact,

I = total volume of the assembly,
N = number of particulates.
To compute the overall assembly strain (g, ), the displacement of particulates

are described by a set of linear equations first as
d,=ax+bz (2)
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d. =cx+dz (3)

where
d,= displacement in x and z direction,

The coefficients a,b.c and d are determined statistically using the least square
method. The strain tensors are determined by taking derivatives of Equations 2
and 3. Thus £, =a,_=d,and Z, =05(b+c).

In presenting the data, all stresses are normalized with respect to the vertical
consolidation stress o,. The initial K consolidation is necessary because there

is no contact forces (hence no stress) between particulates in the beginning of
computation. Shearing starts when & _ /o, exceeds 0.8.

A simple shear was applied to the assembly by rotating the side blocks (see
Figures 1) while maintaining & . The shearing ends when the relative hori-

zontal movement between the Top Block 1 and the Bottom Block exceeds 15%
of the assembly height. Figure 2 shows the assemblies after shearing.

4. MICROSCOPIC ANALYSIS OF THE RESULTS

Granular materials are assemblies of discrete cohesionless particles typically
having arbitrary shape and a range of particle sizes. Cohesionless granular mate-
rials support the applied forces through particle contact forces. Therefore, the
nature and distribution of the contacts are expected to have a significant influ-
ence on overall mechanical response of the granular mass. The term “fabric™ has
been used to characterize this kind of microstructure. According to Oda {10}, the
concept of fabric for a macroscopically homogeneous sample of granular ma-
terial should include a measure of the orientation of individual particles (i.e., ori-
entation fabric) and a measure that reflects the mutual relationship of individual
particles (i.e., packing). Considering the large number of particles in a granular
mass, the fabric must, out of necessity, be characterized statistically.

4.1 Fabric, Gradation, Particle Size and Angularity

Since the simulated particles reported in this paper are symmetric in shape, the
orientation fabric has no meaning. Fabric is therefore, only related to packing of
the particles. The concept of “contact vector” [11] is used to characterize pack-
ing. A contact vector is defined as a vector directed from the mass center to a
point of contact with a neighbor. Fabric is graphically presented based on the
statistics of the contact vectors. The full possible range (360°) of the direction
of contact vectors is divided into 18 sections, each covering 20°. All the contact
vectors from the DDA computations are grouped into these 18 sections according
to their direction. The radial dimension of the fabric is a count of contact vectors
normalized with respect to the total number of contacts in the assembly. Figure
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3 depicts the fabrics of the assemblies at the end of K consolidation and the end
of shearing. To reveal the effects of particle sizes, the fabric of coarse and fine
particles are shown separately when applicable. Previous studies have indicated
that, at least during monotonic loading, the principle direction of fabric coincides
with that of the principle stresses [e.g., 12 and 13]. In the DDA simulations, the
K, is approximately 0.2 to 0.3 (o, /&, ) at the end of consolidation for all the

assemblies. Figure 3, however, does not indicate a clear coincidence between the
principle directions of the fabric and stress, regardless of the particle sizes and
gradation. This finding does not agree with the earlier studies [e.g., 12 and 13]
on circular disk assemblies. The difference is believed to be related to the angu-
larity of the particles and the uniformity of particle orientations in our simula-
tions. Particle contacts are more likely to occur at the isotropically distributed
vertexes of the octagons. Further study is required to verify if the same is true
for angular particles with random orientations.

The effects of gradation on fabric are significant during shearing. For Type 1
assembly, shearing results in a clear principle direction of fabric as shown in
Figure 3. This principle fabric direction rotates with shearing. The concurrent
rotation agrees with earlier studies mentioned above. The graded assemblies (i.e.,
Type II and IIT) however, do not have a clear principle fabric direction after
shearing. Macroscopically the assembly deforms according to the movements
imposed on the boundaries. For uniformly graded assembiy (Type 1), the particle
movements are rather uniform as depicted in Figure 2. However, for graded as-
semblies, the particle rotation/movement is influenced by its dimensions and
relative position to particles of different dimensions. The shearing mode imposed
by movements of neighboring particles with dramatically different dimensions
may not coincide with that applied to the assembly boundaries. The mixed shear-
ing modes experienced by particles of different sizes are believed to be the cause
for the loss of a clear principle direction of the fabric.

4.2 Contact Force Distribution

According to their DEM simulations, Cundull and Strack [6] have indicated
that in supporting a loading condition, the contact forces within a particulate as-
sembly are not uniformly distributed. Rather, the contact forces are concen-
trated within a few branches. The distribution of contact forces from DDA simu-
lations are presented graphically as shown in Figure 4. It is assumed that the
contact forces experienced by a particle pass through the mass center. The con-
tact force is depicted by a straight line connecting the contact point and the mass
center. The line thickness is proportional to the magnitude of the contact force.
The DDA computations agree with the findings by Cundull and Strack for as-
semblies at the end of K consolidation. For Type II and III assemblies, the con-
tact forces appear pass through coarse particles where the assembly matrixes are
stiffer. DDA computations indicate that shearing disrupt the original concentra-
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tion of contact force distributions. The contact force distributions become ran-
dom at the end of shearing.

4.3 Internal Stress, Particle Size and Gradation

In laboratory tests, it is known that repeated usage of a sand specimen for shear-
ing tests is likely to increase the fines content. Numerical simulations of CPT in
graded granular material [5] indicated that the finer particles may experience
higher stress induced by the cone penetration. Thus, there are reasons to expect
that particles with different sizes may experience different levels of internal
stress when the assembly is sheared. DDA assumes particles as linear elastic and
the displacement within the particle as linearly distributed. Consequently, the
result includes an average state of internal stress for each particle. The simula-
tions took advantage of this capability and evaluate the possible discrepancies of
internal stresses that might exist amongst particles of different sizes.

The values of o_and o,, are the predominant components during consolidation
and shearing, respectively. The results are presented as frequency distributions
as depicted in Figures 5 and 6. The vertical coordinate shows the percentage of
particles that experience a given stress value normalized with respect o, . For
uniformly graded assembly (i.e., Type I), the stresses have a normal distribution
in both cases as would be predicted by the central limit theorem. For graded as-
semblies, however, the internal stresses are closely related to the particle size.
During K, consolidation, the coarse particles appear to resist higher vertical
stress in Types I and III assemblies. The simple shear causes higher o, 1n

coarse particles in Type II assembly. The reverse is true for the Type III assem-
bly.

5. CONCLUDING REMARKS

The result from this DDA study, albeit preliminary, does point out that the gra-
dation and particle dimensions could have significant effects on the behavior of a
granular assembly during shear. The DDA simulations also indicate that the par-
ticle angularity may affect the fabric of the assembly. An important implication
from this numerical study is that experience learned from tests on uniformly
graded sand may not be valid if used directly for non-uniformly graded sands.

6. ACKNOWLEDGMENTS

The project was funded by the National Science Council of ROC under contract
No. NSC 82-0115-E-009-373 and NSC 83-0410-E-009-026.

369



100 I

80

60 - e -

40 T o

=
0.227 0.461 0.694 0.927 1.16

100 e =

' ' Coarse 1|

80 e o __D 'ar y

& {mFine |
S mrime
& S %
o i
c i
3 :
5 s - .
U“ |
5 t
= |
i - |

. J_.—J——_J-.ﬁ,AL__J_L¢_. P ,i

0.167 0.339 0.51 0.682 0.853

100 e

|
!
80 _ﬂl

40 S

20 o

0.173 0.35 0.528 0.705 0.883
ag.jo,

Figure 5. Frequency distribution of o, at the end of K consolidation.

370



Frequency (%)

100

80.

!

60

40

AUNERBRMANR

100

80

60

40

20

0 _1-: 1

0.001 0.078 0.155 0.308

0.462

100

80 : -

60

40

20 —

H.o.n.

o LBLLL

1

0414 0727
c,, /0o,

0.056 0212

Figure 6. Frequency distribution of o _at the end of shearing.

371

1.04



7. REFERENCES

1.

10.

11.

Seed, H.B., and Idriss, .M., (1981), “Evaluation of Liquefaction Potential of
Sand Deposits Based on Observations of Performance in Previous Earth-
quakes.” Preprint 81-544, In Situ Testing to Evaluate Liquefaction Suscepti-
bility, ASCE National Convention, St. Louis, Missouri.

Tokimatsu, K., and Yoshimi, Y., (1983), “Empirical Correlation of Soil Lig-
uefaction Based on SPT N-Value and Fines Content,” Soils and Foundations,
Vol.23, No.4, pp56-74.

Been, K., Crooks, J.H.A., and Rothenburg, L., (1988), “A Critical Appraisal
of CPT Calibration Chamber Tests,” Proceedings, 1st International Sympo-
sium on Penetration Testing, Orlando, Florida, pp.651-660.

Pitman, T.D., Robertson, P.K., and Sego, D.C., (1994}, “Influence of Fines
on the Collapse of Loose Sands,” Canadian Geotechnical Journal, Vol.31,
No.5, pp.728-739.

Huang, A.B., and Ma, M.Y., (1994) "An Analytical Study of Cone Penetra-
tion Tests in Granular Material," Canadian Geotechnical Journal, Vol.31,
No.l, pp.91-103.

Cundall, P.A., and Strack, O.D.L., (1979), “A Discrete Numerical Model for
Granular Assemblies,” Geotechniques, Vol.29, No.1, pp47-65.

Rothenburg, L., and Bathurst, R.J., (1989), “Effects of Particle Shape on Mi-
cromechanical Behavior of Granular Materials, ™ Advances in Micromechan-
ics of Granular Materials, Proceedings, 2nd US/Japan Seminar on Microme-
chanics of Granular Materials, Potsdam, New York, pp343-352.

Issa, J.A., and Nelson, R.B., (1989), “Numerical Analvsis of Micromechani-
cal Behavior of Granular Materials,” Proceedings, 1st U.S. Conference on
Discrete Element Methods, Denver, Colorado.

Christoffersen, J., Mehrabadi, M.M., and Nemat-Nasser, S., (1981), “A Mi-
cromechanical Description of Granular Material Behavior,” Journal of Ap-
plied Mechanics, Vol.48, pp.339-344.

Oda, M., (1972). “Initial Fabrics and Their Relations to Mechanical Proper-
ties of Granular Material,” Soils and Foundations, Vol. 12, No.1, pp.17-36.
Rothenburg, L., (1980). “Micromechanics of Idealized Granular Systems,”
Ph.D. Thesis, Civil Engineering Department, Carleton University, Ottawa,
Canada.

. Oda, M., (1972), *The Mechanism of Fabric Changes during Compression of

Sand,” Soils and Foundations, Vol. 12, No.2, pp.1-18.

. Bathurst, R.J., (1985). A Study of Stress and Anisotropy in Idealized

Granular Assemblies,” Ph.D. Thesis, Department of Civil Engineering.
Queen‘s University at Kingston, Ontario, Canada, 219p.

372



Proceedings of ICADD-1 | pec.21-23, 1995, Taiwan, R.0.C.
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Four-node Isoparametric Finite Element Mesh
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ABSTRACT

This paper presents a numerical model that couples finite element mesh with each block
of Gen-hua Shi’s two-dimensional discontinuous deformation analysis. The main objec-
tives of this research are to enhance block’s deformation ability and to refine its stress dis-
tribution field. Computer programs were developed to model the combination of contin-
vous and discontinuous analyses of large displacement, deformation and failure mode.

Numerical simulations are performed to show the improvement and flexibility achieved
when finite element mesh is associated with discontinuous deformation analysis to han-
dle contact problems. The first application is the stability analysis of blocky vaults built
by the Mayan in Mexico. The second simulation is the failure analysis of Bartlett Dam,
a multiple-arch type dam in central Arizona, USA. The last example is a simulation of
the large displacement and vibration characteristics of an automobile’s leaf spring-dashpot
suspension system.

1. INTROCDUCTION

For material analyses, the finite element method (FEM)[1,2] is the widely-used numer-
ical tool. Conventional FEM was extensively used in the modeling of continuum. By the
phenomenon of complicated boundaries and discontinuous interfaces in real world, peo-
ple tried to develop contact finite elements by using different kinds of contact constraint
formulations. .

During the early years, Goodman et al.[3] developed the “joint element” for modeling
discontinuous joint interfaces. The flexibility matrix method[4] and the transformation
matrix method[5] have also been proposed for dealing the contact constraints of contact
problems. Based on the formulations of variational principles, the methods of Lagrange
multiplier[6,7] and penalty function[8,9] are the approaches commonly used to model con-
straint conditions for contact finite elements. However, using Lagrange multiplier method
will increase the number of variables and will possibly produce zero diagonal terms. While
for the penalty method, choosing of large penalty parameter may cause numerical instabii-
ity. Asimprovements of these two methods, the perturbed Lagrangian method and the aug-
mented Lagrangian method were introduced for contact finite element analyses. Wriggers
and Simo[10]; Simo et al.[11]; Ju and Taylor[12], used the perturbed Lagrangian method
to analyze frictional contact problems. The applications of the augmented Lagrangian
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method can be seen in the works of Landers and Taylor[13]; Simo and Laursen[14]; Hee-
gaard and Curnier[15].

Recently, Papadopoulos[16] and Zhong[17] proposed novel contact search algorithms
with variational principles to model contact-impact problems for contact finite elements.
These algorithms can be extended to multi-body contacts, however, the data preparations
were designed for a small number of contacts. The difficulty still exists because we need
a complete block kinematics to describe motions and contact behaviors of a multi-body
block system. For modeling a multi-body contact system, Cundall[18,19] developed the
“distinct element method,” which has been used for numerical computations of jointed or
blocky rocks in many engineering problems. Nevertheless, the distinct element method is
an explicit method and it sometimes incorporates fictitious forces to reach the convergence
criteria of block overlappings.

In 1988, Shi[20] proposed “discontinuous deformation analysis (IDDA),” which includes
a complete block kinematics to obtain large displacement and deformation solutions for
discontinuous multi-body system. The contact constraint formulation of DDA is based
on penalty method, and DDA is an implicit method because it solves equilibrium equa-
tions. The incorporation of diagonally-dominated inertia matrix for both static and dy-
namic calculations makes the global coefficient matrix well-conditioned. For a DDA sys-
tem, the equilibrium condition, the no-tension, no-penctration constraint conditions, and
the Coulomb’s friction law are satisfied at all contacts.

DDA chooses the complete first order polynomial as displacement function for a two-
dimensional block, no matter how irregular the shape of the block is. However, the stress
field and the deformation ability of the DDA block are restricted. In order to refine stress
field and to enhance deformation ability of the block, finite element meshes are incorpo-
rated into DDA blocks[21]. Some other improvements to the deformation ability of the
blocks have also been done[22-25].

In this paper, the basic concepts of discontinuous computation of DDA are discussed in
Section 2, and the implementation of finite element formulations into DDA is presented
in Section 3. In Section 4, the Maya vaulted structure, the Bartlett multiple-arch Dam and
the leaf spring-dashpot suspension system are simulated as numerical examples. And in
the last Section, the conclusions of DDA’s discontinuous computation and the proposed
model are addressed.

2. BASIC CONCEPTS

The main subjects of DDA are: contact scheme, open-close iteration and the inertia ma-
trix. The first two parts can be included in so-called “block kinematics.”

2.1 Contact Scheme

The first part of block kinematics of DDA is the searching of possible contact pairs. DDA
uses a value called “maximum displacement ratio” to define the possible contact pairs.
Twice the ratio times maximum vertical size of the objects is the maximum displacement
within which any vertex of the blocks could move relatively. The contact pair selection is
first determined by the distance rule. The contact pair of an angle with an edge is deleted if
the distance from the angle vertex to the edge is greater than the maximum displacement.
And the contact pair of two angles is omitted if the distance between these two vertices
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is greater than the maximum displacement. The rest of the contact pairs are further deter-
mined by the angle rule. Under the assumptions of small displacement and rotation, an
angle and an edge are defined to be possibly in contact if there is no overlapping of the
interior angles when the angle vertex is translated to the edge without rotation. And two
angles are defined to be possibly in contact if there is no overlapping of the interior angles
when these two angles are translated to same origin without rotation. Any contact will
only occur among selected pairs after the elimination of overlapping ones. For detailed
descriptions of defining contact pairs, see Shi[20].

The other important part of contact scheme is the “contact transfer.” The contact states
(e.g. contact forces, contact conditions) of all the contact pairs from previous time step
have to be transferred to the current step, if it is possible, in order to preserve the correct
contact status. -

2.2 Open-close Iteration

Since the contact conditions are basically unknown and the contact positions are ¢ontin-
uously changed, the system equations are solved iteratively. The convergence of iterations
must satisfy the conditions of no-tension and no-penetration at any contact position.

Assuming that a penetration is detected between two blocks during contacting, then the
contact condition is “close.” A stiff spring (penalty) is added at the contact position to ful-
fill the no-penetration condition. On the other hand, if a tensile contact force is detected
between two contacted blocks, then the condition is “open.” The spring connecting the
contact position is removed so these two blocks can separate independently. By adding or
removing springs, the block kinematics allows each contact to open, slide, or lock. Each
addition or removal of spring will significantly change the global equations and it may
cause other contact positions to close or open. The global equations must be solved re-
peatedly until the no-tension and no-penetration conditions at all contact positions are sat-
isfied. The procedure of adding or removing the springs is called “open-close iteration.”
During open-close iteration, DDA also applies the Coulomb’s friction law at contact inter-
face under nine combinations (e.g. open to lock, lock to slide) of open-close exchanging
mode. After the convergence of open-close iteration, the correct contact conditions, posi-
tions, and forces of the block system are found.

2.3 Inertia Matrix
DDA chooses the complete first order polynomial as displacement function for a 2D
block. The displacement field of the block can be written as

i 1 _ 0 1T ¢ Ug
0 1 Vo
()| emsa | |
v | (z—=) 0 I
0 (¥ — o) €y
Ly —%0)/2 (2 —x0)/2] Nygy)

where (¢, yo ) is the center of gravity of the block. ug, vg, 7o are the rigid body translations
and rotation of the center of gravity, and €., €, v, are the normal and shear strains of the
block.
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The displacement of a poiat within the block is relative to its own center of gravity. The
computation of DDA block system may be divergent if only the lumped mass matrix is
used because the lumped mass matrix can not control the movement of every point in the
block except the center of gravity. Therefore, DDA incorporated the accurately-integrated
inertia matrix into system equations.

The inertia matrix is more important than the elastic stiffness matrix in large displace-
ment and deformation computations because deformation strains are the first derivatives
of displacements, and the integration part of inertia matrix is two order greater than that
of elastic stiffness matrix. An accurate integration of inertia matrix can describe the com-
plete wave-propagation equations and prevent the strain components from sudden accel-
erations in every direction. Under small time interval for time step, the perturbed waves
from adding or removing springs could only disturb the block system locally around the
contact positions. As a result, the open-close iterations could easily converge and the dis-
continuous computation is stabilized.

3. FORMULATIONS

The first order displacement function restricts the block to constant stresses and limits
its deformation ability. Since blocks only contact along prescribed physical boundaries,
it is practical to model blocks of flexible boundaries when the well-developed finite ele-
ment meshes are incorporated into blocks and are coupled with algorithms of DDA’s block
kinematics, which is necessary for discontinuous system to obtain large displacement and
deformation solutions.

The 2D four-node isoparametric element mesh is incorporated into DDA in this paper.
The system variables become nodal displacements, and the equilibrium equations are de-
rived by minimizing total potential energy of the system. These equations have the form:
[K]{D} = {F}, where [K] is the global coefficient matrix, and {D}, {F'} are the un-
known and loading vectors.

Since the unknowns are nodal displacements, the submatrices and the equation solver
are nodal-based. DDA’s block kinematics remains unchanged. The derivations of subma-
trices follow classical finite element formulations[21]. Based on unique block kinematics
of DDA, this numerical model combines both continuous and discontinuous computations
for large displacement and deformation solutions.

3.1 Shape Functions
The displacement field [uv v ]T of a four-node element : (Figure 1) can be desqribed as

R RY
{-1,1) (i,1)
4 3

—p— ) £

s 1 2
1 {=may) (-1,-1} ,-1

[EAS A
Figure 1. Four-node isoparametric element
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{1} =W, 1)

where

- ~r A

< . ﬁ] 9 Ny 9 N3 9
e P A O )

are the shape functions, and
{di} = [ul Py U2 V2 Uz U3 U4 Vs ]T
are the nodal displacements. However, [N,-(m, y)] are difficult to define for general four-

node elements. By isoparametric transformation, the shape functions [N;] are defined in
natural coordinates system (£,7). The shape functions [N;(¢, )] for the square element

Ne(fm) = 7+ &OA +men), k=1,2,3,4 )

where ({x, i) are the nodal coordinates of square element in natural coordinates. And

4 4 .
=Y Ml&mas  y= 3 Nel&mu, (3)
k=i k=1
where (21, yx) are the nodal coordinates of general four-node element.
3.2 Elastic Stiffness Submatrix _
For element ¢, strain field {¢;} = [B;]{d;} and stress field {o;} = [E;][B;]{d;}, where
a0 o o gh oo 2
Bi=1 0 g o & o M g ol
8N, 8N, 8N, B8N, &Nz 8N; o8N, oN,
8y dz oy 8z dy Iz Ay Oz
and
1 v O
E
(E;] = ] v 1 0
oo =

for plane stress. E, v are Young’s modulus and Poisson’s ratio. For plane strain, E, v are
replaced by E/(1 — v?) and v/(1 — v).
The derivatives

LI 80k
dy o7
where g_x 8y
[Ji]=[£ gﬁ] (5)
dn 87y
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is the Jacobian matrix.
Then for element z, the local coefficient submatrix

t (Z Z[Bi(&m Wn)]T[Ei][Bi(‘fm: )] |[F:] |WmWn) (6)

m=1ln=1

is added to [K]. (§m;ﬂn) = (£1/+/3,£1/4/3),m,n = 1,2 are the Gauss integration
points, and Wy, W, = 1.0 are the integration weights of Gaussian quadrature. t is the
element thickness and |[J;]| is the determinant of Jacobian matrix.

3.3 Inertia Submatrix .
- Itis assumed that constant acceleration is over current time step and the initial element
nodal displacements are zero (begins with updated configurations). Let M; be the unit
mass, A be the time interval of current step, and {v?} be the initial nodal velocities of
element <. Then the local coefficient submatrix (consistent mass submatrix)

ot ([ M e ey )

is added to [K], and the local force submatrix

2Ms, ( J[ R e, vl do dy) +9) (®)

is added to {F}. The analytical solutions of the integrations can be exactly evaluated[21].
For next time step, the initial nodal velocities will be the final velocities {v;} at the end of
current time step

(vil = 2{di} - (v}), ©)

VP (X5 3 ¥'s)

Pyxs,ye Py(xy,yy)

Figure 2. Normal contact of angle to edge

3.4 Normal Contact Submatrix

When a close contact is detected between two blocks, the no-penetration requirement
has to be fulfilled. All the contact conditions can be finally converted into the case of an
angle Ps penetrating a contact edge Ps Py (Figure 2). A spring (penalty) with stiffness p™
is introduced between the angle and the contact edge along normal direction of the edge.
Ps(25,ys) is on element ¢ and Ps(zs, e ), Pr(z7,y7) are on element 5. P;, P and Py
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are assigned counterclockwise. (s, ys), (zs, ¥s ), (z7, y7) are mapped to (&5, 75 ), (€6, 76)
and (€7, 77). As spring is added, the distance from Ps to Pg P; should be zero after the dis-
placement increments are applied (the second order terms are discarded as infinitesimals).

Denote
1 z5 ys
O',O =1 Ts UYs
1 z7 yr
and

T
7= {70 el

T

wpy = {1 }[J(ee,nen

Is —

1o

Ys

}T[N,-(&,m)],

where I = \/(z7 — z6)? + (y7 — y5)? is the length of the contact edge. Then the local

coefficient submatrices
p*{m]}{m}}"
p"{mHn}}T
p*{nfH{m?}"
p*{n}}{n}}"

are added to [K], and the local force submatrices

" (%) tmi)

()

are added to {F'}.

4. NUMERICAL SIMULATIONS

(10)
(11)
(12)
(13)

(14)

(15)

Before the simulation begins, the block system configuration is prepared by a prepro-
cessor. Two kinds of meshes are input: the prescribed physical block boundary mesh and
the element mesh (Figures 3 and 4). These two meshes will form a discontinuous block
system and a continuous element system respectively. Due to the discontinuity of block
boundary, the nodes along block boundaries are further separately numbered. Then the
blocks and the elements are mapped together to produce a complete discontinuous block
system with continuous element meshes inside (Figure 5). Therefore, the block contain-
ing continuous element mesh can have a flexible boundary, The computer programs were
written in ANSI C language and the computations were all performed on Silicon Graphics
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Figure 3. The block mesh Figure 4. The element mesh

18 4] F1l 2 30 10

15 19 19 20 29 17

15 1% 19 20 20 17

10

Figure 5. Block system with element meshes

workstation. This numerical model does not have the features of tensile strength nor cohe-
siveness, but friction between the joints. Numerical simulations are performed to show the
improvement and flexibility achieved when finite element mesh is associated with block
kinematics to handle discontinuous contact problems under large displacements and de-
formations.

4.1 Maya Architecture

The ancient architecture of the Maya was created over five hundred years and some of
the constructions are even over one thousand years old. The vaulted roof was the highest
engineering achievement of the Mayan. The building of an overhanging wall requires con-
sideration of the stability problem. The Maya architect probably had certain knowledge of
the principle of stability to construct such kind of structures.

The Maya vaulted chamber consisted of two sloping walls and row of capstones bridg-
ing the gap. The core (hearting) of the vault varied according to the evolution of develop-
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Figure 6. Single vaulted roof Maya structure

ment of the binding material—cement. Two extremely different types of construction were
found in Maya vaulted roofs: from the Old Empire’s flat stone work, where large flakes or
slabs were roughly squared and laid in lime cement to form walls and vaults; to the New
Empire’s highest development of monolithic lime concrete, which was the composition of
broken limestone and lime mortar. The Old Empire’s flat stone work was studied in this
simulation.
First, a single vaulted roof is modeled to examine the stability behavior of the overhang
(Figure 6). The height of the vaulted structure is 3.70 m. The bottom of the ground base is
fixed and the system is subjected to the gravity loading. The input data are the following:

static, plane strain condition,

time steps: 6000,

spring stiffness: 1000000 MN/m,

time interval: 0.002 s,

maximum displacement ratio: 0.002,

friction angle: 35,

element thickness: 1.0 m,

unit mass: 0.0025 Mkg/m?,

gravity: 9.81 m/s?,

Young’s modulus, Poisson’s ratio: 25000 MPa, 0.20.

The stability of the early-built vaulted structures depended upon the binding material.
It is supposed that the mortar was too weak during the period of aging for the purpose
of supporting the weight of the overhanging vaulting. The weight of the overhang is not
distributed over the entire thickness of the vertical wall, but is largely borne by the narrow
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Figure 7. Single vaulted roof Maya structure under gravity, step 6000
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Figure 8. Two vaulted roofs Maya structure

zone of masonry close to the face of the vault. The weight of the upper stones was sup-
ported by the ones beneath them, and the upper vaulted structure tends to push the lower
vertical wall to move outward. The instability causes the blocks to be separated and ten-
sile strains are produced between the vertical joints due to large friction movements and
complicated contact interactions. The result after time step 6000 is shown in Figure 7.
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Figure 9. Two vaulted roofs Maya structure under gravity, step 6000
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Figure 10. Maya structure with wooden beams

The structure of two vaults and capstones is further analyzed (Figure 8). The structure
spanned about 3.60 m. The result after 6000 steps is shown in Figure 9. The numerical
analysis of the two vaults structure display the similar instability shown from the compu-
tation of the single vault that the vertical walls tend to move outward and openings are
generated between vertical joints.
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Figure 11. Maya structure with wooden beams under gravity, step 6000

The Maya architect was probably aware of the importance that the mechanical principle
of stability and the engineering consideration of strength of the cement played in the con-
struction of the buildings. It seems that the Maya architect has tried to solve the stability
problem by inserting the wooden roof members into the vaults. The exact function of the
beams has never been known, but may have been as the reinforcement in compensating
for the weakness of the binding material used.

The vaulted block system with wooden beams is shown in Figure 10. The input data are
the same, except for the unit mass (0.0006 Mkg/m?), Young’s modulus (12000 MPa) and
Poisson’s ratio (0.10) for the wooden beams. Figure 11 shows the result after time step
6000. The movements of the vaulted blocks are somehow less than those of the vaults
without the wooden beams supporting. The computation shows that the wooden members
just reinforce the regions near the sockets. The tensile strains as well as openings are pro-
duced between the joints because the weights of the vaulted blocks under the upper wooden
beam are still borne by the blocks beneath them. The numerical simulation supports the
facts that the beams undoubtedly reinforced the vault in the immediate neighborhood of
the points where they were embedded. Around these local areas the vault face may have
been guided and supported. /

From the calculations shown, the instability problem exists in the Maya structures, and
the factor that most influences the stability is the strength of the binding material. With-
out the development of the cement at the early stages of the Empire, the Mayan would not
be able to build those unique vaults. The wooden beam members were used extensively
to overcome the possible weakness of the mortar before it hardened. However, from the
numerical senses, the wooden beams only reinforce the local areas where they were in-
serted. The instability still exists if the binding material is not strong enough to hold the
vaulted stones at positions and to resist the overturning motion of the vaulted stones. With
the well-developed cement and the aid of the wooden beams, the Mayan should have no
problems in constructing the masonry vaults,
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Figure 12. Bartlett Dam with barrels, buttresses, gravity blocks and abutments

4.2 Bartlett Multiple-arch Dam

Bartlett Dam, a multiple-arch dam, is located in central Arizona, USA about 35 miles
northeast of Phoenix on the Verde River, the chief tributary of the Salt River. It was con-
structed for the Salt River Valley Water Users Association by the Bureau of Reclamation
to serve as a regulative means for conserving seasonal run-off.

The dam has a maximum height of 286.5 ft, measured from the lowest point in the foun-
dation to the top of the parapet, elevation 1803 ft. The dam is slightly curved in plane so
as to most economically fit the topography, and the radius to the axis is 1379.7 ft. The
crest length, including the ten arch-barrel sections, the gravity blocks at each end, and the
spillway gate structure at the right abutment, is 970 ft. All arch elements of the inclined
barrels are circular, and have a total central angle of 180°.

A 2D cross section of Bartlett Dam site is modeled for simulation. The configuration of
this section consists of barrels, supporting buttresses, gravity blocks and abutments at each
side (Figure 12). This section is assumed to be 60 ft below water level, and the radius to
the Inside or downstream face of each barrel is constant and equal to 24 ft. The thickness
of the barrel at this section is 4 ft. The simulation is to study if the dam is still stable under
the loadings of water pressure and earthquake excitation.

The dam is first modeled as a continuum and interacts with abutments at each side. Both
sides of the abutments and bottoms of the buttresses are fixed. The dam is only subjected
to the water pressure at the upstream face. The compressive water pressure is assumed to
be always applied normally on upstream face. The input data are the following:

static, plane strain condition,

time steps: 10,

spring stiffness: 10000000 k/ft,

time interval: 1.0 s,

maximum displacement ratio: 0.0002,
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Figure 13. Bartlett Dam with cracks in barrels under water pressure

friction angle: 30,

element thickness: 1.0 ft,

unit mass: 0.0047 kslugs/ft>,

Young’s modulus, Poisson’s ratio: 633600 ksf, 0.20,
water pressure: —3.744 k/ft.

Under the loading of water pressure, the El Central ground motion record is also applied
in plane horizontally at the abutments and buttresses (all use same shaking records). Time
step of 2500 and time interval of .02 s are input for the dynamic calculation. The total
shaking time is 50 s. When modeling the whole dam as a continuum, the dynamic earth-
quake excitation may produce tensile stress, which exceeds the designing strength, in the
barzels. Due to this reason, each barrel is assumed to be damaged and break at the center
section to form discontinuous blocks (Figure 13).

The same input data are used for the static water pressure loading. The dynamic calcula-
tion is performed for the earthquake excitation applied in plane horizontally and vertically.
Total shaking time is close to 50 s. Figures 14 and 15 display the results after 2500 steps
and they show some shearing effect at the barrels.

The Bartlett Dam is simulated from the continuous case to the discontinuous one. The
dam should be stable under water pressure loading. The dynamic simulation for discon-
tinuous case is not stable in 2D model. However, for true 3D structure, the dam is much
stronger and the shaking record for each buttress could be different. The 2D computation
is just to provide the qualitative information for the designing of a dam.

4.3 Leaf Spring-dashpot Suspension System
The analysis of leaf spring is a laminated beam problem. It has the characteristics of
large displacements and deformations, as well as complicated contact geometry and slid
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Figure 14. Bartlett Dam under in plane horizontal earthquake excitation
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Figure 15. Bartlett Dam under in plane vertical earthquake excitation

ing conditions at discontinuous interfaces. The feature of flexible boundary of the block
is suitable for modeling large displacements and deformations of the leaf spring system.
Four oblique beams are piled up to form a leaf spring system. The top beam is 1.4 m
long, beam depth is 0.8 cm. On top of the leaf spring is a large mass body with depth of 7
cm. The top beam is connected with the large mass body and is fixed at one end, shackled
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Figure 16. Leaf spring system, one end fixed; the other end shackled

at the other end (bolt with stiffness EA = 200 MN). Two bolts (stiffness EA = 60 MN)
connect the top and third beams to simulate the hoop clamps often seen in automobile’s
leaf spring system. Some other bolts (stiffness FA = 60, 200 MN) are connected for the
purpose of deforming the leaf spring system. The leaf spring (Figure 16) is forced 10.5 cm
downward at the center within 1.5 s to deform to a shape of an arc since most of the leaf
spring systems are arc-shaped. The input data are the following:

static, plane strain condition,

time steps: 2000,

spring stiffness: 1000000 MN/m,

time interval: 0.001 s,

maximum displacement ratio: 0.002,

friction angle: 20°,

element thickness: (.1 m,

unit mass: 0.00785 Mkg/m>,

gravity: 9.81 m/s?,

Young’s modulus, Poisson’s ratio: 200000 MPa, 0.28.

The solution of large displacement is the accumulations of the small displacement in each
time step. Figure 17 shows the result at the end of calculation. This simulation demon-
strates features of the numerical model, which is capable of enhancing the deformation
ability and refining the stress field of a block for discontinuous computation.

Suppose that the leaf spring will be mounted to a wheel to test the vibration behaviors
of suspension system. The block system configuration from previous calculation is used
and the stresses in beams as well as bolt forces are reset to zero. Six displacement-control
points are assigned near the center region to simulate the mounting of leaf spring to a
wheel. A dashpot is connected between the large mass body and the bottom beam.
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Figure 17. Deformed shape of the leaf spring
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Figure 18. Equilibrium position of the leaf spring, car mass

The following computations intend to simulate the vibration response of an automobile
under road excitation. The leaf spring carries two types of mass body: one is light mass
(unit mass of 0.00785 Mkg/m?>), the other is car mass (unit mass of 0.05495 Mkg/m?). The

spring system is set to the equilibrium position under static loading of gravity force (Figure
18, car mass).
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Figure 20. Load-displacement curves, car mass

The information of system stiffness of the leaf spring is required for dynamic computa-
tions. The loadings of + 0.02 MN, =+ 0.07 MN are separately applied on top of the light and
car masses to obtain system stiffness. Using static calculations, the loadings are applied
within 1.0 s and time interval is 1 x 107 s. Figures 19 and 20 show the load-displacement
curves of static calculations for light and car masses. Therefore, the system stiffness is
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Figure 21. Response of the light mass

taken approximately as (.407 MN/m for light mass case (1.815 MN/m for car mass) for
the following dynamic vibration computations.

A road excitation record is applied at the positions of mounting area. Dynamic calcu-
lation is required for vibration simulation. The damping coefficient is defined by y =
2¢v/mk, where ( is damping ratio, m is total carrying mass, and k is system stiffness.
Then the damping coefficient of dashpot is given by ¢ & 0.0112( for light mass case
(1 =~ 0.0625¢ for car mass).

The response of the mass is recorded at the center on top of the mass body. The time step
is 7500 and the time interval is 4 x 1075 s. For light mass case, a damping ratio of zero is
used for dashpot to record the response of free vibrations. Figure 21 shows the response
of free vibrations of the light mass.

As for another simulation, the car mass is carried to simulate the real automobile’s leaf
spring-dashpot suspension system. For the consideration of comfortable ride for commer-
cial automobiles, damping coefficient for the dashpot is normally set close to critical damp-
ing (damping ratio of 1.0). A damping coefficient of 0.05625 MNs/m (damping ratio of
0.9) is assigned for the computation. Figure 22 shows the response of the car mass. The
result gives the right response that there is no oscillation in the free vibration region.

5. CONCLUSIONS

The objective of discontinuous deformation analysis is to find the solutions of large dis-
placement and deformation for discontinuous contact analyses. The large displacements
and deformations are the accumulations of the small increment from each time step. Based
on the concept of integration from calculus that the result of a nonlinear integrating path
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Figure 22. Response of the car mass

is the summation of linearly infinitesimal increments, discontinuous deformation analysis
basically solves the problems of geometric nonlinearity by finding the result from linearly
simultaneous equations for each time step and accumulating the increments for final solu-
tion.

At the end of each time step, the equilibrium condition, the no-tension, no-penetration
constraint conditions, and the Coulomb’s friction law are satisfied at all contacts. The
unique block kinematics is necessary for computing the complicated contact geometry
of multi-body block system and the accurately-integrated inertia matrix controls the con-
vergence of open-close iterations for discontinuous system, Based on the formulations of
penalty method, the incorporation of diagonally-dominated inertia matrix makes the global
coefficient matrix well-conditioned, as long as the time interval is small enough.

For the considerations of flexible boundary and stress refinement of each block, the orig-
inal constantly-stressed block is replaced by an element-meshed block. The unknowns
are the nodal displacements, and the formulation is nodal-based. Numerical simulations
demonstrate that the proposed numerical model satisfactorily gives the solutions for dis-
continuous contact problems.
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Nonlinear Dynamic Discontinuous Deformation Analysis
with
Finite Element Mesh in Each Block

Chiao-Tung Chang

Lim and Nascimento Engineering Corporation
1971 E. Fourth St., Suite 200
Santa Ana, CA 92705, U.S.A.

ABSTRACT

A numerical model combining the Discontinuous Deformation Analysis (DDA) and the
Finite Element Method (FEM) is developed to study the global stability and failure modes
of the joints or interfaces in the discontinuous block (multibody) system, and the stress
distribution analysis of each block. This model maintains the characteristics of DDA's
discontinuity, FEM's continuity, and retains the DDA’s step-by-step linear kinematics
approach that has been successfully used in solving geometric nonlinearity problems. The
new formulation improves the block's deformation ability by adding a finite element mesh
in each DDA's block, and incorporates nonlinear inelastic material behavior in each
element. Therefore, static and dynamic analyses can be performed to study the detailed
mechanical response, and the global stability of the finite element meshed block system.

1. INTRODUCTION

Complex geometry is usually required in the modeling of realistic engineering problems,
Using a piecewise smooth approach, the pioneers in the field of finite element method
(FEM) were able to transform the differential equations into integral equations in order to
solve the problems of continuous structures with general shapes. The stress (strain)
distribution in the structure was used to successfully predict and detect weak zones. FEM is
now a well-developed and powerful method for solving continuous deformation problems.
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Practical geological discontinuity problems were taken into account after FEM
development. Goodman et al[1] developed Jointed Element in 1968 and applied this
method extensively in rock engineering. In 1971 Cundall[2] introduced the distinct element
method (DEM), which is now widely used for jointed or blocky rock. These two methods
are force methods that incorporate fictitious forces to reach the convergence criteria of block
overlapping and equilibrium.

Adopting implicit algorithm and using minimization of total potential energy to reach
equilibrium, Shi[3] developed discontinuous deformation analysis (DDA) in 1988. DDA
can solve the stability and stress analysis of a system of blocks containing pre-existing
cracks and joints, and it was primarily applied in rock mechanics with great success in the
stability of tunnels and of rock slopes. DDA adopts the step-by-step linear approach to
evaluate the failure modes and global stability of a discontinuous block system. The
movement of the blocks is controlled by Coulomb's friction law, the contact modes (open,
close, sliding) between blocks, and the kinematics restrictions of no-tension and no-
penetration. With the addition of inertial force which controls the stability of open-close
iteration of the block system, DDA is able to solve large displacement and deformation
problems for numerous discontinuous blocks with moving boundaries under dynamic
loads. '

The original DDA approach uses a complete first order polynomial approximation of
deformation in each block, therefore, making the stress or strain in each block constant.
Since both FEM and DDA use the same implicit algorithm, it is natural to add a finite
element mesh in each block to improve the deformation field in the block. The proposed
numerical model developed the equations for the triangular elements. All the submatrices
formulated to form the global stiffness matrix in the simultaneous governing equations
were analytically derived and accurate. The task of detecting contacts between the element-
meshed blocks is still carried by the DDA's algorithm of block kinematics. Since with the
addition of a finite element discretization in the block, more nodes are scattered along the
boundaries of the blocks, the search of reference lines for block contacts is changed from
two consecutive vertices of the block in original DDA to two consecutive nodes of the
element along the boundaries of the block in the present model. Therefore, the flexible
boundaries of the blocks makes contact detection more complicated.

At each time step in the discontinuous deformation analysis, small displacements and
deformations of the blocks are obtained in order to satisfy the infinitesimal displacement
theory. Using the step-by-step linear approach, DDA solves large displacements and
deformations of the blocks by accumulating small ones at each time step, thus, handling the
nonlinear geometric problem. The proposed model also develops and implements nonlinear
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material behavior in the element using step-by-step piecewise linear approximation. The
deformation constants and the stiffness matrix are changeable at each time step. In addition
to frictional energy lost, the change of deformability provided another source of energy
consumption in the numerical model.

2. DDA WITH FINITE ELEMENT MESH

The main purpose of placing a finite element mesh in each block is to improve its
deformation ability. Since the constant stress and strain in each block are not a realistic
assumption for a big block in DDA, the addition of a finite element discretization in each
block can eliminate this shortcoming. Not only the movement of the block system will be
depicted by DDA, but stress distributions in the blocks can also be obtained.

2.1 Merging Finite Element Mesh into a Block

The finite element mesh of constant strain elements is chosen in the proposed model.
The complete first order polynomial displacement function are used to describe the
triangular element's behavior. The function of block shapes is used as the contact
boundaries for the purpose of block kinematics in the block system. Thus, the block
geometry doesn't need to be triangular. Consider a three-node element where the
boundaries are drawn along the nodes in certain directions, forming a three-edge block with
the same size as the element. This configuration is called a three-node “element block” —
a block with nodal displacements as unknowns. If a three-node element is extended to an n-
node element mesh, an element-mesh block with n nodes is obtained. In general, a block
can be as small as an element or as large as an element mesh. Different meshes can also be
put into different blocks if conditions pcrmit.

The meshes of the elements and the boundaries of the blocks are input separately in the
mesh generation program (Figure 1.a, 1.b). After tree cutting and forming process of
element meshes and blocks, both are merged with same nodal numbers between the
elements, but with different nodal numbers between the boundaries of the blocks (Figure
1.c). The basic element in this numerical model is a triangular element. For the convenience
of putting the mesh in each block, four-node element meshes are generated first in the mesh
program. Then, a condensed five-node element— a quadrilateral element with four nodes
on its vertices and one additional node inside it that forms four triangular elements— is
used for forward model computations.
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Figure 1.a. Input lines for elements

Figure 1.b. Input lines for blocks

18 19 | 19 20 | 31 21
14 i5{15 16 | 30 17
14 1515 16 | 30 17
26 25| 25 28 | 29 27
9 10 {10 11 )24 12 112 13
& § 2 7
[ 23
1 2 2| 2 3(3 4

Figure 1.c. Mesh of elements and blocks
(same nodal numbers are shared between the elements, but
different nodal numbers are used along the block boundaries)
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Based on the idea of element-mesh blocks, the boundary of the mesh in standard FEM is
Just one block in DDA. By adding the finite element mesh into each block, it is possible to
take advantage of the continuous properties in FEM and discontinuous characteristics of
DDA, thereby simulating engineering problems more accurately. This significant
contribution was first make by Shyu[4].

2.2 Simultaneous Equilibrium Equations
The simultaneous equilibrium equations derived by minimizing the total potential
energy, I1, have the following form: '

(K] [Ka] (K] -~ [KJYIDD) ({EN
Kn] [Kzz] [Kza] [Kzn] {Dz} {FQ}

[
[K_al] [Klsz] [K-n] [K's,,] {P;}

(k] () ) - k) 2],

——

)

—
1l

As in the FEM, the nodal displacements are chosen as unknown variables and each has two
degree-of-freedom for the two-dimensional case. For the given i-th node, [K] is 2x2

submatrix representing the stiffness of displacement at the i-th node with respect to the load
acting on the j-th node. {D;} and {£;} are 2x1 submatrices for the corresponding unknown

nodal displacement and nodal loading matrices.

2.3 Displacement Functions

For a constant-strain triangular element (Figure 2), the displacement functions can be
described by a complete first order polynomial so that

(xla YI)

Figure 2. Triangular element
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[T;] and {d,} are the matrices of shape function and displacement variables per
node.
2.4 Inertia Matrix

Because the inertia force plays a key role in rigid body motion, it is crucial to include it
in dealing with the motions of a discontinuous block system. Assuming the acceleration in
each time step is constant, the 2 x2 nodal stiffness matrices and 2 x1 force matrices of
element ; can be described as

[(Kiin] = ZA_}?[HA[TJ‘U)]T[%)]@‘@ ] rs=123
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. ] =123
[F,.(,)] = A—[HA [T,.(,,] [];(s)]dxdy ]{Vi(5>(0)} {: = tensor sum

where
a ul' 5) (O)
Vi@ == @ .
A\ Vi, (0
M is the mass per unit area, and A is time interval of current time step. The analytical
solutions of the above integrations can be obtained([5].

2.5 Normal Contact Matrix

When two bodies are detected to be in contact, the requirement of no penetration must be
satisfied in DDA's block kinematics. The contact problem reduces to the relationship of
angle-to-edge (point-to-line) case. When interpenetration pushes the point P, through the
reference line T’s_]_’; (Figure 3), the distance between them should be zero after the

installation of spring with stiffness p at the contact position. The displacement of the
spring is

Element il N iz N i3

o
o

Element jy, ];iig,
(a) (b) (c)
Figure 3. Angle-to-edge normal contact process

1 x,+u, y,+v,

1 xs+u, ys+vs| - L=w/(x5—xﬁ)z-k-(ys—yﬁ)2
1 x,+u, yo+v

d=2=
L

Let :
I x, y, I owu, vy, I x, v,
So=f{1 x5 y|, and A=§+|1 u y|+|1 x v,
I X, ¥ Lowg v |1 x4 v

where the determinant
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is second order term which can be neglected as an infinitesimal.

Then
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The potential energy of the normal spring is I = pd,?/2. After taking derivatives from

the potential energy I, with respect to displacement variables, the nodal stiffness and
force matrices of element i and ; are described as

[k-'(r)i(s)] = P{hr}{hs}T rs=1273
[ki(rms)] = P{hr }{g,}T r.s=123
[Kvw]=Ple.He) rs=123
[k;(rms)] = P{gr }{&-}T r.s=12,3

{tn}= p( ] 1 r=1,2,3
{fin}=- (f“){g,} r=1,2,3

where
(=4 JD=j
for element i iQ)=i, forelement j Jj@)=j,
i3) =1 IO =j
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The detailed derivation of internal stress, external loading, displacement constraint, and
contact matrices are described in reference 4 and 5.

3. NONLINEAR MATERIAL BEHAVIOR

The main difference between continuous and discontinuous computation is the
unrecoverable rigid body motion cause by the contact between the discontinuous blocks.
Although permanent strain-induced displacement may have an unrecoverable effect on the
body with inelastic material behavior, strain from the mathematical point of view is one
order of magnitude less than rigid body displacement since it is obtained form the first
derivative of the displacement function. Figure 4 shows the mechanical behavior of blocks
with different material behavior after the release of the force in the continuous and
discontinuous cases. The rigid body displacements, zero order terms in the displacement
function, is dominant in discontinuous contact analysis. However, brittle and ductile
materials show significantly different strain-induced effects upon loading, and the strain-
induced deformation of the body may affect the contact behavior between the blocks, thus,
both rigid body motion and strain-induced deformation should be considered in the
numerical model. The present work develops material nonlinearity formulation and
implementation for DDA.

F

e AR

elastic block inelastic block two elastic blocks
with cracks
{a) {(b) {(¢)

R e s e anag

N

4

(d) (e) (£)

Figure 4. Mechanical behavior of continuous & discontinuous
blocks after the removal of the force
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Geometry nonlinearity is modeled in DDA uses a step-by-step approach in a discrete
time system. Each step starts with the deformed shape and positions from previous step;
the stresses from the previous step are considered as the initial stresses at the current step.
After adopting the updated geometry, contact positions, velocities, and stresses from the
previous time step, the computation for the current step is independent from the data of the
previous step. All the deformability constants, loading, initial stresses, and boundary
conditions can be changed at the current step. Since the time interval of each time step is
very small, the displacement, deformations, and the changes of stresses are very small.
With the addition of finite element mesh in each block, the tangent modulus of the stress-
strain relationship at the current step is very close to the secant modulus of the stress-strain
curve. Thus, the arc-length method (Figure 5) can be used to calculate the piecewise linear
modulus based on the updated values of stresses and strains for nonlinear constitutive
behavior of materials.

The use of piecewise linear line segments to depict the nonlinear material behavior
shows that the linear step-by-step approach can solve both material and geometric
nonlinearity problems. Trying to solve nonlinear material problems using only one step
may violate the infinitesimal displacement theory. The present work develops equations for
nonlinear isotropic materials using principal strain as the criterion for the change of
Young's modulus E and Poisson's ratio v. The more line segments chosen to follow the
stress-strain curve, the better approximation of nonlinear inelastic material behavior will be
for each time step. Without the incorporation of fracture criterion, the element meshed
block of the system always remains as intact material in the present model. The material is
assumed to be strain hardening after yielding since the strain-softening behavior observed
in the experimental stress-strain curve reflects the global specimen instead of the individual
blocks. The true stress-strain curve is used in the model, plus the Bauschinger effect is
considered in cyclic loading. The unloading and reloading paths after yielding are assumed
to be the same in the stress-strain curve, as shown in Figure 6.

3.1 Stiffness Matrix

A linearly step-by-step approach to discretize the stress-strain curve can be used to
simplify a material nonlinearity problem. For an isotropic inelastic material, the stress-strain
relationship is assumed to be linear at each time step. After taking the derivatives of
displacement variables from the elastic strain energy, three 2 x2 nodal stiffness of element
i are formed.

[ki(r)i(s)] = [Bi(r) ]T [E;][B;m] ; r.S = 1,2,3
where '
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Figure 6. Nonlinear inelastic stress-strain modelling
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4, NUMERICAL SIMULATIONS

4.1 Elastic-Plastic Bending of a Cantilever Beam

A cantilever beam is 10 feet long, and 2 feet in depth with downward dynamic loading
(12.5 kip/s) acting on the middie node at the end of the beam. This beam is meshed into 80
quadrilateral elements and 1 block. Figure 7 shows the original configurations of the beam.

The following pararhetcrs were used:

O firedp

©

b loadingpt

P, T, Y

A

w— tlement

—— block

O—&

Figure 7. Original configuration of the beam

case: plane stress dynamics

time step: 400

stiffness of the contact spring (penalty ): 1.0x 10’ kip/in
time interval : 0.02 s

unit mass :  5.26x 10" kslugs/ft’

gravity: 32.2 fi/s®
initial stress (0,,0,,7,): (0, 0, 0) ksf

yielding strain (g,,£,): (0.0007, -0.0007)
range of £ for (E,v) in compression : (unit of E is ksf)

loading case:
range (1): -0.0003<e< 0.0000, (E,v)=(5.760x10°,0.15)
range (2): —0.0005 <& <-0.0003, (E,v)=(5.472x10°,0.17)
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range (3): —0.0006 < £ <—0.0005, (E,v)=(5.184x10°,0.19)

range (4): —0.0007 < £ <-0.0006, (E,v)=(4.896 x10°,0.21)

range (5): —0.0010 < £<-0.0007, (E,v)=(4.608x10°,0.23)

range (6): —0.0016 <£<-0.0010, (E,v)=(4.176 x10°,0.25)

range (7): -0.0600 < £ <-0.0016, (E,v)=(3.600x10°,0.30)
for unloading : '

range (1): -0.0600 < £ <-0.0007, (E,v)=(5.760x10°,0.19)

Figure 8 to 10 show the results of deformied shape of the beam and propagation process
of the plastic area after step 140, 210, 380, respectively. They seem to match the theoretical
results in the process of forming the plastic zones[6]. The notation of g_t in the figures is
the total time, and c_t_i stands for the current time interval used. Round tint marks indicate
the area the structure reaches the inelastic range and stay in the continnous loading track,
while the dark marks show the area also reach in plastic range but in unloading track. Finite
or large deformation is step-by-step accumulation of small deformation. Figure 11 shows
the comparison of deformed and undeformed shapes of the beam. Figure 12 shows the
principal stresses and directions at the final step, where dash lines represent tension and
solid lines represent compression.

4.2 Elastic Body into Convergent Walls

This kind of contact problem is common during metal forming process such as line or
bar drawing. Because the preclusion of volumetric strain is neglected in the present model,
the nonlinear elastic rubber-like material is assumed here. The element block system
adopted from Papadopoulos[7] is comﬁrised of 3 blocks and 152 elements. Displacement
control (20 mmy/s) is used as the pulling force in this case. Figure 13 shows the dimensions
of the elastic body and the convergent wall. There is no friction assumed along the contact
surfaces of convergent walls. The original configuration of the element block system is
shown in Figure 14.

Figuré 13. The dimensions of the elastic body and the convergent walls
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Figure 14. Original configuration of the elastic body and convergent walls

The following data are used:
case: plane strain dynamics
time step: 240
stiffness of the contact spring (penalty ):  5.0x10® 10°N/mm
time interval : 0.005 s
unit mass : 9.6 x107 kg/mm’
gravity: 9810 mm/s’
initial stress (0;,0,,7,,): 0, 0, 0) 10°N/mm
yielding strain (g,,£,): (0.0007, -0.0007)
range of g for (E,,v,) of the elastic body in compression :
(unit of E is 107 N/mm)
range (1): ~0.2000<e< 0.0000, (E,v,)=(1000,0.30)
range (2): -0.4200<e<-0.2000, (E,,v,)=(910,0.32)
range (3)7 —0.5000 <£<-0.4200, (E,,v,)=(750,0.34)
range (4): —0.8000 < £<-0.5000, (E,,v,) = (466,0.36)
range (5): —1.5000 < £ £~-0.8000, (E,,v,)=(200,0.38)
E,,v, of the convergent wall: 2.1875x10° 10°N/mm®, 0.2
Figures 15 to 19 show the results of deformation process of the elastic body into the
convergent walls after step 50, 100, 150, 200, 240, respectively. This example performs
the sliding contact between the blocks. '

4.3 Post-failure Analyses of a Marble Specimen

This simulation analyzes the compressive post-failure behavior of a marble specimen
with preexisting cracks. In order to determine the initiation, propagation and interaction of
the stress-induced microcracks in complex materials such as marble, it is necessary to
preserve the configuration of the microcracks under loads and to distinguish the cracks
from the ones induced by unloading and artifacts produced during specimen preparation.
"Wood's metal,” a liquid metal alloy, can be used to fill the voids of microcracks of marble
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specimens under loads. The alloy has a melting point of approximately 80" C and it is able
to solidify at any stage of the experiment to preserve the geometry of microcracks as they
exist under loads. With the surface tension of 400 mN/m, Wood's metal can penetrate into
flat cracks. This technique not only allows one to observe the microcracks as they exist
under Ioad, but also facilitates observing the microcracks in three dimensions, once the
specimen is leached away using a mild acid solution. Figure 20 shows the vertical cross
section of the marble specimen that had been loaded up to failure[8]. The dark zones
indicate the area the Wood's metal penetrated the cracks induced by the mechanical load.
There is strain localization at the center of the specimen and four major lines of shear failure
which started from the edges of the specimen. This image is used as a starting point for the
post-failure analyses. The marble specimen is 1.436 inch long, 1.0625 inch wide and the
mesh contains 28 elements and 8 blocks. Figure 21 shows the original configuration of the
element block system. The upper and lower blocks are simulated as the loading and the
base frames. The simulation is done under displacement control. To evaluate the effect of
crack propagation or global stability of the element block system of marble specimen with
respect to different friction angles and confined pressﬁrc with different loading rates, six
cases are analyzed in the following:
(1) loading rate: 0.005 in/s, friction angle: 35°, without confined pressure;
(2) loading rate: 0.005 in/s, friction angle: 45°, without confined pressure;
(3) loading rate: 0.005 in/s, friction angle: 35°, confined pressure: 800 psi;
(4) loading rate: 0.0005 in/s, friction angle: 35°, without confined pressure;
(5) loading rate: 0.0005 in/s, friction angle: 45°, without confined pressure;
(6) loading rate: 0.0005 in/s, friction angle: 35°, confined pressure: 800 psi.
The following data were used:

case: plane strain dynamics

stiffness of the contact spring (penalty): 1.0x107 kip/ft

time interval: 0.001 s

unit mass: 5.2674 x10° kslug/ft®

maximum displacement ratio: 0.001

gravity: 32.2 fi/s’

initial stress (0, 0,, T,,): (0,0,0) ksf

yielding strain (g, £,): (0,001, -0,001)

range of ¢ for (E,, v,) of the marble specimen in compression: (unit of E is ksf)

for loading: | _

range (1): —0.001<&< 0.000, (E,, v,)=(1.0728x10°, 0.17)

range (2): ~0.900 < £ < —0.001, (E,, v,)= (4.32x10°, 0.30)
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Figure 20. Vertical cross section of the marble specimen loaded up to failure
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Figure 21. Original configuration of the marble specimen
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for unioading:
range (1): —0.900 <& <-0.001, (E,, v,)=(1.0728x10%, 0.17)
E,. v, of the loading and base blocks are 4.32 x10° ksf, and 0.30, respectively

Case 1: fast loading rate, low friction, without confinerment

7000 time steps (=2.398 s) are used in the computation. Figure 22 and 23 show the
results after time step 400 and 1000. These figures indicate the propagation of plastic
regions. Figure 24 and 25 show the results after step 3461 (= 1.25s) and 7000. The figures
show the failure mode and the progressive dilation of the marble sample.

Case 2: fast loading rate, high friction, without confinement

1000 time steps (= 1.25s) are used in the analysis. Figure 26 and 27 show the results
after time step 4000 and 10000. The failure modes and distance of sliding and opening
between the block seems to be the same with different friction angles.

Case 3: fast loading rate, low friction, with confinement

3070 time steps (= 2.398 s) are used in this case. Figure 28 and 29 show the results
after time steps 1530 and 3070. Although the failure modes of the specimen compared to
the above cases are the same, the amounts of sliding and opening between the blocks are
less when the specimen is confined. With the same loading rate used in case 1 to 3, the
confinement acts more significantly to maintain the global stability of the structure than
higher friction between the blocks.

Case 4: low loading rate, low friction, without confinement

9000 time steps (= 3.483 s) are used here. Figure 30 and 31 show the results after time
steps 600 and 1000. Because of the angle-to-angle contacts developed between the blocks,
a different failure mode happened during slow loading rate. Being unable to push away the
left large block, the wedged block in the middle moves back and forth, affecting the
movements of other blocks in the system. Figure 32 and 33 show the results after step
8700 (= 3.373 s) and 9000.

Case 5: low loading rate, high friction, without confinerment

10000 time steps (= 3.365 s) are performed in this case. Figure 34 shows the time step
10000. The sliding and opening distance between the blocks are less than those of case 4
with low friction, which is not the same as the results of case 1 and 2.
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Case 6: low loading rate, low friction, with confinement

3862 time steps (= 3.482 s) are used in the analysis. Figure 35 and 36 show the results
after time steps 3700 (= 3.363 s) and 3862. No significant movements of the blocks are
shown form the figures, the intact block stability demonstrates the effect of confinement.
With the same loading rate used from case 4 to 6, the effect of confined pressure is still
more significant to stabilize the structure systemn than that of higher friction between the
blocks.

The results of above cases indicate that different loading rates may affect the failure
modes of the stress-induced structure. Lateral confinement added to the structure has a
significant effect in reducing the crack opening and sliding of the blocks in the systém. The
effect of higher friction to maintain the intact stability of the structure depends on the
geometry, angle of contact plane between blocks, and failure mode in the system.

5. CONCLUSION

With the addition of a finite element discretization in each block, and the implementation
of nonlinear inelastic material behavior, the proposed numerical model reaches the goal of
providing a more realistic deformation ability in each block and consequently a more
precise stress (strain) distribution field. The results of numerical simulations in material
applications demonstrate that this enhanced version of DDA can solve large displacement
and deformation problems in the discontinuous block system, and give a detailed
mechanical description in the continuous element meshed block.
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ABSTRACT

The objective of this paper is to present the dynamic responses of structures which retain
sliding base to limit the translation of external loads from ground excitation. Discontinuotis
deformation analysis method is adopted for this particular sliding boundary problem. The
sliding interface which translates the friction forces from ground to superstructure is simulated
by introducing pairs of fictitious contact-springs on and along the sliding base. Response of a
simple idealized mass-spring structure subjected to harmonic ground excitation is first
presented. The chosen analytical method is validated by the closed-form solutions for the same
problem. Response of a three-story structure subjected to the 1940 El Centro earthquake is
presented in a comparison of sliding and non-sliding cases. Results reveal that lowing the
frictional coefficient of the sliding interface will reduce the peak responses. The present study
shows that, for instance, the sliding base with frictional coefficient of 0.01 successfully cuts off
the most severe excitation which may exert onto the structure and has the structure response
under little deformation. Nevertheless, the structure displaces from its origin at the end of

exercitation.

Key words: sliding boundary problem, contact-springs, sliding structure, discontinuous
deformation analysis method

1. INTRODUCTION

In attempts to mitigate the feasible earthquake hazards on buildings, the concept of
decoupling the structures, and/or its contents, from potentially damaging earthquake induced
ground motion has been adopted in recent seismic resistance practices. Building retain 2
sliding joint underneath is probably the simplest type of these practices. The sliding joint offers
a discontinuity to the ground motion propagation and dissipates energy through horizontal
frictional force. In practices, teflon coated surface or a layer of sand used in the interface
between the ground and the base of a building (Fig.1) would essentially provide a pure—ﬁictioh"
sliding base. This idea, although some experiments may have shown its attractive
characteristics, has not been enough proven quantitatively and thus possibly merge into
conventional and established design procedures. In fact, the responses of various sliding
structure have not been thoroughly understood yet. Since the field of seismic design, as
perhaps, befits a subject directly concerned with both life safety and uncertainty and is cautious
to practice. Engineering application, such as structure with sliding base, must fulfill the
concerns of liability and thus be undertaken exhaustive tests and intensive studies. This
conceptually simple idea has obviously required much more research to make it feasible.

420



column

ground

foundation

sliding slit
{sand)

Fig.1 Frictional isolation base

Responses of sliding structures subjected to harmonic ground motion have been studied by
Westermo and Udwadia[1] and Mostaghel et al[2]. Experiments of model on shaking table
have been carried out by Li et al[3] to study sliding structures subjected to sinusoidal
excitation. The effectiveness of sliding supports in mitigating structures from damaging
earthquakes has been investigated by Mostaghel and Tanbakuchi[4]. It should be mentioned
that, in these early studies, a mathematical model with two degrees of freedom has frequently
been adopted for the simulation of sliding structure. Either the superstructure and the sliding
foundation is represented by single degree-of-freedom (SDOF). Yang et al.[5] has proposed a
multi-degree-of-freedom (MDOF) model based on a similar formulation to represent multi-
story shear resistant building.

The present paper is to study the dynamic responses of sliding structures with SDOF and
MDOF by using discrete element method. The theoretical formulations are on the basis of the
discontinuous deformation analysis method. The sliding joint is directly modeled by the
separation feature of discrete elements. The friction along the sliding joint is assumed to be of
the Coulomb type, which is independent of pressure and velocity, and thus no difference is
expected between the coefficients of static and dynamic friction. The translation of friction
forces is simulated by introducing contact-springs between elements. The equations of motion
is solved in incremental, and virtually no restraint needs to be placed on the type of ground
motion.

2. THEORETICAL FORMULATIONS

The analysis of the response of sliding structure involves a sliding boundary which is not
usually for a common dynamic problem. In the present study, two types of models are used
including the mass-spring model and the discrete element model. The mass-spring model is
basically for shear resistant structure which is in the form of concentrated masses with springs.
The discrete element model by using the discontinuous deformation analysis method represents
a structure by directly meshing the configuration as the common used finite element model, but
providing the simulation of discontinuous sliding interface between elements. Brief
descriptions for both the mass-spring model and the discontinuous deformation analysis model
are in the following. The simulation of the sliding interface for the dynamic contact interaction
is also included.

2.1 Mass-spring model
The mass-spring model represents single or multi-degree-of-freedom by a few concentrated
masses (my) and a sliding base (my,) underneath (Fig.2). This model is for the shear resistant

building subjected to a horizontal excitation. A fictitious spring is introduced along sliding
interface to represent the frictional effect. Different constants for the spring are assigned for
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either sliding or non-sliding phase. In early SDOF model, the spring with rigid-plastic behavior
was first adopted[1,2], while a elasto-plastic spring was chosen lately for MDOF modelf5].
This simply avoid the difficulty of solving the sliding boundary problem, and the number of
equations remains the same in either the sliding or non-sliding phase. The equation of motion

for a typical mass-spring model is

[MJ{i} +[Cl{a} +[K]{u} = {P} (1)

where [M] is the mass matrix, [C] is the damping matrix and [K] is the stiffness matrix, and {u}
and {P} are displacement and external loading vectors, respectively.
The mass and the damping matrices are similar to those commeon in structural analyses, and

the stiffness matrix with the fictitious spring is

kK -k 0
k+k -k
k, +ky 0
[K]= PO I @
symm. -k, .
kN—l + kN _].CN
ky +k,

where & is the fictitious spring constant. This constant is a large number for the non-sliding
phase and is assigned to be zero for the sliding phase. The horizontal seismic loading 1s
prescribed. as

p ={—mNﬁ0 i=N- | 3)

sliding
surface

('“'"% ‘.l:l.,

Fig.2 Mass-spring model
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For finding the benchmark solution, a single-degree-of-freedom structure of mass m and
stiffness & supported by a base raft M that can slide horizontally is shown in Fig.3. In this
figure ug, uy and wy, are the displacements in an absolute frame for the ground, the base raft

and the roof, respectively, u; is the sliding displacement of the base raft relative to the ground,
and wuy is the displacement of the roof relative to the base raft. The coefficient of sliding

friction is p. If the structure slides under the ground excitation, in the Newton's second law,
the equations of dynamic equilibrium are:

mit, +ku, =0 4

Mii, = F —mii,, (%)
where F'is the friction force mobilized in-between the base-raft and the ground. The maximum
value of F during sliding is

F=oép(m+M)g (6)
where § is either +1 or -1 that is dependent on the coincidence between the direction of
response inertia of the structure and the direction of the ground acceleration. As & = +1, it
means that they are in opposite direction.

Using the relationships of the displacements defined above, the equations (4) and (5) can
be reformulated as

(i, +ii, +1iiy)+@*u, =0 (7)
i, = dpg —ocii, — il (8)

where o 1s the mass ratio and is equal to m/(M+m). Substituting for #¢ from equation (8) into
the equilibrium equation (7), it can be shown that during the sliding phase

i, + @, = ~8pg + oL, (9}
(1-a)it, + w*u, = —8pg (10)
~dpg

. 2., _
i, +wqu, = o (11

@
here W, = ——==. The solution for the sliding phase is thus obtained by solving equation
where J-a e solution for the sliding phase is thus obtained by solving equ
(11) when
pg —|ocdi, +iig +ii =0 (12)
On the other hand, in the non-sliding phase, ws = 0 and the ground moves with an

acceleration wo = a sin Qt, equation (7) thus becomes

i, + @', = —asinQyu (13)
The solution for the non-sliding phaée can be obtained by solving equation (13) when
pg —|otii +iig| > 0 (14)
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The incremental dynamic analysis for solving the above equations can be performed by
following the algorithm of Mostaghel et al.[4]. It is assumed that the structure is in equilibrium
at the time step for each increment. Transition of starting and end times of the sliding and non-
sliding phases can be obtained as the solution process progresses.

2.2 Discontinuous deformation analysis model

For last two decades, many efforts have been spent on computational mechanics for the
frictional contact problem. Cundall[6] has introduced distinct element method for the analyses
of discrete materials. Goodman et al.[7] has proposed the joint element for solving rock
discontinuity problems. These are basically the force method. Shi and Goodman[8] have
presented a displacement method of discontinuous deformation analysis (DDA), and is mainly
used for solving rock mechanics problems.

Using displacement method, the DDA can be treated as a generalization of the finite
element method. The following will briefly describe some theoretical bases for solving the
problem of sliding-base structure.

The discrete element (or block) used in the DDA is assumed to be constant stress and strain.
Displacement (x, v) of any point (x, y) within an element is represented by six variables and
formulated as a first order approximation form of

()
(f’]zl 0 ~(y-») (x-x) 0 (y_y0)2 k (15)
oo (x-x) 0 (y-) (x—xo% zx

\Y xy./

where (uO, vo) is the displacement of the center point (xo, yo) of an element; r, is the rotation

angleand ¢, €, v, are two axial and the shear strains.

Similar to the nodal point in a finite element mesh, the center (xo, yo) of each discrete

element with six degrees of freedom is related to others and all the relations can then be
summed up to form the global simultaneous equilibrium equations as

—Kn KIZ T - Kln | ’DI’ 'E’

Ky Ky D,| |F
K <D3>=<Fs> (16)

D[ R

Koan || Ds| 115

Ko Koy Ko J\D6) | F5)

Each K, is a 6x 6 submatrix. Submatices D, and F; are both 6x 1 and are the deformation
variables and the loadings, respectively. Submatrix X, depends on the material properties of
block 7 and K, 1s defined by the contact between block 7 and /.
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The transition of the sliding and non-sliding phases in the DDA method is assumed to be
governed by the Mohr-Coulomb criteria. The friction contact is represented by using pairs of
stiff springs on and along the sliding interface. The static frictional force in the non-sliding
phase is equal to the spring force, and the elongation of the stiff spring along the sliding
interface remains negligible. The dynamic frictional force in sliding phase is equal to the
product of the frictional coefficient and the normal contact force. The contact between two
individual elements is decomposed as a normal component R and a shear component R.

Once the R_is greater than the friction defined by the Coulomb's law, sliding occurs.
R =R tan® 17)

The right hand side of Eq.(17) is the resistance of Coulomb's friction. Kinematic energy of
the sliding block element dissipates along the contact interface.

The seismic loading is introduced onto the block system through a large block underneath
to represent the ground (Fig. 3). The ground excitation is treated in horizontal direction as an
acceleration time history, and is in the form of the inertia force of the ground block. By

solving the problem incrementally, the inertia force fx(t,.) of the ground block (m,) at time
step f; is represented as

S8)=m (1) (18)

where my is a chosen large mass to represent the ground and, ii O(l,.) is constant acceleration

within time step /. The vertical component of ground motion remains zero in the present study.
The connection between discontinuous elements to form a larger piece is accomplished by
using bolt and connection elements. The bolt element is the simplest way to allow tension in-

between discrete elements. If P(w,v,) and Qj(uj, v j) are displacements of the two ends of a
bolt which connects two different elements i and j. Then the potential energy of the bolt is

expressed as

n= %k{[(uj - ur.)+ u]2 + [(vj - vi) +v]2} (19)

where k is the spring constant of the bolt, and u and v are the two relative displacement
components of F, and (), at previous time step as the Eq.(16) is solved incrementally. The

stiffness matrix and the force vector of the bolt can be derived through minimization of total
potential energy of the Eq.(19) and should be added into the global stiffness matrix and the
global force vector in the Eq.(16).

The connection element is basically a constant strain triangle element which has nodal
points located in two or three different discrete elements. Through the similar procedure of
minimizing total potential strain energy as described above, the stiffness matrix and the force
vector of the connection element are also added into the global stiffness matrix and the global
force vector in the Eq.(16). In the current practices, two pairs of triangle elements are used for
each connection in the numerical model. The strain energy for a single element is
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where L, and L, are the shape functions used in the constant strain element. J is defined as

‘]ll J]Z

J:
J:l In

(21)

in which J11=x1_x3= Ju: Yi— ¥ Jz; = X, X5, Jzz = Y2m Vs and (xpyj)’ (x? y2)= (x 1 _)’3) are
the coordinates of the nodal points of the connection element.

3. NUMERICAL RESULTS

Numerical analyses presented to describe the dynamic responses of structures with sliding
base include a simple two-element problems (Fig.3) and a three-story-structure problem (Fig.4).
The analytical solutions the two-element problem obtained by using the mass-spring model are
used as the benchmarks to assess the validity and accuracy of DDA results. The parameters
chosen for these computations are

(1) natural frequency of the system @ = 1 Hz;

(2) frequency ratios for the harmonic ground excitation /e, = 0.1 ~ 10.0;

(3) amplitude of the ground acceleration amax = 0.3g;
(4) mass ratios of the two-element system o = m/(M+m) = 0.1, 0.5, 0.9;
(5) frictional coefficients p = 0.01, 0.05, 0.1, 0.25.
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unit:cm connection elements
(discrete elements

Fig.3 Sliding single-of-freedom model Fig.4 The three-story-building model

In the present study, material damping is not in the concern. Computed results of both the
theoretical and the DDA solutions for the two-element system simulation are shown in Figs. 5
to 7. With different mass ratio a, each figure contains the comparisons of four different
physical measurements: (a) the maximum relative displacement between the base and the

ground

u,

e | 5 (b) the maximum relative displacement between the roof and the base
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u,

|8pase’@groundimax @nd (d) the maximum ratio of the roof acceleration to the ground
acceleration 1a,,,¢80,0undlyqy The first two measurements are normalized by a factor D =
amax/€2*.  All these results indicates that this numerical method can provide reliable solutions

o/ D, (c) the maximum ratio of the base acceleration to the ground acceleration

for simple model simulation when comparing to the theoretical solutions.
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In the following, the DDA model is advanced to analyze a three-story structure subjected
to a seismic loading. The configuration of the structure frame is directly meshed by discrete
elements. The connection between any two discrete elements is accomplished by two pairs of
triangle connection elements. The dimensions are shown in Fig.4. The Young's modulus and

the Poisson's ratio of the material used are 2.0x 107 kpa and 0.15, respectively. The frictional
coefficient of 0.01 is chosen for the sliding interface for the sliding phase. The stiffness of the

spring used to represent the contact of the sliding interface is chosen as 2.0 X 10° kN/m for the
non-sliding phase. The natural frequencies for the first three modes of the structure are
0.638Hz, 1.788Hz and 2.583Hz. The acceleration time history of the 1940 El Centro
earthquake with time increment of 0.001 second (Fig.8) is chosen as the seismic input. The
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fourier spectrum of the chosen seismic input is shown as Fig.9, in which the predominant
frequency is about 1.5Hz. Structural responses under two different conditions, fixed-base and
sliding-base, are computed for the comparison. As can be seen in Fig.10, the computed sliding
of the structure under the seismic ground excitation is presented in the form of the relative
displacement of the base to the ground, in which the maximum slip during the excitation is
about 0.3m. At the end of the excitation, the structure displaces about 0.18m from its origin.
The seismic excitation which exerts to the sliding structure from the base through the sliding
interface is actually very limit (Fig.11) if comparing to the chosen El Centro earthquake record
(Fig.8). The fourier spectrum of the sliding base excitation is shown as Fig.12, and it needs to
be mentioned that the predominant frequency is about 0.35Hz. Comparing to the frequency of
1.5Hz for the chosen El Centro earthquake record, the predominant frequency of input motion
for the sliding structure has been significant reduced, and is below the nature frequencies for
the structure itself. For the fixed-base condition, the responses of the structure at the roof are
presented in Figs.13 and 14, in which the time history of the roof acceleration and the relative
displacement of the roof to the base are shown, respectively. With the sliding-base of p=0.01,
on the other hand, the acceleration of the vibration reduces to about one hundredth (Fig.15),
and the amplitude of the vibration is also obviously decreased (Fig.16). The decrease of both
the acceleration and the amplitude of the structural vibration indicates that the sliding-base
successfully isolates the structure from the severe ground excitation. The effectiveness of
using the sliding-base to avoid damaging earthquake is shown by not only the limit a¢celeration
exerted onto the structure due to the sliding-base separation, but the similarity of accelerations
for the base and the roof (Figs.11 and 15). This reveals that the structure behaviors with very
little deformation (Fig.16).
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Fig.16 Relative displacement of the roof to the base for the sliding structure (p=0.01)

4. CONCLUSIONS

The effectiveness of applying sliding-base in reducing the peak responses of structures has
been studied using the discontinuous deformation analysis method. This study shows that
using this method can simulate the dynamic response of sliding structure with frictional cut-off
in good accuracy.

Computations for a simple two-element mass-spring system indicate that the results
obtained by using the DDA model have similar accuracy as those of the analytical solutions by
using the idealized mass-apring model. Seismic response analysis for a three-story structure
with sliding base reveals that the sliding interface can reduce the ground acceleration or the
seismic loading exerting onto the structure. The sliding structure may therefore behave with
very little deformation. Nevertheless, an irrecoverable displacement for the structure may also
be existed after the seismic excitation.
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ABSTRACT

In this paper, a quantitative analysis of the dynamic-contact scheme applied in
DDA method was presented. An one dimensional model was degenerated from the
original DDA theory to study the conservation of energy and accuracy of a simple
dynamic problem with respect to the marching time step and strain incrémedi  From
stress wave propagation theory, a new criteria for DDA method user to determine the
tume step size and suitable value .of contact penalty spring constant is proposed and
verified by studying a stress wave propagation problem of a continnous medium. This
criteria relates the acoustic impedance of materials in contact and can be applied in the
dynamic analysis of any discrete element system.

1. INTRODUCTION

Finite element methods are well established in many branches of engineering
and are now routinely used in the solution of large scale industrial problems. For
some physical situations a finite element description is not, however, the most
appropriate and a discontinuous approach is better suited to model the phenomenon
concerned. Since the Discontinuous Deformation Analysis ( DDA ) method first
developed by Gen-hua Shi [1]in 1988, a number of research works have been
conducted by using this method to study the discontinuous behaviors of engineering
system. Examples of such problems include the behavior of jointed rock, -granular
material flow in soils, missile/transport impact simulations and mining and rock
blasting operations. Thus far, numerical simulations by DDA method can provide a
fairly reasonable qualitative analysis of those interested problems. This DDA method
1s continuously improved by researchers and it is worth to mention that this DDA
method together with the finite element method ( FEM ) can be grouped into a more
general theory called Manifold Method which is also developed by Shi [2]. Therefore,
the DDA method in nature is well compatible with the finite element method from a
mathematical point of view. This feature enhance researchers confidence on adopting
the existed methodologies and experience accumulated in FEM and continuously
developing DDA method to accurately solve more challenging engineering problems.

Basically, the DDA method is an incremental dynamic formulation with contact
_detection algorithm among deformable bodies. During the application of this method,
the time step size, At and the penalty spring constant Ky which is applied on the
contact analysis between blocks have crucial effects on the analysis results. Since the
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time that DDA method is proposed, rational analyses on the effect of time integration
scheme and the determination of the penalty spring value in the DDA theory are
lacking. In the present paper, the fundamental principles in classical mechanics were
applied to evaluate the characters of the dynamic-contact scheme of DDA method.
Through this quantitative study, it is desired to provide researchers some reference
information about the dynamic features of DDA theory for further investigation.

2. ATTRIBUTES OF THE DDA METHOD

Most physical systems are discontinuous at some level. For attempting to
model discontinuous systems, many numerical methods have been developed [3-9].
Methods for simulating the complete behavior of systems of discrete interacting
bodies are collectively known as discrete element methods. There are three important
aspects of every discrete element method:

(1) contact detection

(2) representation of contacts

(3) representation of solid material
According to Munjiza's [8] classification of discrete element methods, the DDA
method has the following attributes:

(1) the contact is deformable and no penetration allowed.

(2) bodies can be deformable.

(3) large displacement and small strains are applied.

(4) the discrete system can consist of large number of bodies.

(5) the material properties of the bodies can be linear or nonlinear.

(6) fracture can be allowed.

(7) the packing of discrete bodies can be dense or loose.

(8) the problem considering discrete bodies can be static or dynamic.

Due to these attributes, the DDA approach is able to simulate large variety of
problems in solid mechanics especially containing discontinuities compared with other
computational methods.

For a discrete system under external excitation and constraints, the DDA
method uses the generalized coordinates of each block as unknowns, by considering
the inertia effect, constraint conditions, interaction behaviors among blocks, and the
work due to external load, the total potential of the system can be determined.
Through variational method for minimizing the total potential energy, the simyltaneous
equilibrium equations of the discrete system can be obtained. The governing
equations are solved in the same manner as the matrix analysis of discretized
continuous media in the finite element method. The forces acting on each block, from
external loading or contact with other blocks, satisfy the equilibrium equations in a
variational sense. Equilibrium is also achieved between external forces and the block-
stresses. For each block, displacements, deformation and strains are permitted and
for the entire block system, sliding, opening and closing of block interfaces are also
permitted. Furthermore, the analysis fulfills constraints of no tension between blocks
and no penetration of one block into another. To achieve equilibrium and satisfy these
constraints, simultaneous equations are solved repeatedly with partial changes of the
coefficients each time with respect to the chosen constraint conditions. There are two
important features of DDA method that must be addressed in detail as following:
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(i) Incremental Dynamic Formulation of DDA Method

The DDA method is an incremental dynamic formulation. As shown in Fig. 1,
the DDA method uses the results of the previous time step as the new reference
state to predict the behaviors of current state. The base function used to model the
displacement and deformation of each block is keeping updated according to its
reference configuration. For each time step , there are initial velocity components and
initial stresses together with the contact forces existed in each block to form the
updated governing equations. After solving the simultaneous large sparse matrix
equations, the increments of the system are obtained. Accumulating all the
increments of time steps the total displacements and deformation of the blocky system
from the initial configuration can be traced.

Incremental computation window

X A}
Newly referenced Predicted
. configuration configuration

.
*
]
4+
L
+
’

"~~__ Initial configuration of
discrete deformable
/ multibody system

Fig. 1 Schematic diagram of the dynamic incremental
analysis form of the DDA method.

(ii) Contact-Interaction Analysis in the DDA Method _
Contact detection and interaction analysis among discrete bodies are the main
features of any discontinuous analysis theorem. In the finite element method a special
atlention is paid to interaction itself, while contact detection is usually less important
Various techniques for contact interaction in the finite element method have been
developed and various interaction models including friction law were proposed [9-20].
A novel contact detection coupled interaction analysis algorithm called "Block System
Kinematics" has been developed in the DDA method[1]. The direct mathematical
descriptions of non-tension, non-penetration requirements among blocks are given by
combination of inequalities. To minimize the total potential energy or the least square
object function with inequality constraints is a nonlinear programing problem, which is
_extremly difficult. This is most likely the reason for tyhe absence of formal treatment
of block system kinematics in classical mechanics up to the present time[l].
Nevertheless, there are some important physical factors that can be used to break
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through the numerical impasse. When the block system moves or deforms, the blocks
are in contact only along the boundary and the non-penetration inequalities can be
transformed into equations when two blocks are in contact. The equation can be
imposed on the global equations by adding very stiff springs or penalties to lock the
movement in one or two directions. If two blocks have a tensile contact force between
them, they will separate after the removal of the locks. Therefore, the non-tension
constrainting ineqalities can be reduced to lock or unlock of the locks. The global
governing equations have to be solved repeatedly while selecting the lock or
constrainting position. Using this method, even a block system with tension and
penetration can be corrected by the selection of lock positions a few times. There are
three different kinds of contacts ibetween blocks identified in DDA theory: angle to
angle, angle to edge and edge to edge ( see Fig. 2). All of these contacts can be
transformed to point-line crossing inequalities. In the case when inter-penetration
occurs at a given position, a " lock" or penalty spring is applied, which starts from the
point and lies along the direction normal to the reference line (see Fig. 3).

F
Angle to Edge Angle to Angle Edge to Edge
Fig.2 Three different kinds of contact identified in
DDA theory.

reference line

Fig. 3 Locking of penetration by penalty spring.
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The physical meaning of applying penalty springs is " to push the invaded angle back
along the shortest path". The value of penalty spring Kp is a very large value and is
suggested by Shi [1] from 10 to 1000 times of the Young's modulus of the material, to
guarantee the displacement of the spring is 10 —3 to 10 —4 times the total
displacement. However, this emperical criteria has to be applied carefully in each
particular case, otherwise large penetration may occur or extra energy. will be
introduced into the system and then causes the analysis inaccurate. ’

It can be seen from above discussion on DDA theory that time integration
scheme and the contact penalty number have crucial effects on the accuracy of this
analysis. In the following of this paper, some benchmark problems were studied to
evaluate the accuracy and characters of the DDA method.

3. OSCILLATION OF A STEP LOADED SINGLE BLOCK

(i) Analytical Approach:

As shown in Fig. 4, a single elastic block with length L and of unit thickness
and width subjected to a step loading F is designed to study the time integration
scheme applied in the DDA method. This elastic block of Young's modulus E has zero
Poisson's ratio. Due to the symetry of the loading and geometry, the block is
oscillating harmonically about its static equilibrium position. This problem is
equivalent to a problem shown in Fig. 5 with S equal to L/2. The governing equation of
a single degree of freedom model of the bar can be derived and expressed in the

following form?21:
AS). (AE
[93_}“+[ g ]uzP(t)
(1)

where A is the cross-sectional area, p is the mass density and u is the displacement
at the end of the bar.

AF@®

“Y

Fig. 4 A single block under step loading.
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[ . ll(t)

Fig. 5 An axial force P(1) is applied to the end of an
: uniform, linearly elastic bar.

If P(t) = £ H(t), then the solution of Eq. (1) is
_AS . _
u(t) = AL (l-cos(w, 1)) )

where the natural frequency is

pS 3)

T =

n

7|
n
5

n 3E (4).
From Eq.(2), the time variation of the strain of the bar can be obtained as

e =20 _ £ 1 os (@, )]
S AE (5)

(ii) DDA Approach:
According to the original DDA formulation [1], there are six general
coordinates ( or unknowns ) for each block and can be expressed as

{d}={u,v, 1,2, €y, Vxy }

(6).
These six to be solved unknowns are used to determine the displacement field of each

block. The physiéal meaning of the first three variables u, v, r represent the rigid body
translations and rotation of the block during motion. The remaining three variables,
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€x» €y 2 Yxy ,are the constant strains of the block. For the problem to be studied as
shown by Fig. 4, due to the symetry of the loading and geometry condition coupled
with the zero Poission's effect, the only remaining variable is the axial strain e. After
formulating the problem according to the procedure of the DDA method, the
displacement function, & (X . t; ) of points inside the block at time step t; can be
modelled as

L 1
S(x,t)z(x-—;‘ ) Ae(t)
(7)

where L1 is the total length of the bar at time t;_] and Ag represents the increment
of the strain from prevrious time step. That is, the relationship between €, and &,_,

is €0 =€, +* A€ The increment of the strain energy is expressed as:

Ee  }dx

L ]
H
AT, =-§-J' (eEgy—g Ee |
0

_LHE

+ Ag?
5 )

! (8).

(€2 +2Ace
n—-1 n-—

The change of the potential due to external load is

‘Anf=_f’ S(Ln—l B I"n) - ('—f) * 8( 0! tn)
=—-f+L *+Ae

(9).
The change of the total potential due to the inertial force can be written as
L, ,
AIlL = er O(x, t,;)* & (x, t,) dx
0 (10)

where m is the mass density per unit length of the bar. It is noted that the central
difference like time integration scheme were used in the DDA theory. Constant
acceleration method is applied in its theory. Therefore, the acceleration at time ty is

approximated by the following formula

La{d(tn_l)}
At dat (11)

3 (a t)) zaz{d t )}

2
=2 {d(t,)} -
ot ot Atz{ (t))

439



In Eq.(11), it can be found that the acceleration is expressed in term of displacement
to be solved. Hence, we can say that the DDA is an implicit method. According to
this time integration scheme, the Eq. (10) can be reformed as following

I [2 §(x,t) 28(x,t ) }
All = er°8(x , t)e - dx

At2 At
0
[2A8 2én— 1:| -f
= Ag*m* At ( x—
3
mL {ﬁ_ _ én—]j|
TR A
6AL LAt © (12).
The total change of the potential energy of the system is equal to |
Al = All, + AL + AIL
1
3 3
JBLH, 2 tprHe +0pe mLz g la,
2 o-1 6A[2 6At (13)

From the minimum potential energy theory, the governing equation of the block motion
is obtained as

3,

n-1 6AL
Ag= 3
mL
6AL (14)
. _2Ae . :
£ ~£
where nTOAL a-l (15)

(iii) Numerical Simulation

Eqs. (14) and (15) were used to study a sigle block under step loading ( see
Fig. 4) with L = 1 m, H=1m, E= 10000 N/m? and f= IN. Different time step sizes
were applied into the recursive formula. All of these cases were also calculated by
DDA code with zero Poisson's ratio value. Both the DDA simulation and the results
obtained from Eq. (14} are exactly the same. Figures 6(a) to 6(d) show the behaviors
of this suddenly loaded biock at different time step size. It is interesting to find that
there are some damping effect in the numerical scheme since the responses are similar
to a damped spring-mass system in structural dynamics. The damping effect is
reduced as the time step size decreases. At the case Atequal to 10~0 second the
amplitude, frequency and phase angle of simulation result are approaching to the ones
of analytical solution expressed by Eq. (5) at the max. error around 0.1% (see Fig.
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7(d)). Since there is no energy dissipation mechanism in the studied system,
conservation of total potential energy should be satisfied. That means the total

change of potential energy Al expressed by Eq. (13) should be equal to zero.
8y

40E—4 : 4.0E-4 —
£ = ]
8 2054 — & 20E-4 —
@ = )
0.05+0 0.0E+0 T T T
0.00 0.05 0.10 0.00 0.05 0.10
Time (sec) Time (sec)
(a} At= 10 =3 sec. (b) At =104 sec.
4.0E-4 - 4.0E-4 T
T Tl _p,“ Wn
i
_ j! i
— Ii —
- ! i
= ; g
8 20E4 — i & 20E-4 —
@ 4 i w i
i ! i
| J I! u J J J |
|
At i
0.0E+0 T T T T T T T 0.0E+0 I N
0.00 0.05 0.10 0.00 0.05 0.10-
Time (sec) Time (sec)
(c) At= 10 -5 sec. (d) At = 10 -6 sec.

Fig. 6 Response of a single block under step loading
simulated by DDA method using different time

step sizes.

If one substitute the strain increment expressed by Eq.(14) into Eq.(13), the
energy variation away from the conservation at each time step can be studied.
Figures 7(a) to 7(d) show the traces of energy variation normalized by Eﬁlax E/2vs.
calculated strain increment at each time step for different time increment At _ At large

time increment (e.g. At = 103 second) the energy error initially is around 55% and
gradually reduced. The smaller the time increment used, the lower the energy
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dissipation rate is gencrated. This can be a general guidance for DDA user in
choosing the time step size. It is also revealed from Fig. 6(a) that large time step
size can be used when using DDA code for static problems. Since the simulation
result quiclly converges to the static equilibrium solution at large time step size.

100 10.0

75 75
50—
25 -

a0 —

error of energy (%)
o W
| |

error of energy (%)

25 25 -
50 — 50 —
a5 - 15 =y
"°°|i||l||e1 SO0 7 T T T T
-20E-4 0.0E+0 20E-4 -20E-5 Q.0E+0 2.0E-5
s ax
{a) At= 103 sec. {b) At =10 % sec.
1.0 .2
08 015 —
o~~~ 06 — P
\Q-\i e\i 10 —
04 —
P
? 02 — %ﬁ 005
g 0.0 — S 0.00
QC_‘D 02+ LS 005 —
G o4 o S
-0.10 —
E 06 E
08 - 015 —
1.0 20 | R
-20E-6 0.0E+0 20E-5 -20E-7 0.0E+0 2.0E-7
Ag As
{c) At = 10 -5 sec. (d) At = 10 —6 sec.
Fig. 7 Traces of normalized energy variation vs.
strain increment during oscillation for different

At..

4. DETERMINATION OF THE PENALTY NUMBER IN DYNAMIC-CONTACT
ANALYSIS

As mentioned in the previous section, the determination of the penalty number
for penetration locking in DDA so far is still using an empirical criteria. In this section,
a rational analysis based on impact dynamics is presented and a criteria is proposed
for DDA user in determining a suitable value of the penalty spring.
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(i) Compatibility Condition at Shock Wave Front:

In one dimensional shock wave dynamics, a discontinuous shock front
propagating in an elastic medium has to satisfy some dynamic compatibility
conditions. As shown by Fig. 8, a shock front locating on position AB at time t
propagates to position A'B' which is a distance "dx" from A'B' after a time -interval
"di". Based on the principle in dynamics, the linear momentum of particles between
ABA'B' has to be conservative. Thus, the following equation is obtained

+ _ _ gt
(c —O')Aodt—pOAOdX(v— vh) (16)

where. O~ and V™ represent the stress and velocity of the particle behind the shock

+
front, respectively while © >V represent the ones before the shock front. Ay is the

cross-sectional area and Py is the mass density.
Eq.(16) can be reformed as

(01=-py S Iv]==pyal] o

where a is the propagation speed of the shock front. This equation can be considered
as the jump compatibility condition at the shock front.
(ii) Coaxial Impact of Two Elastic Rods:

Two elastic rods with same cross-sectional area and have acoustic impedance

(PeCo )y and (PCy)y respectively. As shown in Fig. 8, both rods initially stress free
and rod B2 with a velocity vy impacts rod B1 with a velocity vy ( where vp > v| see
Fig. 9(a)). After the impact, there is a shock wave front propagating toward left in rod

B2 and right in B1 rod ( see Fig. 9(b)). Right at the contact mtcrface two rods have a
same particle velocity and impact stress.

Fig. 8 Shock front propagation in an elastic medium.
According to the compatibility condition obtained from the conservation of

linear momentum at the shock front as expressed in Eq. (17), one cam has the
following relations:
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G==(pyCy (V=) =(pyCy), (V—V,) (18)

=2 —'1<Y2
B2 B1

Fig. 9 (a) Coaxial impact of two elastic rods.
(b) Particle velocity and stress
distributions of two rods after impact

From these equations the impact stress and particle velocity behind the shock wave
front can be derived as

_(PCohyvy + Py Cplyv,y
(PeCol; + (py Cp)y

(19}

C=-" 1

Py Cohy ’ (PoCo)

(20)

where the wave speed Cy in each rod is determined by its Young's modulus E and
material density r, as

(21).

The impact behaviors of these two coaxial impact rods can be examined by
characteristic lines in the X-t plane and in the v- s plane. For example, an infinite long
rod B1 initially at rest is impacted by rod B2 of finite length Ly at velocity vy. The

behaviors depend on the impedance ratio (F’oco)l / (PoCy), of these two rods and are
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represented by the characteristic planes shown in Fig 10. From these plots the

velocity and stress distribution inside each rod at any instant of time can be
determined [22].

At o
0
0 / oG 0/2 vy
3 3 3
tana={PyC),
2 .
B2 B1 1 X tanB = (?Co),

(@ (PgC)y= (Po%0),

3 tano = (9000)2

B2 B1 X tanﬁ: (pDCU}-l

3
3 3
) 0 - tano=(PgCo),
B2 [Bi ¢ X

(€) (PoColy < (PgSo),

Fig. 10 Characteristics lines of coaxial impact of two
rods in x-t and v-s planes.
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(iii) Relationship Between the Penalty Spring and the Time Step Size in
Dynamic — Contact Analysis:

In the dynamic contact analysis, the value of the penalty spring has a crucial
effect on the analysis result. For the DDA method when two blocks in contact, a
penalty spring has to be set to lock the penetration effect. This dynamic contact
process just like the problem of two coaxial impacted rods which has been studied
previously. The compatibility condition expressed by Eq. (17) at the impact site has
to be satisfied. To determine a suitable value of penalty spring, the contact stress in
Eq. (17) can be rewritten in term of the stiffness of penalty spring at contact interface
as

Kp o _ Kp( v, - vl) At
A | A (22)

S S
o=-=

where a represents the relative movement of two contact surfaces at speed vy and vp
respectively.

10 m —i

E = 10,000 N/ m2, p=1 Kg/m3

Fig. 11  Computation mesh of DDA method for a rod
composed of 100 connected blocks under step

loading.
.2.0B-4 - T — ;
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-1.6E-4 — Eimm time= 0.075sec
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® 80E5
@
-4.0E-5
0.0E+0
4.0E-5 ]
i | T | T | 1 | T !
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x-position (m)

Fig. 12 Analytical solutions of stress states and
locations of wave front at different time of a
rod under step loading.
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Fig. 13 Condition points for the verification of reference line and
optimal threshold line used for the determination of penalty
spring constant and time step size in DDA calculation.

Equate Eq.(20) and Eq.(22) and let A to be unit area, one can obtains

K. At= 1 = 1

p 1 1 —_
(PeColi  PeCo)a \/(Epo)l ‘/(Epo)z

(23)

This equation relates the penalty number and time step size with the material
properties of the two blocks in contact. To verify this newly proposed criteria, a
problem shown in Fig. 11 was analyzed by DDA code and was compared with the
exact solution. In the application of DDA code, the 10 meter long rod compgsed of 100
connected blocks is suddenly loaded by a 1 N constant force. Tension is allowed
between these blocks to model a continuous medium. Those penalty springs located
among interfaces of blocks start locking the penetration during the dynamic-contact

process. Totally twenty-four conditions in Kp— At plane (see Fig. 13) were applied
into the DDA code to simulate the problem. The data of this problem are listed in
Table 1. Figures 14 to 17 show the DDA results. Comparing these results with exact
solutions (see Fig. 12) of the stress and location of wave front at different time level (
t = 0.01 sec. and t = 0.075 sec.), one can leads to the following observations:

(1) In the K, —Alplane, all the condition points for DDA code inputs below the

criteria line of Eq. (23) can not provide accurate simulation results either the
strain levels or locations of wave front. It shows that the Eq. (22) can be used
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TABLE 1  Input Data to the DDA Code For A Rod Under Step Loading
E =10,000 N/m2, Pg=1Kg/m3

Point No. in the Kp — At plane Kp (N/m) At (sec.)
1 2.5x 108 2x10-6
2 2.5x% 107 2x10-0
3 2.5x 100 2x10°6
4 2.5%x109 2x10-6
5 2.5x 104 2x10-6
6 25x% 103 2x10—9
7 2.5x 108 2x1073
8 2.5x% 107 2x107°
9 2.5x 108 2x10-
10 2.5% 107 2x10-5
11 2.5x 104 2x10-2
12 2.5x 103 2x10-2

13 2.5x 108 2x10~4
14 2.5% 107 2x104
15 2.5x 106 2x104
16 2.5x 100 2x10—4
17 2.5x 104 2x10—4
18 2.5x 103 2x 104
19 2.5x 108 2x10-3
20 2.5x 107 2x103
21 2.5x 106 2x10-3
22 2.5% 109 2x10-3
22 2.5x% 104 2x 103
22 2.5% 103 2x10-3

(2).The penalty spring serves as the dynamic loading transferring mechanism
between the two contact bodies. Its stiffness affects the impulse
transmissibility during the impact. As shown in Fig. 18 to Fig. 21, for the same
time step size, larger penalty spring value compared with the one that Eq. (23)
required provides more momentum into the neighboring medium. This effect
causes larger influenced zone ahead of the major jump and let the wave front
look moving faster. It is also noted for the same time step size the oscillation
pattern in the zone around the wave front is fixed. For larger time step size
the damping effect is stronger then the oscillation is smaller and the waveform
look more clean.

(3) For the points on K — At plane of same a K »At value, larger time step causes

more energy dissipation from the system. This is due to the time integration
scheme used in the DDA code and has been discussed in the previous section
on the oscillation of step loaded single block.
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Fig. 18  Stress wave propagation simulated by DDA code at the
condition points in K,—At plane with time step size At =

10-3 second.
x1nd
At=2*10"sec
-2.0E4 " —
\\ «t:\
-1.6E4 — \\ kY
‘\ \-"2‘.

-1.2E-4 | : oW
.E ‘\rA £ \\\ *
5 ors -
£ 8085
[75]

-40E-5 4

0.0E+)

40E-5 _— 1m

: | T [ T | T | T

0.0 2.0 40 6.0 8.0 10.0
X-position (m) :

Fig. 19  Stress wave propagation simulated by DDA code at the
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Fig. 20 Swress wave propagation simulated by DDA code at the
condition points in K, ~ At plane with time step size

At=2X 103 second.
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Fig. 21  Stress wave propagation simulated by DDA code at the
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At =2 x 109 second.
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Fig. 22 to Fig. 27 show the variation of the simulation results having the same
penalty value but with different time step size. It is observed that the moving
of the wave front is faster as the penalty value increased. This implies that the
compensation mechanism between the damping effect due to the time
integration scheme and the over-impulse transmission by stiffer penalty spring.
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Fig. 22 Stress wave propagation simulated by DDA code at the
condition points in K, - At plane with same penalty number
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Fig. 23 Stress wave propagation simulated by DDA code at the
condition points in K, — At plane with same penalty number

Kp=2.5 x 104 N/m.
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Fig. 24  Stress wave propagation simulated by DDA code at the
condition points in K, — At plane with same penalty number
Kp=2.5 x 105 N/m.
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Fig. 26  Stress wave propagation simulated by DDA code at the
condition points in K, — At plane with same penalty number

Kp=2.5 x 107 N/m.

Kp =2.5%10°N/m

-2.0E-4 - s
-1.6E-4

-12E4 -

-8.0E-5 —

strain

-4.0E-5 S T
0.0E+H) R 19

4.0E-5

0.0 20 4.0 6.0 8.0 10.0
x-position (m)

Fig. 27  Stress wave propagation simulated by DDA code at the
conditton points in K, — At plane with same penalty number

Kp=2.5 x 10 & N/m.

457



The optima criteria curve in the Kp — At plane should be the equilibrium points of the
above two mechanisms. For example of the studied problem shown in Figl2, an
estimated threshold curve can be sketched as the dotted line shown in Fig. 13
according to the simulation results. If the time step size is adjusted in one's
simulation procedure, the compatible penalty value Kp should be determined according
to the Eq. (23). Nevertheless, the criteria proposed in Eq.(23) do generally provides
a reasonable initial reference for analysts working on dynamic contact analysis.

5. CONCLUSIONS

In this paper the dynamic-contact scheme in the DDA method characterized by
penalty spring value and time step size were studied in detail. It is believed that
these two parameters are the most important factors which affect the simulation
results of the DDA code. The central difference type time integration scheme used in
DDA method has some energy dissipation effect especially at large time step size.
For better analyses, the time integration scheme applied in the DDA method should
be improved. An impedance matching type criteria based on the conservation of linear
momentum principle in impact dynamics is proposed for analysts working on dynamic-
contact problems to set a suitable penalty number at the contact interface. The
adequateness of this criteria has been verified in the paper. This newly proposed
criteria can be applied to any dynamic contact analysis method. In general, the DDA
method has great potential and unique ability to help engineers and researchers
solving the type of problems containing dynamic effect and contact interaction among
multy deformable bodies. This DDA method needs more diverse application and
quantitative analysis to gain the experience to reach its full potential.
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