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PREFACE

The third International Conference on Analysis of Discontinuous Deformation (JCADD-3)
features the most recent developments in three methods of analysis of discontinuous
deformation, namely, Key Block analysis, Discontinuous Deformation Analysis (DDA), and
Manifold Method (MM). All three methods have undergone major developments over the past
ten years and are now being used more frequently in engineering practice. The theme of ICADD-
3, From Theory fo Practice, was selected in order to promote dialog and exchange between
academia and practice. The primary emphasis of JCADD-3 is how to apply Key Block, DDA and
MM in the practice of rock mechanics and rock engineering. For this reason, JCADD-3 is held in
conjunction with the 37 U.S. Rock Mechanics Symposium (Vail Rocks '99).

The proceedings of this conference contain a total of 25 regular papers and 3 keynote papers.
The papers were selected to provide a good mix of case studies and applied research. The papers
have been divided into five sections. The first section deals with recent developments in DDA
methodology. New algorithms are proposed to make DDA analysis better. It is noteworthy that
the development of many of these new algorithms has been driven by practical needs. The
second section presents various civil engineering applications of DDA where it is used as a
design tool. Both static and dynamic loading conditions are addressed. Through these
applications, we now have a better perspective of the advantages and limitations of DDA. DDA
has been found to be very powerful, but is still limited to modeling two-dimensional problems.
We are looking forward with much anticipation to being able to address real-world three-
dimensional problems in the future. This is obviously a formidable challenge which, when
completed, will be a major step forward in the modeling of complex blocky systems.

The third and fourth sections in these proceedings deal with Key-Block analysis and Manifold
Method. Two papers present engineering applications of the Key-Block analysis. The latter has
been found to be very robust and ready to be used by practicing engineers, not only as a
descriptive geometrical tool, but also in analysis and design. The use of interactive graphics
software has contributed greatly to the success of this method of analysis. The papers on the
Manifold Method reveal that this method is now in its full stage of development and is being
used in a wide range of practical applications. Several papers in these proceedings address
coupling phenomena and the complex problem of crack propagation. Finally, the last section of
these proceedings deals with hybrid methods of analysis where more conventional numerical
methods such as FEM, DEM, and BEM are combined with DDA or MM to solve complex
problems. The main idea here is to combine the best assets of each method.

ICADD-3 was sponsored by the American Rock Association (ARMA) and the ARMA
Foundation. It was supported financially by the U.S. Air Force Office of Scientific Research and
RockSol Consulting Group, Inc. I wish to thank all the authors for their interest and
contributions.

I am pleased to welcome you to Vail, Colorado.

Bemard Amadei
ICADD-3 Conference Chair
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Disclaimer

The pages appearing in these proceedings have been produced directly from material provided
by contributors without benefit of technical peer review or grammatical editing. It is the belief of
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accepted for publication. However, complete accuracy and technical viability cannot be assured.
Neither the conference chair nor the American Rock Mechanics Association (ARMA) accepts
responsibility or liability for misprints or falsehoods contained in these papers.
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APPLICATIONS OF
DISCONTINUOUS DEFORMATION ANALYSIS AND
MANIFOLD METHOD

Gen-hua Shi
P. G Box 640
Loyalton CA 96118, USA

ABSTRACT:Few recent applications of DDA and manifold method are presented in this pa-
per. 'The applications are the backward DDA simulations, the static stability computations
of DDA, the earth quake reaction computation of DDA and the dynamic rock deformation
simulation by manifold method. The fields involved are nuclear waste disposal, dam foun-
dations, slopes, tunnel portals, tunnels and tunnel lining. These applications can serve as
references for similar cases.

1 BACKWARD DDA SIMULATIONS ON KAMAISHI MINE

Backward DDA is a backward numerical model for discontinuous deformation analysis of
rock block systems. This backward analysis is a practical and unique method. It is different
from all of the traditional stress-strain computation methods.

Modern instruments offer reliable displacement, distance or strain measurements in rock
or structures; the question explored here is how to estimate the global discontinuous defor-
mations based upon these reliable, local data. The backward analysis serves exactly this
purpose. The input consists of measured data. The output will be displacements, rotations,
and strains of each block and the sliding, opening and closing of interfaces between blocks
as well as the residual displacements. The output are real measures of safety and failure.

The kinematics formulas are the same as those in the forward analysis, but the physical
meaning is somewhat different. The coefficient matrices of the backward DDA are from the
least square method which is positive definite and symmetric.

1.1Backward Analysis of Fzcavated Rock of the Test Pit

This computation is based on the six measured distances only. Since only the rocks of test
pit are considered and there is no boundary constrain.

However the results of this computation are still close to the results of Figure 2, even
the mesh of Figure 2 is totally different. Since Figure 2 has boundary constrain and two
more displacement measurements, the results of Figure 2 should be more reliable. The joint
opening of Figure 2 is smaller.



Figure 1. Backward analysis of the excavated rock of the test pit

Figure 2. Backward analysis of rock masses outside the test pit
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Average fitted error 16.3978 %
Opening distance of fracture at the west side 6.5952 mm
Opening distance of fracture at the east side 3.2386 mm

Figure 1 shows the deformations of excavated test pit rocks. The deformations and the
joint opening is ten times of the original scale.

1.2Backward Analysis of Rock Masses Near the Test Pit

This 1s the backward analysis of rocks near the test pit. The block kinematics and boundary
constrains are considered. The results from this analysis should be more accurate than the
previous analysis. The fitted movements and deformations are shown by Figure 2. The
deformations and the joint opening is ten times of the original scale.

Average fitted error 16.5767 %
Opening distance of fracture at the west side 5.2435 mm
Opening distance of fracture at the east side 3.8132 mm

1.3 Backward-Forward Analysis of Rock Masses Near the Test Pit

Backward-forward analysis is forward analysis plus all measured displacements, measured
distances. The weight of measured displacements and measured distances are high enough to
dominant the results. Therefore the results are basically the backward analysis results if the
measurements are sufficient to define all of the degrees of freedom. In case the measurements
are not sufficient to define all of the degrees of freedom, the normal forward computation
will help to define all of the degrees of freedom.

Parameters

Rock unit weight 0.028 M N/m?

E of Rock 7000 MPa

v of Rock 0.25

Rock/rock friction angle = 45° cohesion = 0.0
The input stresses are o, = ~13M Pa, o0, = —13Mpa, Tzy = 6.3M Pa

average fitted error 23.5820 %

Opening distance of fracture at the west side 3.8926 mm

Opening distance of fracture at the east side 2.8710 mm

Here the displacements, the deformations especially the joint opening results are relatively
reliable than the results of the previous computations. The result figure of backward-forward
DDA is similar to Figure 2.

2 STABILITY ANALYSIS OF DAM FOUNDATIONS USING 2-D DDA

2.1 Stability of Pueblo Dam Buttress #8 - #9
Load Top of spillway + 26.5
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Condition

Rec/ree

Up-stream joint
Down-stream joint
Sandstone/sandstone
Concrete/sandstone
Factor of safety

with 5 ft high RCC block

friction angle = 41°
friction angle = 17°
friction angle = 17°
friction angle = 41°
friction angle = 45°
by DDA = 1.99

cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
cohesion = 100psi

Figure 3 shows the buttress #8 and #9 of Pueblo dam are stabilized by the rear RCC

block.

Load

Condition

Ree/ree

Up-stream joint
Down-stream joint
Sandstone/sandstone
Concrete/sandstone
Factor of safety

Top of spillway + 26.5

without RCC block
friction angle = 41°
friction angle = 17°
friction angle = 17°
friction angle = 41°
friction angle = 45°
by DDA 0.51

cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
cohesion = 100psi

DDA program shows the mode of failure. Figure 4 shows the buttress #8 and #9 of
Pueblo dam are sliding without rear RCC block.

2.2 Stability of Pueblo Dam Buttress #10

Load

Condition

Ree/rec
Concrete/sandstone
Up-stream joint
Down-stream joint
Resistant force
Factor of safety

spillway crest

with 7ft high RCC block on back

friction angle = 45°
friction angle = 45°
friction angle = 9.9°

friction angle = 26.39°

x = 0 kips
by DDA=0.49

of buttress
cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
v = 0 kips

DDA program shows the mode of failure. Figure 5 shows the buttress #£10 of Pueblo dam
is sliding without the resistant force.

Load

Condition

Ree/rec
Concrete/sandstone
Up-stream joint
Down-stream joint
Resistant force
Factor of safety

spillway crest

with 7ft high RCC block on back of butiress

friction angle = 45°
friction angle = 45°
friction angle = 9.9°

friction angle = 26.39°

x = -180 kips
by DDA = 1.12

cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
cohesion = 0.0
y = -180 kips

Figure 6 shows the buttress #10 of Pueblo dam is stabilized by the resistant force.
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Figure 3. Buttress 8-9 of Pueblo dam are stablized by a rear block

| N

Figure 4. Buttress 8-9 of Pueblo dam are sliding without rear block
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Figure 5. Buttress 10 of Pueblo dam slides without resistant force

Figure 6. Buttress 10 of Pueblo dam is stablized by resistant force
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3 EARTH QUAKE STABILITY ANALYSIS OF A PORTAL BY 2-D DDA

The necessary condition for directly input earth quake acceleration is that the computation
has no damping. Since the damping can reduce the earth quake dynamic energy. Therefore
the earth quake damage would be underestimated. DDA can do the computation without
damping.

It is very likely, if the discontinuities are considered, especially the tension stresses would
be much lower than continuous computation. It is obvious the opeéning of the discontinuous
interfaces will absorb the tension force. DDA will let us know how much the discontinuous
interfaces open and slide.

3.1 Different Methods of Using Earth Quake Records

‘There are three possible ways to input recorded earth quake wives: time depending acceler-
ations, time depending displacements and time depending velocity (only from theory).

Time depending acceleration input is multi-block Newmark method. There are long time
experiences of using one-block Newmark method. Here the only difference is to extend to
multi-block case which is DDA case. Also if the time depending acceleration is directly
measured on the spot, the result would be true.

Two dimensional DDA is capable to input time depending displacements. Also DDA may
be able to take time depending velocity. However We can not find any previous cases even

for a single block. Therefore in the real engineering practice, these computations only can
be considered as reference results.

3.2 DDA Dynamic Computation of East Portal of Yuba Buna Tunnel

In this section, the multi-block rotation such as toppling or bucking are examined. Since
there is a joint set which made side cut, therefore 2-d computation is close to the real case.

The measured time depending earth quake accelerations are input directly into DDA com-
putation. Figure 7 shows the time depending horizontal accelerations. Figure 8 shows the
time depending vertical accelerations.

The input data of DDA computations also include block geometry and mechanical param-
eters. The following tables listed the actual input data:

unit weight 0.145 kips/ft3

E of rock mass 80000 kips/ft3
v of rock mass 0.25

friction angle 35°

cohesion 0.0

number of time steps 20000

time step 0.0025 seconds
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Figure 9. Block movement after 20 seconds

Figure 10. Block movement after 50 seconds
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The results of DDA computation can be seen from Figure 9 and 10. Figure 9 is the block
movements after 20 seconds. Figure 10 is the block movements after 50 seconds. No blocks
will go over the retaining wall under such a strong earth quake. Only up to 6 feet rock layer
can fall down.

4 TUNNEL STABILITY ANALYSIS BY 2-D MANIFOLD METHOD

4.1 Comparison of DDA, Manifold Method and FEM

Two dimensional MM has higher accuracy stress distribution and computes both joints and
blocks. The variables of MM with FEM mesh are less independent, the convergency of
equilibrium equations is substantially slower than DDA.

Compare with FEM, The mesh of manifold method is more flexible than FEM mesh. The
boundary of blocks or joints of MM is not defined by nodes of elements. The boundary is
used for integration only. The cover function of FEM is constant (0 order), MM can use any
high order cover functions to reach high accuracy.

The mass matrices of DDA and MM are analytical solutions, It will makes accurate solution
for dynamics, faster and reliable convergency for statics.

4.2 Rock Stability of Yuba Buna Tunnel

The manifold method codes can perform traditional limit equilibrium analysis for whole joint
or block systems. In continuous material zones, finite element meshes are applied.
Mechanical parameters for MM computation
unit weight

E of rock mass

0.145 kips/ft3
80000 kips/ft®

v of rock mass 0.25

number of time steps 1000 - 2000

friction angle 33

time step 0.005 seconds

Tunnel rock displacements without lining

Figure friction angle deformation

Figure 11 35° non-converge displacements
Figure 12 45° small converge displacements

4.3 Stability and Stresses of Concrete Lining

Stresses on frame lining kips/sq ft

location Gz oy Try

arch center -143.409489 -15.653142 -18.735051
arch right end -96.185288 -109.772609 75.450149
arch left end -114.362376 -88.652007 -69.511647

12
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Figure 13 shows the rock deformations with concrete lining. Figure 14 shows the key block
movements with 35° of friction angle.

5 DEVELOPMENT OF THREE DIMENSIONAL DDA

‘Three dimensional block forming code DC of DDA has been finished. It can produce 10000
blocks using less than 32 MB memory. The blocks formed by DC code of DDA can be very
complex. The blocks can have any number of polygon faces. There are no differences to
form convex and concave blocks. Two intersecting tunnels can be in a single block.

The volumes, the centers of gravity or the integrations of any polynomial over the block
are analytical close form solution.

Before the end of this year, the simple three dimensional DDA will be available. This code
can handle convex blocks with static and dynamic loading. Same as two dimensional DDA,
each block has linear displacement function or constant strains. The number of blocks will
be large enough to be able to compute the whole dam and its foundations.
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DEVELOPMENT OF DISCONTINUOUS DEFORMATION ANALYSIS
THE FIRST TEN YEARS (1986 to 1996)

Max Y. Ma
Golder Associates Inc., 4104 148™ Ave. N.E.
Redmond, WA 98052, U.S.A.

ABSTRACT: During the first 10 years (1986-1996) of development of the Discontinuous
Deformation Analysis (DDA), considerable progress has been achieved in improving the DDA
method and developing its applications. In this paper, a review of DDA computer code
development history is presented along with its modifications and improvements. Discussions on
contact model (penalty method vs. Lagrange method) block deformability and non-linearity of
block material/interface are given. The differences between DDA and the Distinct Element
Method (DEM) are summarized. DDA applications in rock, geotechnical and earthquake
engineering are reviewed. For future applications, the Numerical Manifold Method (NMM) is
recommended over DDA, with the exception of rock fall and masonry structure problems.

1 INTRODUCTION

This paper was initially prepared as an effort to clarify the different versions of the Discontinuous
Deformation Analysis (DDA) code originally developed by Dr. Gen-Hua Shi when Shi released
DDA ’95. In 1996, this paper was revised to provide a complete overview of the development
and applications of DDA.

The material presented in this paper has been obtained through years (1989-1998) of active
participation and discussion with DDA researchers and frequent conversation with Shi on issues
regarding DDA. On countless occasions, the potential and unique capabilities of DDA were
presented to engineers and managers in industry to convince them to use DDA in their projects.
This paper will summarize the discussions and industrial expectation on the development and
application of DDA.

This paper intends to share comments or assessment of DDA with the reader, especially
someone who is new to DDA. Most developments presented in this paper were made by other
DDA researchers during its first 10 years. Due to limited space, some contents are not presented
in this version of the paper. The full version will be posted in the future Web site:
www.keyblock.com.

2 DDA, AMODEL OR A THEORY?
First, DDA is not only a computer code based on existing methods or theories unlike

UDEC/DEM. In general, DDA is a more realistic physical model based on existing theories (i.e.
principle of minimum total potential energy, topology theories) and its own theories. DDA is a set

17



of theories for mechanical behavior of discontinuous systems including its integration, the best
displacement approximations, graph matrix solver and block kinematics (open-close iteration).
The major features of DDA are listed as follows:

Topological Identification of Block Systems

Simultaneous Rigid Body Movement and Deformation

The Best Displacement Approximations

Block Kinematics: Algebraic Inequalities and Open-Close Iteration.
Static and Dynamic Solutions

Graph Matrix Solver — Based on Topological Relationships of Matrix
Forward and Backward Analysis

Implicitly Coupled with FEM, or BEM

Integration for multi-body systems.

08 Noh RN

DDA was initially developed for backward analysis applications (Shi and Goodman, 1985). Up to
now, there has been very little attention towards the backward analysis. Only one attempt was
made by Prof. M. Pei in 1992 to use the backward analysis on a dam foundation.

To numerically model a discontinuous system, a complete solution has to satisfy both
equilibrium and compatibility conditions. The most difficult part is the compatibility condition
between blocks. Uniqueness and convergence of the complete solution are associated with the
compatibility condition. Though convergence of DDA solution can be theoretically proved, its
uniqueness is not clear to most people. DDA uses an open-close iteration criterion to fulfill the
compatibility condition between blocks by solving a set of system equilibrium equations and a set
of algebraic inequalities during each iteration loop for a time step. Solution of these equations is
unique. However, there could be two or more sets of equations satisfying the open-close iteration
criterion or compatibility condition. Therefore, there are potentially two or more solutions for
each set of equations during iteration at one time step. In theory, DDA has a unique solution for
each time step when the time interval is so small that only ONE algebraic inequality is needed to
satisfy the compatibility condition. Too small time intervals are not practical and could introduce
other numerical errors. More research is needed to select the time interval with consideration of
the unique solution. Note that the open-close iteration is not a perfect theory for contact
problems. However, the open-close iteration is very practical, straightforward and reliable
compared to other existing methods or theories.

One significance of DDA is its integration theory for block bodies and blocky systems, not in
two dimensions, or even three dimensions. It is the nth dimensional integration theory. DDA’s
integration theory (Shi, 1996) extended Newton’s integration theory. In Newton’s integration
theory, all volume objects like the earth traveling around the sun are treated as one point in order
to find the path, no deformation and no rotation information. With DDA, such information can be
easily obtained. More significantly, using its backward analysis, DDA has the potential to estimate
the deformation, rotation and displacement of the earth and its continental blocks millions of years
ago.

18



3 DDA COMPUTER CODES

The first DDA computer code {Shi, 1996) was a PC-based BASIC language program code in
1986 by Dr. Gen-Hua Shi who was, at that time, a Ph.D. student under Prof. Richard Goodman in
the Civii Engineering Department at U.C. Berkeley. In 1989, Shi using the NDP C compiler
completed a C version DDA. Since then, the DDA C code has been modified and improved four
times by Shi. A summary of DDA codes developed by Shi and others is presented in Table 1.

Table 1. Summary of major DDA codes.

Version Lang. Developer Notes
DDA ‘86 BASIC Shi The first DDA code.
DDA “89 C/PC Shi The first C DDA code
DDA “92 C /UNIX Shi The first X-windows DDA code
DDA ‘94 C/UNIX Shi Cohesion, Tension and Auto Kn
DDA “95 C /UNIX Shi Correction of shear lock, and rotation problem
NDDA 92 C/PC Shyu The first node-based DDA code
FBA C/SUN Gbara&Pan | The first DDA with good interface, limited functions, 1993
DDA/W C/Win Berkeley The first DDA/Win., less maiure ,1996
DDA/WT C/SUN Ohnishi Advanced, new functions, great potential, Only on SUN
DDA/ ‘94 FORTRAN | Ke Artificial Joint
DDA/SB ‘95 | FORTRAN | Lin Sub-Block, breakable block; good validations

Several DDA codes with additional functions or capabilities have been independently
developed by a number of individnals during their Ph.D. research. They include NDDA, DDA/AJ
and DDA/BK as listed in Table 1. These codes, based on Shi’s code at their time of development,
potentially inherited the limitations and possible errors rooted in Shi’s original code. Users should
be aware of this shortcoming and are suggested to conduct their own validations. More discussion
of NDDA, DDA/AJ and DDA/SB can be found in the next section.

Zhang et al. (1990) attempted to code a DDA program using an object-oriented method. When
compared to other existing theories, very competitive conclusion in term of matrix solver was
obtained. The preconditioned bi-conjugate method was also implemented into the DDA code to
speed up the matrix solving (Koo and Chern, 1996). However, finding a faster matrix solver is
secondary. In order to have a stable solution without sacrificing the accuracy and efficiency of
matrix solving process, setting a diagonally predominated matrix is the key to success (Shi, 1996).

The rigid-body rotation term in DDA is separated from other deformation variables.
Consequently, DDA does not preserve block area as blocks rotate and the blocks expand with
each increment of rotation. This can be problematic when blocks rotate in large amounts. Young
and Ke discovered this problem in 1991 and 1993, respectively. Ke (1995) proposed an updating
approach whereas MacLaughlin (1997) adopted the Taylor polynomial approximation as the
displacement function. Both approaches reportedly have shown satisfactory results. In 1990,
inconsistent results were observed when validating the shear resistance at contact governed by
Mohr-Coulomb in DDA for a two-block system. Ke mentioned similar observations in 1993, It is
the so-called ‘shear lock’ problem in which the amount of elastic shear displacement at the
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contact point is not accumulated in the DDA code. Both rotation and shear lock problems were
‘corrected’ in DDA 95 by Shi.

Since the early 1990’s, DDA researchers started developing user-friendly DDA programs. In
1993, Dr. Gebara and Dr. Pan of Purdue University made the first effort to bring DDA into a
user-friendly editing and reporting environment on Sun workstations. Dr. MacLaughlin and Dr.
Sitar of U.C. Berkeley developed DDA for Windows Version 1.1 (1995) sponsored by WES,
Army Corp. Both have very limited engineering functions. DDAWorkTool, a UNIX version,
developed by Prof. Ohnishi’s DDA group (Ohnishi et al. 1995 and Chen et al. 1996) in Japan is
the most comprehensive version by comparison. However, DDAWorkTool lacks sufficient
validation examples. '

Tt is recommended that future commercial DDA codes include the following functions or
features:

Engineer friendly, different from user friendly

Flexibility of input and reporting (cad, xls, doc, htm! and xml)

Statistical/risk analysis tool, easy sensitive analysis

Database support (easily store, search and retreat DDA project data)
Individual, specific application (slope, tunnel, topping etc.)

Cheaper, short learing curve (run first DDA problems within 8 to 12 hours)
Rich reference of published information (paper, report/thesis and case studies)
More tutorial, validation and examples, less QA for user.

COM (COM+, CORBA, Java Bean) and DDA Web server.

4 MAJOR MODIFICATIONS AND IMPROVEMENTS OF DDA

Most modifications and improvements of DDA have been focusing on 1) higher deformable
blocks, 2) contact models, 3) non-linearity, and 4) granular mechanics.

4.1 Higher Deformable Blocks

Development of higher deformable blocks was divided into two groups: a) sub-block function by
imposing a special model on the interface between sub-blocks, b) node-based or high order
displacement functions.

Ke (1993) developed Artificial Joints for DDA (DDA/AJ) under the direction of Prof.
Goodman. Ke rewrote the DDA portion of the code in FORTRAN. Similar to DDA/AJ, Lin
(1995) developed Sub-Blocks for DDA (DDA/SB) under the supervision of Prof. Amadei. Both
approaches divide a block into a number of sub-blocks. A strong tension spring was used in
DDA/AJ whereas a special compatibility condition was employed in DDA/SB. A similar approach
was used in the bonding element proposed by Ohnishi et al. (1995). The benefits of sub-blocks
include refining the stress field, the capabilities of crack propagation and block breaking. The sub-
block approach has great practical application fo rock engineering and potential application in the
numerical manifold method (NMM). A number of validations in DDA/AJ and DDA/SB have been
well documented.
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Shyu (1993) and Chang (1994) developed a node-based DDA (NDDA) using four-node
elements based on equations by Shi for his soon-to-be-released NMM. Early attempts for three-
node elements have shown some difficulties. More validations are needed for NDDA. The first
effort to use higher order Taylor displacement functions (DDA/T) was made by Koo et al. (1995)
for the second order (DDA/T2) and followed by Koo and Chen (1996) and Ma et al. (1996) for
the third order (DDA/T3). The third order is necessary to locate the maximum stress within a
block. Koo and Chen (1997) developed Fra DDA for fracture modeling based on DDA/T3.
However, how to model the contact in two dimensions still remains a challenge for DDA/T. This
led Ma (1995) to develop the first DDA/F (high order Fourier displacement function) only in one
dimension with nth order. DDA/F has advantages in wave propagation analysis in which spatial
discretization errors are ‘eliminated’. That is one of two major numerical errors in other numerical
methods for wave propagation analysis. DDA/F produced more accurate results in well-known
‘two identical beam problem’ than FEM. It is interesting to note that in some cases (one
dimension) DDA/T is more efficient than DDA/F in terms of number of order depending on
impacting or dynamic source. Further research is suggested to elevate DDA/T and DDA/F for
wave propagation analysis.

4.2 Contact Models

The DDA contact model is not a perfect solution. Many DDA researchers (Lin 1994, Cai et al.
1996, Chen et al. 1997, Lin and Hynes 1998) adopted the Lagrange type approach. Better than
the penalty method results were reported and predicted. Augment to adopt the Lagrange
approach is that stiffer springs result in ill-conditioned matrices whereas softer springs cause
serious penetration problems (Lin, 1994 and Chen et al. 1977). The Lagrange approach is a
mathematical model with little physical meaning. _

Contact between blocks that control the block system mechanical behavior has more significant
physical meaning. The contact spring method in DDA is a very effective way to represent these
physical characteristics on contact interfaces. In a real world, there is a contact stiffness, which is
never too soft or too stiff, and always somewhere in between. Moreover, this is non-linear.

It is hard to select the ‘correct’ or close spring stiffness to represent the physical stiffness. This
becomes more complicated when a simplification is made from edge/edge contacts (2D) between
blocks in reality to the point /edge contact model in DDA. In the point/point case, instability has
also been observed. It was widely reported that the normal contact stiffness is stress dependent;
softer at the beginning and becoming much stiffer when deformation at the contact increases.
Therefore, non-linear stiffness has been suggested. In DDA ’94, the stiffness was selected based
on maximum displacement and penetration at each time step. It is not a favorable approach, but it
works in some cases, especially for large number block systems.

Improvement of contact modeling should not only focus at the ‘CONTACT’ points. The
deformability of blocks also has strong influence on contact behavior. Ma (1995, 1996) suggested
that using high order displacement functions within blocks could improve the contact behavior for
penalty string method in a simple impact problem. In case of a point/edge contact, if there is more
than two points on one edge, individual point contact force may not be correct. But sum of these
contact forces is correct. With high order deformable blocks, this problem goes away, and more
desirable contact behavior can be expected. With cover functions and weight functions in NMM,
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the negative impact of simplified point/edge in DDA contact model will be further reduced. Better
performance of contact model is expected in NMM.

Time interval also has an impact on contact behavior among blocks. Often, small time intervals
are needed to increase the inertia term in the global coefficient matrix (Shyu, 1992). The inertia
matrix is far more important than the elastic stiffness matrix and, to some extent, more important
than the contact matrix. Larger inertia terms in the diagonal of global coefficient matrix increase
the stability of computation.

4.3 Non-linearity

Non-linearity of DDA is not a system’s non-linearity since a blocky system is a higher non-linear
system itseif, Beside that, there is non-linearity within blocks and between blocks. Chang (1994)
implemented a material non-linearity model to NDDA using strain hardening curves; no constitute
law was applied or needed. On the other hand, the Drucker-Prager failure criterion was
incorporated by Ohnishi et al. (1995). In 1992, Huang and Ma developed a non-linear contact
model for analysis of slope progressive failure including strain softening using the stress and strain
curve. In general, one issue of non-linearity still not accounted for is the contact stiffness non-
linearity as discussed above.

4.4 Granular Mecharnics

Even before Peter Cundall’s DEM, a discontinuous or discrete approach was used in particulate
media, especially that of granular flow. From the 80’s to the early 90’s, Cundall and Strack
(1978), Ting et al (1987), Ishibashi et al. (1989) and Ma (1994) extensively conducted DEM
simulations of granular materials. One mystery of DEM for the two dimensional circular disk was
the excessive rolling, and was ‘solved’ by increasing the polar moment of inertia in the order of 5
to 7. However, a physical model of 3D disk by Ishibashi et al. (1989) indicated no excessive
rolling. Ishibashi’s study suggested that excessive rolling was the result of DEM numerical errors
or method’s limitations.

Ohnishi’s group in Japan, Wang’s group in Taiwan and Bray’s group in the U.S. developed the
DDA code for rigid disks, known as DDAD. Ohnishi and Miki (1996) and Wang et al. (1997)
also developed DDAD for elliptic disks in two and three dimensions, respectively. Thomas (1997)
has developed a disk cluster model. Up to now, no validation has been reported on the disk
rotation in DDAD; neither other well documented validations of DDAD, regardless of shape
(circular or elliptic). There is not enough convincing validation that excessive rolling does not
occur in DDAD. Developing elliptic or disk cluster does obtain reasonable results, but did not
fully address its formulation questions.

Normally, over thousands disks or elements are needed for the simulation of granular media.
The original DDA solver is not suitable for large numbers of elements. Thomas (1997)
incorporated the PBCG equation solver and reported reasonable performance. Wang et al. (1997)
discussed selection of the contact spring stiffness value in DDAD which is similar to those
suggested by Ting (Ting et al. 1987) for DEM. Ishijawa et al. (1997) and Huang et al. (1995)
presented their studies of mechanical behavior of particulate assembly of the polygon shape.
Reasonable results were found.
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5 DDA APPLICATIONS

During the past 10 years, DDA has been applied to several real world projects at different stages
of design and investigation. It was never intended to be used as a primary or main tool for design
or investigation. DDA applications, unfortunately, are still at early stage for real world problems.
A good engineering solution normaily comes from three approaches: observational, empirical and
analytical. In the last 10 years, most of the effort has been focused on developing DDA as a useful
analytical tool. DDA could also be a very powerful tool to improve existing empirical/analytical
equations/methods (Yeung 1993, Shinji 1997, and Ma and Yeung, 1994).

5.1 Rock Engineering

A great amount of progress has been made in validating DDA for rock engineering problems.
Yeung (1993), the first DDA Ph.D., conducted a series of DDA validations. His contributions not
only include DDA’s validation, but also suggestions of improvement over existing widely used
methods such as Goodman & Bray Chart, G&B limit equilibrium analysis of toppling and three
hinged beam. In a sense, its contribution is beyond the DDA application itself. Ohnishi et al.
(1995) and Sasaki et al. (1996) compared DDA results with FEM and experiment results in the
areas of stress distribution, displacement and toppling. These comparisons are the most valuable
information for future DDA development and application. Inconsistency in displacement between
DDA and measured values in tests still remains unknown. It is speculated that this due to contact
stiffness values used in DDA and actual values in test. _

There is quite a distance to go before DDA can be used in rock engineering as a practical tool.
Unfortunately, the key elements, which are essential in rock engineering practices, have not been
well developed. The key elements include the structural elements, groundwater and residual
strength.

" A simple model of rock bolt (Yeung et al. 1994; Ohnishi et al. 1995 and Ke 1997) and concrete
lining was developed and implemented. However, these models do not model more practical
structural elements and construction sequences. Structural elements consist of reinforcement
(cables, bolts) and surface support (concrete lining, steel sets and shotcrete). Non-linearity of the
structural elements and interface between the elements and the rock should be implemented with
consideration of construction sequences in future development.

Most rock slope slides or failures are triggered by increased hydrologic pressure. Directly
coupling rock and flow interactions is extremely challenging with the uncertainties in existing
coupling methods and concepts. A simple algorithm using pressure load presenting water pressure
or changing unit weight may simply do the job.

Even in structural failure of a rock mass, the residual strength along joints is a key controlling
factor for design or evaluating rock mass stability. Shear strength including roughness is described
in terms of a friction angle, cohesion and tension, and contact is modeled using normal and shear
springs in DDA. With such a simple contact model, residual values of these parameters are
necessary to be considered in future DDA models to account for complicate contact/shear
mechanism between rocks. Implementation of those structural elements and residual strength is
relatively easy and more effective in NMM. Therefore, NMM is recommended for future
development.
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Key elements mentioned in this section are not critical for simulating rock fall problems. Rock
fall problems involve block impact, rotation, traveling and breaking. DDA provides an ideal
application for this problem. MacLaughlin (1997) presented a well-documented validation of
block traveling. Most DDA rock fall related developments can be found in Ohnishi et al. (1996),
Shinji et al (1997), and Cheng and Tsui (1997).

5.2 Geotechnical Engineering

In 1990, Dr. W.F. Chen and Dr. Austin P. Pan (1990, 1991) pointed out the potential for using
DDA to analyze bearing capacity (limit equilibrium) problems in geotechnical engineering. DDA
does not have the limitations of the limit analysis (LA), limit equilibrium method (LEM), and
FEM. Their work was published in 1990, which was the first DDA publication except that by Shi
and Goodman. In their study, DDA was validated and ‘corner effect’ or ‘corner cutting’ was
mentioned for the first time, which later was adopted in many studies and was carefully examined
by Gebara (1594).

Even though Dr. Chen and Dr. Pan’s claim that DDA is a type of limit analysis is debatable,
DDA'’s ability to yield more accurate solutions in bearing capacity problems was demonstrated by
comparison with the limit analysis solutions in their report. The bearing capacity solutions from
limit analysis or limit equilibrfium method are not complete solutions (Fang 1991), since they do
not satisfy all the requirements for the solution of a boundary-value problem. The solutions (LA
or LEM) usually satisfy either equilibrium in a limited form or kinematics compatibility. The
solutions do not satisfy the constitutive relations and, therefore no information on deformations.
LA or LEM does not consider the effect of geometry and boundary condition changes during
loading, load direction. Empirical reduction factors have been applied in determining bearing
capacity by limit analysis for problems with less complicated geometries and loading conditions
such as: eccentric and inclined loads, tilt footing base, footing adjacent to or on a slope, and non-
homogeneous/layered foundation.

DDA offers a simple and straightforward solution without a2 need for empirical reduction
factors. Moreover, the foundation settlements due to the deformation or sliding along shear planes
can be estimated by DDA since the shear stress vs. displacement relations can be implemented
into DDA (Ma et al. 1995). Therefore, a block or slice system is not necessary to be assumed in
the limit equilibrium status as in the limit equilibrium analysis or in one extreme condition (low
bound or upper bound case) by the limit analysis. DDA can simulate the entire failure process
starting from the initial condition with consideration of changing boundary conditions and more
realistic constitutive relations at assumed failure planes. A validation case of retaining wall was
presented by Ma et al. (1995). Active pressure from DDA and classical solutions is within 5%
difference. Huang (1995) demonstrated a unique DDA approach to handle “H’ Block retaining
walls with a number of log-spiral failure planes in the backfill soil. Consistent results from DDA
and field verification were reported.

In slope stability problems, with exception of circular failure in cohesive soils, an “exact” or
“true” factor of safety (F.S.) of a slope based on limit equilibrium theory cannot be obtained. An
average factor of safety computed from different rigorous methods may provide a good estimate
of the degree of stability for a slope. Duncan (1992) concluded in his state-of-the-art paper that
methods satisfying all conditions of equilibrium are accurate for any conditions. The F.S.’s
computed from conventional methods differ by no more than about 12 percent from those
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calculated by other more complicated methods that satisfy all conditions of equilibrium, and no
more than about 6 percent from what can fairly be considered to be the correct answer. Such
conclusion was supported by Espinoza et al. (1994), in their five examples studies. However, an
average value may not necessarily represent the “most accurate” value of a slope factor of safety
(Sharam, 1996). In addition, all of these methods have numerical problems under some
conditions. For example, the friction angle between inter-block in the Spencer Method for non-
circular failure planes is usually over estimated in general practices. That was the case in
Kettleman Hill Landfill failure (Ma and Yeung, 1994) where overestimation of the friction angle
between slices results in too higher F.S. This DDA study confirmed the previous finding of
potential overestimation of F.S. using conventional methods (Huang and Ma, 1992).

Like limit equilibrium analysis or limit analysis, the failure plane or surface has to be pre-
defined in DDA. However, one major difference between DDA and LA or LEM is that besides
simulation of deformation or displacement at different loading stages, DDA can also implement
more realistic soil behavior such as strain softening. In LA or LEM, only perfect elastic and plastic
behavior of soil can be considered. Huang and Ma (1992) demonstrated the capability of DDA to
handle the progressive failure problem of the Carsington Embankment Dam. Progressive failure
analysis normally involves the complex deformation or displacement and strain softening, which is
far beyond the LA or LEM’s capability, even though several attempts have been made in the past
(Baker and Frydman, 1983). Chen (1993) also demonstrated the potential of DDA in soil slope
stability problems.

LEM provides solutions for practical use in almost every soil stability problems (foundation
bearing capacity, slope and retaining structure stability), and DDA has a great opportunity in these
areas. A chance of DDA becoming a popular engineering tool for these problems is extremely
low. Furthermore, DDA for soil stability problems requires the accurate computation of contact
forces. With the simplified point/edge contact in DDA, it likely produces incorrect contact forces
when-more than two points are on one edge. Therefore, NMM, instead of DDA is recommended.
Moreover, NMM has the flexibility to implement non-linear material properties, which is essential
in geotechnical engineering. More progress should be made to improve existing method and
empirical equations based on DDA study.

5.3 Earthquake Engineering

DDA is a dynamic model that can be used in earthquake engineering applications in rock
engineering (Ma and Yeung, 1992), geotechnical engineering (Ma et al. 1992 and Ma 1995) and
masonry structures (Ma et al. 1997). Tsai and Wang (1995) made a good effort to apply DDA
for sliding structures under seismic excitation. Lin and Hynes (1998) modified the DDA with
Lagrange multiplier in contact model for a few sliding blocks system, but did not provide
conclusive results. A common problem in DDA seismic analysis may have an unrealistic or
excessive displacement or rebound mainly in normal contact direction (Ma and Yeung, 1992). A
constant spring stiffness value was believed to be the fact. In reality, the spring stiffness is non-
linear, stress dependent. It is relatively small with small contact forces at the beginning. Using
constant spring stiffness values, normally 100 to 1,000 times the Young’s modulus, leads to large
and unrealistic reaction forces. It becomes worse for blocks on free surfaces. Moreover, as
discussed in the previous section, the deformability of blocks also is a major fact in contact
models especially for seismic analysis. In addition, the time interval has a major influence on the
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dynamic contact model as well. The scheme to select the time interval proposed in Wang et al.
(1995) is very similar to a simply approach presented by Ting et al. (1987) and Ma (1994) for the
DEM model.

Back in 1991, Prof. R. Seed of U.C. Berkeley suggested a DDA ‘seismic analysis validation test
using a two-block system (Figure 1). Dr. Seed indicated that to his knowledge, no one was able to
validate existing numerical methods with analysis solution for this case.

1 |

Figure 1. Two-block system.

A successful validation for this two-block system was presented in Ma et al. (1992) and confirmed
by Tsai and Wang (1995). However, in 1997, it was found that the seismic induced displacement
of the top block varied with the time interval when the time interval was reduced to below a
certain limit. In theory, this should not happen. No explanation has been found for this
phenomenon.

As a physical model, DDA is a powerful tool to simulate the seismic response of a complex
structure such as a slender tall masonry tower (Ma et al. 1996). It was found that a discrete
system could sustain a strong earthquake without total collapse. As mentioned before, NMM
would give better contact modeling than DDA in two aspects; higher deformability within blocks
and cover/weight function instead of point/edge contact.

5.4 Masonry Structures and Other Applications

Similar to rock fall problems, masonry structure problems are ideal candidates to use DDA
applications. Masonry structures have a strong non-linear effect and dominate the strength end
deformation structural behavior. The assessment of the load carrying capacity of masonry
structures like bridges is of particular interest when these structures are still in service and have to
sustain service loads higher than in the past. When Lin (1995), Chiou et al. (1995) and Amadei et
al. (1995) more focused on the shears stress within blocks, Shyu (1993), Gebara (1994), and Ma
et al. (1995,1996) were interested in masonry structural stability and seismic deformation. A case
study of seismic response of a slender tall tower (Ma et al., 1996) suggested that discontinuities
or joints between blocks inherently reduce the integrity and strength of masonry structures, but
sliding along these joints consumes the seismic energy during earthquake. Therefore, while local
failure occurs due to sliding or separating, the probability of overall structural collapse is low.
DDA could provide some insight to why actual seismic displacements along failure surfaces are
always lower than predicted by other analytical or empirical methods in rock or geotechnical
engineering.

DDA has been applied to others areas such as seismic fault slips (Chen, 1996) and seabed
excavation (Chien and Oh, 1997). Gebara (1994) conducted an outstanding DDA research on
rock-rubble/boulder overlay penetration problems under the supervision of Prof. Austin Pan.
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6 DDA AND DEM

The discrete (distinct) element method (DEM) as proposed by Cundall and Strack (1978) is
conceptually simple. DEM employs the explicit central finite difference scheme to solve the
equations of motion of block system to obtain dynamic relaxation solution. However, it is
extremely difficult to achieve the static equilibrium of a discrete system with a large number of
elements, especially in a loose packing state (Ishibashi et al. 1989 and Ma 1994). Even Cundall
and Strack (1978) stated in their 1978 report that the static equilibrium of a discrete system can
be reached ‘when the inertia force is significantly smaller than the contact forces’. The inertial
force normally has the same magnitude as the contact force at the initial stage. Only in dense
packing configurations, the inertia force would relatively quickly be reduced to far below the
contact force after many time steps.

In contrast to DEM, DDA does not have such complex and uncertain static solutions. Kinetic
damping is applied in DDA, which effectively filters out the motions with higher modes to
unconditionally bring the system to a static equilibrium (Chang and Acheampong 1993, and Wang
et al. 1995). The time interval determined by users prior to computation is 100 to 1,000 time
larger or more than that used in DEM. Consequently, DDA could be faster than DEM for static
problems as predicted in 1992 (Chang, 1992). The time interval can be relatively large as long as
the small displacement assumption in DDA is not violated.

The time interval shouid be kept very small in dynamic analysis for both DDA and DEM. It also
depends on contact stiffness, especially for problems involving wave propagation. No damping is
used in current DDA. There are two types of damping that are used in DEM: mass-proportional
damping and stiffnhess-proportional damping. The mass proportional damping is effective in
reducing low frequency oscillatory motion of a given system whereas the stiffness proportidnal
damping is more effective in removing the high frequency oscillation of individual block against
each other. DEM permits “inadmissible” or “excess” penetration, which further leads to extra
energy. Two types of damping are utilized to consume such extra energy. In DEM, these
damping phenomena are inevitable, even for damping free block systems in loose packing
configuration with a considerable number of blocks, and viewed as the “artificial” or “numerical”
damping. DEM cannot simulate the real time dynamic response of given block systems, because
there is no real time ‘artificial’ damping. These two types of damping can be easily implemented
into a DDA code to ‘truly’ represent physical energy absorption. DDA should not have problems
with modeling damping free block systems.

Table 2 shows a comparison of DDA and DEM equilibrium and compatibility conditions, which
must be fulfilled in order to obtain a complete solution.

Table 2. DDA and DEM.

Within Blocks Equilibrium Compatibility
DDA Guaranteed Displacement function
DEM Dynamic equilibrium Rigid body

Between Blocks Equilibrium Compatibility
DDA Stable No penetration & tension
DEM Unstable Inadmissible penetration
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7 CLOSING REMARKS

For future DDA applications, more effort is needed to improve and modify the methods or
empirical equations used in current accepted practices.

Non-finear spring stiffness should be considered along with higher deformable blocks for a
better contact model. The Lagrange method for contact model is not recommended, especially in
seismic analysis.

Validation of seismic induced displacement of two-block system for DDA and rotation for
DDAD are recommended. Published or unpublished validations are needed to confirm,
independently checked and documented results.

Except for rock fall and masonry structure problems, DDA is not recommended. Instead, the
numerical manifold method should be considered as the first choice.
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ABSTRACT: The original Manifold Method has been modified on the two aspects. One
is the modifaction on mesh generating program by adding two functions: 1). one pieace of
regular meshes with any density can be generated for one physical block; 2). sub-meshes
can be generated in some important local areas within a large block. This modification is .
of special usefulness for processing stress-concentrated problems. The other modification is
that a non-linear mechanical model for discontinuities is adopted instead of the criteria of
no tension and no penetration in original MM so that the deformation of a discontinuous
zone can be modeled by MM.

Two laboratory experiments have been made. One is for the kinematic behavior of a
block on the slope with a sharp step. The other is a model test for discontinuous rock mass.
Comparisons between physical tests and MM computations are made in order to valuate the
ability and inability of the method in practical applications.

1 INTRODUCTION

The Manifold Method of material analysis (MM) is a very flexible numerical method which
attracts more and more engineers in rock engineering because it contains and combines widely
used Finite Element Method (FEM) and joint or block oriented Discontinuous Deformation
Analysis (DDA) method in a unified form (Shi, 1991).

Among MM advantages, the following two are of practical usefulness: 1). regular meshes
are always available in MM no matter how complicated the shapes of physical blocks are,
2). it can easily deal with discontinuities involved in rock masses. The method has already
been put into many practical applications in rock engineering problems.

In order to promote MM to more widely practical applications, in this paper, we make two
modifications on the original MM program. One is the modification on the mesh generating
program by adding two functions to it so that the generated meshes are flexible enough to
processing stress-concentrated problems. The other is adoption of a non-linear mechanical
model for discontinuities instead of the criteria of no tension and no penetration in contact
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processing. Thus, the deformation from a discontinuous zone can be modeled by the method.

In addition, in order to evaluate the affectivity of MM, two laboratory experiments are
made and modeled by using the method. One is for the kinematic behavior of a block on the
slope with a sharp step. The other is a model test for discontinuous rock mass. By comparing
the resuits from laboratory tests and MM computations, we can clearly find both ability and
inability of the present MM, which is helpful to both current practical applications and
future studies on the method.

2 MODIFICATIONS ON ORIGINAL MM

2.1 Modification On Mesh Generating Program

One of MM advantages is that uniform meshes are always available no matter how compli-
cated the shapes of material blocks are. In original MM, one piece of uniform triangular
meshes can be automatically generated over the whole range of the physical material. This
makes the MM calculation very easy and one can save much time in making calculation
models.

However, it is found that one piece of uniform meshes over the whole material is not always
good. As we know, the accuracy of numeric analysis method is affected by element sizes.
The smaller the elements are, the better the accuracy is. On the other hand, using smail
clements needs more elements and more computing time. Therefore, considering hoth the

“accuracy and computing time, it is more effective to make much denser meshes only over
part of physical blocks or some local areas rather than the whole material.

For this reason, we make the following modifications on the original MM program.

2.1.1 One Piece of Uniform Meshes for One Individual Physical Block

We add a funciion to original MM mesh generating program that one piece of uniform
triangular meshes can be generated over one individual physical block. Thus, some blocks
may have much denser meshes than others. For the modified MM program, users can choose
cither the original way ”one sheet for whole” or the new way "one sheet for individual® .
When the new way is chosen, a division number can be designated to an individual block.
Then, different blocks may have different densities of meshes. It is also possible to let a small
block be completely covered by a single triangle in the new program.

2.1.2 Sub-Meshes In An Element

For a large block, stress concentration may occur in a local area. Therefore, much denser
meshes are required in this area. Generating sub-meshes is an effective measure and usually
used in FEM. We also add the function in MM.

Since MM is based on cover theory, sub-meshes can not be drawn as arbitrarily as in FEM.
In original MM, a cover, represented by a node, is defined by all the triangles around the
node which is also called a star. A triangular element is right the common part of the three
covers which take the three nodes of the element as their stars.

According to this definition, we present a way of generating sub-meshes based on the
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original ones, which is shown in Figure 1. In the figure, thick lines and five-angle stars are
original meshes and nodes, thin lines are sub-meshes, dot lines are meshes for connecting
the element with sub-meshes to its surrounding elements, four-angle stars are the new nodes
because of sub-meshes. Figure 1(a) shows one division in an edge of the element and (b) for
two divisions.

e

b >

{a) Sub-meshes in an element (b) Sub-meshes in an element

with one division. with two divisions.

Figure 1: Sub-Meshes based on the original ones.

2.2 A Non-Linear Model For Discontinuities

In original MM, penalty method is used to connect the individual discontinuous boundaries
into a system. For the movements of discontinuous boundaries, no tension and no penetration
are allowed between contact sides. With this way, the method is successfully used to simulate
the coupling state, separating and sliding movements between contact blocks.

However, original MM is only suitable for ideal blocks, i.e., for the case that blocks are
completely divided by discontinuous lines. In practice, a discontinuity such as a joint or a
fault is not a dimensionless line but a zone.

In general, the rigidity of a discontinuous zone is much weaker than the surrounding
blocks, large deformation may happen in the zone when it is compressed or sheared. On the
other hand, when a discontinuous zone is pulled apart, it still has tension resistance before
completely being broken although the resistance may be small.

In order to model the deformation of a discontinuous zone, we adopt a non-linear mechan-
ical model for discontinuities shown in Figure 2, which is presented and discussed in DDA
(Chen et al, 1999). f,, f: are contact spring forces and 6,, 8; are spriag strains in normal
and tangential directions.

For the case of compression, the behavior of a discontinuous zone can be divided into three
stages.

It is of elastic behavior on the first stage, which is represented by OB in Figure 2(a).

Once the strain of the discontinuous zone gets larger than the allowed maximum elastic

strain &, the zone becomes failure. Then, it enters the second plasticity stage shown by
BC in the figure.

It should be noted that the second stage is just an instantaneous one, the zone gets
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Figure 2: Non-linear mechanical model for discontinuiiies.

hardening very quickly and g,, is remained as the permanent deformation. Then, the zone
enters the third stage shown by CD immediately after yielding, and it is of elastic behavior
again but with very strong rigidity.

We can make above assumption because we believe that the soft zone of a discontinu-
ity may be vanished by the large compressing deformation, and blocks are contacted each
other by their essential parts. Therefore, very little deformation will be produced from the
discontinuity, and the zone is small enough to be treated as a dimensionless line.

It should be noted that the third stage just corresponds to the model of original MM and
deformation will not recover to O but to E even if compressing force becomes zerc in the
discontinuity. '

In the case of tension, at first, the discontinuous zone is of elastic behavior shown by OA
in the figure. Once tension force gets larger than the tension strength T cf the zone, the
discontinuous zone will be broken completely. Then, the two contacted blocks can be moved
apart freely and there should be no longer normal contact force acting on the discontinuity.
After broken, criterion of no tension is adopted just the same as original MM.

In the case of shearing, the new model uses shearing rigidity of the discontinuous zone
instead of penalty spring used in original MM. Therefore, shearing deformation from the
zone can be simulated before shearing failure.

Mohr-Coulomb’s low is used for shearing failure of two coupled blocks. If the shearing
force calculated from the tangential spring gets larger than shearing strength 7, of the
discontinuity, the tangential spring will be removed, and then, friction force takes the place
of the spring. 7, is calculated by the following formula

Tm =C + fptané (1)

where C' and @ are cohesion and friction angle of the discontinuity and f;, is the compressing
force from the normal spring.

3 PHYSICAL MODEL TESTS AND MM COMPU-
TATIONS

In order to verify the effectiveness of MM, we make two physical model tests. One is for
investigating kinematic behavior of a block on the slope with a sharp step. The other is for
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investigating large deformation behavior of discontinuous rock mass under bi-axial loading.
Then we model the two laboratory experiments by using Manifold Method and compare the
results from MM computations and those from experiments in this section.

3.3 Kinematic Behavior Of A Block On The Slope With A Sharp
Step

In order to apply MM to rock fall analysis more effectively, we make an experiment for
investigating kinematic behavior of a block on the siope with a sharp step shown in Figure
3(a).

The slope is formed by the two blocks with points A, B and C. They are fixed on a
vertical base plate. The other block with point D is the sliding one on the slope.

The dimensions are shown in Figure 4(b} where &; = 30° and ., = 10°, the sliding block
is 100mm x 48mm with a thickness of 48mm. The blocks for the slope has the thickness of
60mm.

Since only two-dimensional MM is available at present, the movements of the sliding block
should be carried out in a vertical plan. In order to make the sliding block move without
the displacement component vertical to the base plate, we let the base plate have an angle
70° to the horizontal rather than 90°. Thus, the sliding block gets friction resistance from
both the slope and the base plate.

The slope blocks are made of aluminum material and the -sliding block is made of wood.
The surfaces of the slope are covered by two kinds of papers for obtaining two different
frictions, called case 1 and case 2 here. Ten times of experiments are made for each friction
case.

A digital video camera is used for recording the movements of the sliding block on the
slope. The pictures have been taken with a speed of 30 pictures per seccnd. The block
moves without initial velocity by sliding on the above part and falls down to the lower part
of the slope in each experiment.

The scale of a picture can be determined based on the coordinates of points 4, B and
C. The movements are obtained from the coordinates of point D. Therefore, the graphic of
displacements with time can be easily made for each experiment.

The experiments are modeled by using Manifold Method. The model is shown in Figure
3(c). There are 44 and 80 elements in sliding block and slope blocks respectively. The lower
boundaries of the slope blocks are fixed at each nodes.

The parameters used in MM are listed in Table 1, where, At and D, are the designated
time interval and the designated allowed maximum displacement for one step respectively,
p, B/ and v are mass per unit volume, Young’s modulus and Poisson’s ratio respectively.

The parameters for discontinuities are taken as follows: C = 0, # = 187,19°,..-, 24"
T = O, kn = 10E1 and k{, = El

It should be mentioned that since it is difficult to obtain the friction angle directly, the
values in Table 1 are determined based on theoretical inverse calculations from the move-
ments of the sliding block on the upper part of the slope. The theoretical resuits are shown

3
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(2) The physical model for the experiment

e
100mm
Y
c%/
| -l >
| 443.16mm 150mm |
A ' 389.70mm

(b) The dimensions of the model

B

(¢) The mathematical model for MM

e

Figure 3: The physical model for the experiment and mathematic model for MM
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Table 1: The parameters used in Manifold Method

Controlling Parameters Aluminum Wood

At 0.01 sec pL 2700 kg/m3 gz 720 kg/mi®
steps 3000 Ey 7000 MN/m? | B» 1000 MN/m?
Dz 0.001 . 034 v (.24

by curves in Figure 4(a). In this figure, since 10 times of the experiment have been carried
out for each case, the displacements in one experiment are shown by empty circles for case 1
and emnpty squares for case 2, the solid circles and solid squares are corresponding averages.
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(a) Displacement from experiments
and theoretical solutions

(b) Distributions from experiments
and MM computations

Figure 4: The displacements from experiments, theoretical solutions and MM computations.

The MM computations have been carried out corresponding to each friction angle from
18° to 24°. The calculated displacements for whole slope are shown by curves in Figure 4(b),
where one curve corresponds to one friction angle with 1° increasing from top to bottom.

Comparing the movement behavior on the lower part of the slope, we can see that the
experiment and MM modeling have the same displacement patterns, and it seems that the
results calculated with the friction angles 19° for case 1 and 24° for case 2 are in good
agreement with that from the experiments.

When the block moves on the slope, it has a jumping movement from the upper part to the
lower part of the slope. We are mainly interested in whether MM can be used to model the
jumping behavior such as the starting and stopping time, the maxirum jumping distance,
height and rotation pattern.
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In case 1, the jumping starting time is about 0.6sec, the stopping time is about 1.1sec
in both experiment and MM modeling. The jumping distances are about 330mm from the
experiment and about 350mm from MM modeling. These are in agreement with each other.
However, it is found a rebounding of about 15mm at the back part of the sliding block while
there is not any rebounding obtained from MM simulation after the block reached on the
lower part of the slope. This is because rebounding is related to many parameters such as the
designated step time interval, the elastic parameters and the strengths of penalty springs in
MM modeling. It is a problem in MM application that should be studied carefully in future.

In case 2, since the friction is different from case 1, there are rotating movements involved
in the jumping by experiment. The rotating movements are also obtained by MM modeling.
The pictures from both the experiment and MM modeling are shown in Figure 5, where the
left side is for the experiment and the right side for MM modeling. It can be seen that the
rotation patterns are in good agreement with each other.

3.2 Model Test For Discontinuous Rock Mass

Laboratory model tests for discontinuous rock masses are made. The discontinuous models
are loaded in uniaxial and bi-axial loading conditions.

One of the models is shown in Figure 6(a). The sample rock is made of mortar with silica
of 6/11, cement 3/11 and water 2/11. It is divided into 8 blocks by 4 discontinuities which
are made of cement paste without sands.

The parameters of the sample rock are estimated as p = 2.56kg/m®, E = 13000M N/r2
and v = 0.18 by other experiments.

(b)

R R T N R T
Contalnment plate

Figure 6: Laboratory model tests for discontinuous rock mass.

The rock mass is loaded step by step on the top of the sample rock by a hydraulic jack
with an increment of 0.2/ N/m? in each step. When the loading got to 5.4M N/m2, the
rock failure happened.

The vertical displacements of the point indicated by MP1 and the horizontal displacements
of the points indicated by MP2, MP3 and MP4 are measured by using dial gauges. It has
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been found that the deformation from discontinuities is much lager than elastic deformation
of rock itself from the measured displacements.

Another kind of tests as shown in Figure 6(b) are also made for estimating the parameters
of the discontinuities such as cohesion C and friction angle ¢. The sample rock is divided
into two blocks by a discontinuity with an angle € to the horizontal direction.

Since the sample rock and the discontinuity are made by the same way for both model
tests, they are believed to have the same behavior of discontinuity.

In the second test, the stress components ¢, and 7 for normal and tangential directions
of the discontinuity can be obtained from the loading stress o, as follows

Tp = T, COS> 6
(2)

T=0,sinfcosd .

As we know, the sample will get failure right after the maximum loading value o,,. Then,
according to Mohr-Coulomb’s law, we have

™=C+o)tang, (3)
where (o7, T*) correspond te the maximum loading, that is

{ OF = Oy COS2 0

T = Oppaz SinGcosf .

(4)

Therefore, C and ¢ can be estimated based on (3) if two more sets of (o, 7*) are obtained
by changing the angle # of the discontinuity in each test.

We have made three times of the tests by taking different angles: 8 = 45°,50°, 55°. Then,
the cohesion C and friction angle ¢ are estimated as follows by using the least square method

C=01TMN/m?
$=30° .

Figure 7: MM model for the Iaboratory test.
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Manifold Method is used to model the laboratory test shown in Figure 6(a). The mathe-
matical model is shown in Figure 7 where the solid circles are fixed points.

The displacements of measured points from both laboratory test and MM computations
are shown in Figure 8, where we have results from three cases of MM computations with _
different C and ¢:
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Figure 8: Displacements of measured points from physical test and MM computations.

Case 1: All the discontinuities have the same values of C' = 0.17TM N/m? and ¢ = 39°.

~ Case 2: Only the discontinuities of the sample rock have above values but the other
discontinuities have values of C' =0 and ¢ = 0.

Case 3: The discontinuities of the sample rock have modified values of C = 0.13M N /m?
and ¢ = 41° and the other discontinuities have values of C = 0 and ¢ = 5.5°.

"The elastic displacements from the same size of the same rock without discontinuities are
also shown by solid lines in the figures. It can be seen that large deformations come from
discontinuities.

It should be mentioned that the modeling work presented here was done before the
modification on MM with a non-linear mechanical model. In this work, we just used
ko = 6200MN/m and k, = 4870M N/m as the coefficients of contacting springs instead
of much stronger penalty springs in order to obtain deformations of discontinuities from
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penetrations. However, when weak contacting springs are used, penetrations will get larger
and larger if they are not limited. In order to prevent this, the calculation was stopped at
the point when the displacements of MP3 got the same level as that from the experiment.
Therefore, it can not be said that the test is successfully modeled by MM here although the
displacements calculated in case 3 are in good agreement with the test.

We show this example in this paper only because we want to point out the following facts:
1). the deformations from discontinuities may be larger than elastic deformation of the rock
itself, 2). the original MM should be modified with the non-linear mechanical model for
discontinuities.

For this reason, we are going to make MM modeling of this physical test again by using
the modified MM with the non-linear model of discontinuities.

4 CONCLUSIONS

- In order to promote Manifold Method in widely applications, we have made the following
modifications on the original MM program:

1. Modification on the mesh generating program by adding two functicns to it. One
function is that generating one piece of regular meshes on one physical blocks so that different
dense meshes are available. The other is that sub-meshes can be generated in soine important
areas for a large physical block. This modification makes MM much flexible for processing
stress-concentrated problems.

2. Use a non-linear mechanical model for discontinuities instead of the criteria of no tension
and no penetration in contact processing so that the deformation from a discontinuous zone
can be modeled by MM.

The kinematic behavior of a block on the slope with a sharp step has been investigated by
both the laboratory model tests and MM computations. It has been found that the displace-
ment, the velocity, the jumping distance, height and rotation pattern can be simulated very
well by MM. But, it is difficult to reshow the rebound movement by using present program.
We should pay attention to this problem in future study.

Model tests for discontinuous rock mass have been made. It has been found that large
deformation may come from the discontinuities rather than elastic deformation of rock itself.
Although the deformation pattern can be modeled, the real deformation can not be obtained
for this case by original MM program. It is expected that this kind of problems may be well
modeled by the modified MM with the non-linear mechanical model of discontinuities.
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Chungli, Taiwan 32054, ROC

ABSTRACT: In this paper a new simultaneous algebraic equation solver named the “adaptive
skyline solver” is proposed for use with the implicit type of numerical simulations of dynamic
contact behaviors in flexible discrete multibody systems. In the numerical analysis of dynamic
contact problem, the bandwidth of the system coefficient matrix may vary due to contact or
separation among bodies during motion. Therefore, neither computation time nor storage space
can be effectively managed in conventional direct or iterative solvers and data storage methods.
In this paper, the skyline solver method commonly used in finite element theory is modified by
combing it with a contact detection technique to develop a new solver for the dynamic contact
analysis of discrete body system. Results from numerical examples demonstrate that both the
computation time and the storage capacity are much reduced by this new technique compared with
a direct solver using the upper triangle storage method.

1 INTRODUCTION

Due to mechanical loading, chemical reactions and thermal treatment during the manufacturing
process, or from damage during service, discontinuities in the physical field of an engineering
system might exist on different scope levels. Complicated behaviors due to these discontinuities
may lead to difficulties in interpretation and analysis. In the past few years, topics concerning
such discontinuities in the behavior of jointed rock masses, ice plates or granular materials, the
delamination of a layered medium, blasting fragmentation, the damageffracture progression of a
material etc., have been worked on by a number of researchers and engineers.

Some researchers have applied Shi’s DDA method to the study of some fundamental problems
in solid mechanics (Jing 1993; Ke 1993). Through these studies, it has been found that the DDA
method, with its effective contact detection and numerical simulation algorithms, can quantitatively
model the dynamic interaction behaviors of deformable bodies. However, in the original DDA
formulation (Shi 1988), a constant strain field in each block is assumed which leads to some
computational inaccuracy when dealing with problems where blocks have complicated strain fields.
Due to this disadvantage, it becomes natural to attach a finite element mesh to the block to give a
better deformation description (Shyu 1993, Chang 1994). This concept motivated Shi’s
development of his newly proposed manifold method (Shi 1991, 1996). From the manifold
method theory, one realizes the potential for solving various challenging mechanical problems in an
effective and straightforward manner. Some researchers (Shyu 1993; Wang et al. 1998) call the
DDA method with a finite element mesh, the “Nodal Based Discontinuous Deformation Analysis
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Method”, according to the Manifold method or the Meshless/ Element Free method point of view
(Belytschko 1991).

It is well recognized that the main objective for developing the DEM, DDA or any other such
method is to simulate nonlinear interaction behaviors in a multibody system. For an implicit time
integration scheme, a large, sparse coefficient matrix of the discretized system is usually obtained.
For example, the required storage space and the computation time is proportional to NM and NM?,
respectively, when applying a constant bandwidth solver in a system with N unknowns and a
bandwidth M. However, the bandwidth of this system coefficient matrix may vary due to the
contact or separation among bodies during motion. Hence, the computation time and storage
space can not be effectively utilized in conventional direct or iterative solvers and data storage
methods. Therefore, a more efficient storage and solving scheme for simulated dynamic
behaviors of a discrete flexible blocky system has been developed and is presented in this paper.

finite element
mesh

Figure 1. Discrete blocks patched with finite element meshes.

block

2 NODAL BASED DDA METHOD

In order to enhance the deformation field modeling capability within the blocks, the approximation
functions for the displacement field are constructed using the finite element theory. As shown in
Fig.1, a finite element mesh is patched to each block in order to construct the global approximation
displacement functions. The calculation of virtnal work in a discrete system is calculated in an
element-by-element manner. For each element, the strain energy, the work due to the external
load, and the inertial effect are all evaluated by the FEM constructed displacement functions.
Through the use of the time integration theory, the acceleration (inertial) term can be approximated
in terms of a time increment and the associated displacement increment, velocity and initial
acceleration data.  The penalty method is used to handle the in-penetrability condition required for
contact analysis. The virtual work due to the contact mechanism is calculated by the deformation
of the penalty spring. From the virtual work principle, the deformation, the external load, and the
inertia contributed to the coefficient matrix [K] and to the load vector {F} of the discrete system
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can be derived in the following form (Shya 1993; Wang et al. 1998).

[Kfa}={F} _ M

3 CONTACT DETECTION BETWEEN BLOCKS

Contact detection is the core step for any motion analysis of a discrete system. As a discrete
system consists of finite blocks patched with finite element meshes as shown in Fig. 1, the basic
contact detection units can only be identified as vertex-to-edge, and vertex-to-vertex two types
(see Fig. 2). In the nodal based DDA method, the vertex is defined by the nodal points located on
the boundary of the blocks, while the edge is defined by the boundary between two neighboring
nodes. The vertex-to-vertex type contact can be further decomposed into four possible vertex-
to-edge type contacts. According to the angles of the four edges (Shi 1988, 1996), the
penetration time, and the distance criterion, one can determine which one of the four possible cases
is occurred first.  Figure 3 shows four possible contact conditions between two vertices of convex

polygons. The contact evaluation of the vertex-to-edge type becomes the basis of the multibody
contact analysis.

L

Vertex-to Edge Vertex-to-Vertex

Figure 2. Basic contact detection units for the motion analysis of multibody system.

4 MATRICES FROM NORMAL CONTACT, SHEAR CONTACT AND FRICTIONAL
EFFECTS

Once the contact condition has been detected after the first iteration step of a time increment, the
penalty springs have to be applied to satisfy the in-penetrability constraint between material points.
These penalty springs will provide the resistance force in the system. Since the contact location
and types vary during the motion of a discrete system, this leads to the so-called “moving boundary
value problems “ in solid mechanics. For any vertex-to-edge contact, there are three types of
contact effect, namely normal, shear and frictional, have to be considered in the system equations.
To maintain the in-penetrability constraint condition during contact, normal and shear penalty
springs are introduced into the system at locations where bodies come into contact. Through
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virtual work principle, the corresponding normal and shear stiffness matrices of dimensions (6 x 6)
and the normal, shear resistance force vectors of dimensions (6 x 1) can be derived.

Figure 3. Four possible contact conditions between two vertices.

5 ADAPTIVE SKYLINE SOLVER FOR DYNAMIC CONTACT PROBLEMS
5.1 Algorithm for Solving Equation System with Varying Coefficient Matrix Bandwidth

Many physical problems can be modeled in linear equation system as shown by Eq. (1). The
Gaussian elimination method, which can decompose the [K] matrix into a lower triangle matrix,

[L] and an upper triangle matrix [U] is often used to solve this type of simultaneous equation. If
the [K] matrix is symmetric, the Cholesky method can decompose it into [K]=[f] [U] making

E]T = m] Then, a solution can be obtained by forward and backward substitution processes.
In the Cholesky method, only elements above and on the [K] diagonal are used, while the
calculated element data u; can replace the one for the original element k;; during the solution
process.

ky ki kg
kn kn ku ki
k33 k34 k35 k37
k44 k4§ 0
k55 k56 kS’i kSS kSlO (2)
k66 kﬁ? k68 0
k?‘.? k?S k79 0
kSS kSQ k810
k99 k910
B klOlO_
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For the symmetric matrix [K] shown by the Eq. (2), only the elements in the upper half
bandwidth of each column, as ky; , kiz , ka2 , ki3 , ks , Kss . Kaa 5 Kaq , Kas , kos , kas , Kus , kss , ks ,

Kes , k37,0, Ks7, ker, ka7, kss , kes , ks , Kes , k7o, keo , Koo , K510, 0, O, Ke1o, Koro , ky010 need to be
stored.

5.2 Skyline Method

In order to identify the location of the storage element, position indices LL().j=12,3,....,Nare
introduced, where N is the total number of columns in the matrix. The value of LL(j) is equal to
the value of LL(j-1) plus the half bandwidth from column j. Here, the position index for the first
column, LL (1) is set to be one. If the dimension announcement of the stiffness matrix in the
subroutine is A(1, 1), then according to the dynamic array storage technique, the correspondence
address of element Kj; in the array is K(i, LL(j)). Therefore, the total number for the required
storage space is LL(N) +N-1. Based on this definition, we can recognize that the position indices
LL(1) to LL(10) for the matrix shown in Eq. Q) are 1,2, 4,6,9, 10, 14, 17, 19, 24, respectively.

The half bandwidth for each column is defined as the row number of the first nonzero element
counted from the top of the column subtracting its row number. Since the global stiffness matrix
[K] is obtained from the superimposition of all the augmented element stiffness matrices, the
determination of the row number for the first nonzero element is conducted by scanning all the
conventional finite elements and special elements used in the system. The smallest global row
number for each newly superimposed augmented element stiffness matrix is recorded and will be
compared separately with the previously recorded first nonzero row number for colurmns to which
the augmented element stiffness matrix correspond.  The smaller row number from each column is
saved and waits for the next comparison.

This skyline method (Burnett 1987) can much reduce the storage space leading to the saving

of computation time. Thus, it has been adopted and modified for the analyses of the dynamic
contact behaviors in multibody systems.

5.3 Adaptive Skyline Solver

For a multibody system patched with finite element meshes, the element stiffness matrices and the
sub-matrices due to contact among blocks construct the global stiffness matrix. But, the contents
of this global stiffness matrix varies during motion due to the contact or separation of discrete
bodies. To solve the linear system of equations with this symmetric, sparse global stiffness matrix,
the skyline method introduced above can be effective.

Here, we proposed a new concept which treats the vertex-to-edge unit as a special kind of
triangular element, introducing it into the skyline method mentioned above. This special element
provides a normal contact stiffness matrix (6 x 6) and/or a shear contact stiffness matrix (6 x6) to
the global system, if two degrees of freedom are specified on each finite element node. The exact
forms of the normal contact stiffness matrix and the shear contact stiffness matrix can be found in
References (Shi, 1988, 1996). When applying the skyline method to the arrangement of storage
space and the location of the global stiffness matrix, all these contact elements are scanned over
together, with the conventional finite elements patched to blocks. For the vertex-to-vertex type
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of contact, four special vertex-to-edge clements are used. Therefore, the storage space required
for the corresponding contact stiffness matrices for these four possible vertex-to-vertex cases is
spared.  Although a little bit is wasted, it is conservative, since one correct vertex-to-edge case is
not previously know, unless some evaluation and calculation has been conducted in the analysis

4

Figure 5. A triangular block slides down on other triangular block.

Table 1. Contact elements formed at one instant during the simulation of
the relative sliding between two triangular blocks.

Element No. Vertex Node Edge Nodes |Element Nodal No.
5 6 3,4 6,3,4
6 8 3,4 8,34
7 3 5,6 3,6,5
3 3 5,7 3,5,7
9 5 1,3 5,1,3
10 5 3,4 5,34

In the following section, an example is given to illustrate one way to calculate the half
bandwidth, position index, and the row number of the first non zero element, and the required
storage space for the system stiffness matrix. As shown in Fig. 5, a triangular block slides down
from the top of an inclined surface of another triangular block. Two triangular finite elements are
patched onto each block; each node has two degrees of freedom. At the instant shown in Fig. 5,

there are two vertex-to edge contact conditions, node 6 to edge 34, node 8 to edge 34 and one
vertex-to-vertex contact condition between node 3 and node 5.

Therefore, 6 special contact elements formed at this instant are kisted in Table 1. These six
special elements together with the original four conventional finite elements, model the dynamic
contact behavior at this instant. Table 2 demonstrates the correspondence among elements in a
16 x 16 full stiffness matrix and these ten finite elements. Each number shown in Table 2
represents the code number of a finite element.

From Table 2, one finds that the row number of the first none zero element in the stiffness
matrix of each column is (1, 1, 1,1, 1,1,3,3,1, 1,5, 5,5, 5, 5, 5), while the associated half
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bandwidth of each column is (0, 1, 2, 3, 4, 5, 4, 5, §, 9,6, 7, 8 9, 10, 11), respectively.
According to the theory discussed previously, the position index for each column is (1, 2, 4, 7, 11,
16, 10, 25, 33, 42, 48, 55, 63, 72, 82, 93) and the number of the required storage size for applying
the skyline method is 93+16-1 = 108. Using this adaptive skyline method other than the upper
triangular storage method when the total degrees of freedom of the system are increased can
tremendously reduce the memory size and the computation time.

Table 2. Correspondence among elements in the global matrix and finite
elements at one instant of the motion analysis.

1_2_3_4____5 6 (71819 | 10|11 |12)| 13 | 14 {1516

Lh [ [ |

10

11

12

13
14
15
16
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6 NUMERICAL EXAMPLES

To verify the accuracy and the efficiency of the newly proposed adaptive skyline solver, a dynamic
contact problem is simulated. A simulation code has been developed based on the Nodal Based
Discontinuous Deformation Method theory, which has such features as: the discretization of blocks
by finite element meshes, contact detection among blocks, a collocation time integration scheme
and the adaptive skyline solver presented in this paper. As shown in Fig. 6, a 2 m by 2 m
triangular block stides down the surface of a 8 m by 8 m triangular block due to the force of gravity.
The frictional coefficient between these contact surfaces is zero. To simulate rigid bodies, for
both blocks, the Young’s modulus is set to E =10°Pa, the Poission’s ratio is v=0 and the

density is p=100kg/m®. The parameters for the collocation time integration scheme (Wang et
al. 1998) used in the simulationare 6=1> f=0.5625 » §=1, with a time step size At=10""sec.

my

8 m

nll”

—

8m

Figure 6. Simulation of a tﬁangular block sliding down another triangular block by
the nodal based DDA method with an adaptive skyline solver.

6.1 Accuracy:
According to rigid body dynamics, the sliding distance, d and the velocity, v of an initially resting
block when slides down a surface with an incline angle o at time t are

=%(gsino&)t2 3)

and
v =(gsin o)t (4).

54



From comparisons of the simulation results and the analytical solutions, it was proved that the
computation code could accurately model the dynamic contact behaviors of a multibody system.

6.2 Efficiency

To evaluate the influence of the total degrees of freedom in a discretized system on the required
storage size and the total computation time, the sliding problem shown in Fig. 6 was studied using
the code in a Pentium 200MMX personal computer. In total 15000 time steps were conducted.
Table 3 shows the data and performance results for the various cases, patched with different finite
element meshes, using both the upper triangle and the adaptive skyline solver schemes. It may be
seen that both the computation time and the storage are much reduced and effectively saved by this
new adaptive skyline solving technique, compared to the direct solver using the upper triangle
storage method, especially when the total number of degrees of freedom are increased.

Table 3. Discretization data for a block system and the associated
performance results using different methods.

Block I Block II Computation Method, Time and Memory Size
Upper Triangle Method | Adaptive Skyline Method
Number | Number | Number | Number | Computation Storage| Computation |Storage
of of total of of total Time Size Time Size
elements | nodes | elements | nodes (8 bytes) (8 bytes)
2 4 2 4 46.19 sec. 136 45.04 sec. 132
4 6 4 6 1 min, 14.81sec. { 300 | 1min. 7.67 sec. | 248
8 9 8 9 2 min. 18.52sec. | 666 |1 min. 16.93 sec. | 490
16 15 8 9 3 min. 38.17 sec. | 1176 |2 min. 48.84 sec.| 840
32 25 8 9 7 min. 12.92 sec. | 2346 |4 min. 32.49 sec. | 1226
64 45 8 9 21 min. 6.59 sec. | 5886 |8 min. 10.65 sec. | 2370
128 81 8 9 1 hr. 14 min. 16290 16 min. 4930
38.4 sec. 13.89 sec.
192 117 8 9 3 hr. 3 min, 36878 23 min. 7290
46.13 sec. 20.82 sec.
256 153 16 15 6 hr. 53 min. 56616 34 min. 12852
20.5 sec. 20.04 sec.
7 CONCLUSIONS

For the analysis of dynamic contact problems in a multibody system, the uncertainty and variation
of contact locations and conditions in time usually cause some difficulties in the construction of the
stiffness matrix and in the solving of the system equations. To overcome these difficulties, a full
matrix or upper-triangle type storage method can be used. The obtained system equations can
then be solved either by the Gaussian direct elimination method or by iterative methods, such as the
SOR and conjugated gradient method.
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The direct method is an accurate and stable method, but, the usage of the upper triangle part of
the full matrix during its operation leads to an unacceptable storage size and computation time
when the total degrees of freedom are increased. The iterative method however is an
approximation method, which is fast in solving large-scale problems but its computation time is
case dependent and can sometime not reach to the correct solution. Therefore, the iterative
solver has constraints in application to multibody dynamics.

In the present paper, the newly proposed adaptive skyline solver combining the conventional
skyline method with a contact detection scheme can efficiently and accurately simulate the dynamic
contact behaviors of a flexible multibody system.
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A NON-LINEAR MODEL FOR DISCONTINUITIES IN DDA

Guanggi CHEN and Yuzo OHNISHI
Kyoto University, School of Civil Engineering
Kyoto 606-01, Japan

ABSTRACT: A non-linear model for discontinuities is presented to Discontiunous Deforma-
tion Aralysis so that the tension, compression and shearing deformations of a discontinuity
can be modeled by the method. The formulas for the new model are given, and the comput-
ing program is introduced. The determination of new parameters in the new model is also
discussed in this paper.

1 INTRODUCTION

Discontinuous Deformation Analysis (DDA) is a very useful numerical method which can be
used not only for stress-strain analysis like Finite Element Method (FEM) but also for large
deformation modeling such as simulation of rigid body movements. Since it was developed
by Shi in 1984, the method has been put into widely practical applications such as tunnel
and slope stability analysis, rock fall analysis and other rock mechanical analysis.

DDA uses the displacements of an individual block as unknowns and solves the equilibrium
equations in the same manner as that in FEM. One of its advantages is that discontinuities
can be easily handled. Penalty method is used for connecting individual blocks into a block
system. That is, two springs are set at each contact point in normal and tangential directions
of the boundary when two blocks gather together.

In original DDA, criteria of no tension and no penetration are adopted. If the normal
spring has tension deformation, it will be removed so that no tension force exists between
the two pulled blocks. As a result, the normal spring is set only for compression between
two blocks. Since zero penetration is not realizable in the calculaticn of spring force, a very
small value 4., is allowed in practical computation program.

Mohr-Coulomb’s low is used for shearing failure of two coupled blocks. If the shearing
force calculated from the tangential spring gets larger than shearing strength 7,, of the
discontinuity, the tangential spring will be removed, and then, friction force takes the place
of the spring. 7, is calculated by the following formula

T = C + fptan@ (1)

where C' and § are cohesion and friction angle of the discontinuity and f,, is the compressing
force from the normal spring.

With this way, DDA is successfully used to simulate the coupling state, separating and
sliding movements between contact blocks.

However, original DDA is only suitable for ideal discontinuities, L.e., for the case that
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blocks are completely divided by discontinuous lines. In practice, a discontinuity such as a
joint or a fault is not a dimensionless line but a zone as shown in Figure 1{ a).

In general, the rigidity of a discontinuous zone is much weaker than the surrounding blocks,
large deformation may happen in the zone when it is compressed or sheared as shown in
Figure 1(b) and (c). On the other hand, when a discontinuous zone is pulled apart, it still
has tension resistance before completely being broken although the resistance may be small.

(a) (b ©

Figure 1: A discontinuous zone and its deformations.

In order to model the deformation of a discontinuous zone, we present a new non-linear
mechanical model for discontinuities. We also.show how to code the model in computation
program and discuss how to choose the parameters in this paper.

2 THE NON-LINEAR MODEL FOR DISCONTINU-
ITIES

We present a non-linear mechanical model for practical discontinuities iu order to simulate
deformations of a discontinuous zone. Figure 2(a) is for the normal directior: corresponding
to compression and tension and Figure 2(b) is for the tangential direction cotresponding to
the case of shearing in the discontinuity.

For the case of compression, the behavior of a discontinuous zone can be divided into three
stages.
It is of elastic behavior on the first stage, which is represented by OB in Figure 2(a).

Once the strain of the discontinuous zone gets larger than the allowed maximum elastic
strain €m,, the zone becomes failure. Then, it enters the second plasticitv stage shown by
BC in the figure.

It should be noted that the second stage is just an instantaneous one. The zone gets
hardening very quickly and e,, is remained as the permanent deformation. Then, it enters
the third stage shown by C'D immediately after yielding, and it is of clastic hehavior again
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Figure 2: The new non-linear mechanical model for discontinuities

but with very strong rigidity.

We can make above assumption because we believe that the soft zone of a discontinu-
ity may be vanished by the large conpressing deformation, and blocks are contacted each
other by their essential parts. Therefore, very little deformation will be produced from the
discontinuity, and the zone is small enough io be treated as a dimensioniess line.

It should be noted that the third stage just corresponds to the model of original DDA and
deformation will not recover to O but to E even if compressing force becomes zero in the
discontinuity. '

In the case of tension, at first, the discontinuous zone is of elastic behavior shown by OA
in the figure. Once tension force gets larger than the tension strength- T of the zone, the
discontinuous zone will be broken completely. Then, the two contacted blocks can be moved
apart freely and there should be no longer normal contact force acting on the discontinuity.
After broken, criterion of no tension is adopted just the same as original DDA.

In the case of shearing, the new model uses shearing rigidity of the discoutinuous zone
instead of penalty spring used in original DDA. Therefore, shearing deformation from the
zone can be simulated before shearing failure.

Also, when the shearing force calculated from the tangential spring gets larger than shear-
ing strength 7., of the discontinuity, the tangential spring will be removed, and then, friction
force takes the place of the spring.

The new non-linear mechanical model can be also expressed by the following formulas

knd-, _ﬁ < 6, < Em
fn = Pn(5vz - Em) 6:1 > Em (2)
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and

kde  n|<T= 0 L <>,
fi=14 fo.tané |(5,,,,|>-?-,;ti N f,>0 . (3}
0 6al > Z2 0 f <0

where

fry fi = stresses in the discontinuity,
Sp, 8; = strains in the discontinuity,
kn, ke = rigidity coefficients of the discontinuity,

nst = referring to normal and shear components,

P, = penalty spring rigidity coefficient,

Em = allowed maximum deformation from the discontinuity,
T = tension strength of the discontinuity,

6 = friction angle of the discontinuity,

Tm = shear strength of the discontinuity.

3 DISCUSSION

3.1 New Model in Computation Program

In practical programming, a discontinuous zone is not treated as an individual block since
its real shape is hardly determined. The deformations of a discontinuity are obtained from
the deformations of contacting springs. Thus, tension and penetration are allowed before
failure of the discontinuity.

For the cases of tension and shearing, it is not necessary to add new code to the original
program. At first, the rigidity coefficients %k, and k; of a discontinuity are used for the
rigidities of contacting springs. Penalty coefficients P, and P; will take the place of &, and
ky after failure.

The modifications are needed for the case of compression. At first, the rigidity coefficients
k. a discontinuity is used for the rigidity of normal contacting spring. And penetration
is allowed for modeling the large compressing deformation of a discontinuous zone. After
yielding, the plastic deformation is obtained by modifying the boundaries of two penetrated
blocks. By changing the strength of the normal contact spring from £, to Py, the third stage
can be modeted.

The approach is shown in Figure 3 and can be described as follows.

1. The middle line of a discontinuous zone is used as the boundary of the two contacting
blocks as shown in Figure 3(a).

2. At first, tke rigidity coefficients %, and k; are used instead of penalty springs P, and
Fy in the original DDA. Tension and penetration are aliowed and taken as the deformation
of the discontinnity. For example, Figure 3(b) shows the compressing deformation of the
discontinuity obtained from the penetration.
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(2) (b) (c) (d)

Figure 3: Modeling deformation of a discontinuous zone.

3. In the case of tension, once tension force from the normal spring gets larger than the
tension strength T of the discontinuous zone, the normal spring is removed and T is set to
zero. Then, no tension is allowed and the same approach in the original DDA is used.

4. In the case of compression, once the penetration gets larger than §,,, the contacting
vertices are modified so that each edge moves backward 6m/2 as shown in Figure 3{(c) for
obtaining permanent plastic deformation &,,. The formulas for the modification of contact
vertices will be given in the next sub-section.

5). After the modification of contacted edges, penalty P, is used instead of %, and &,
is set as zero so that from now on no penetration is allowed and the same approach in the
original DDA can be used.

6). For tangential contact spring, the real rigidity of a discontinuous zone k; is used instead
of tangential penalty P, so that large shearing deformation may be obtained from the strain
of the tangential spring. Once the shearing force &5, gets larger than the shearing strength
Tm, the tangential spring is removed and not used from now on. Friction force takes the
place of the spring.

Pty + J P

Pivy m: /i

P; P P
I /

Figure 4: Modification of the edge for obtaining permanent plastic deformation.
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3.2 Modification of Contacting Vertices

Supposing that the penetration of block 7 and block J geis larger than d,, beiween adge
£ Py and edge PjPjy ( Fig. 4), two edges should be modified for obtaining permanent
plastic deformation. The distance from edge PP, to its new position PPl is 6,,/2.

-+

It should be noted that although each new edge is moved §,, /2 from its position, there
should be no change on the tangential distance between the contacted points because we do
not want that the modification affects the length of shearing spring.

We give the formula for modifying P; as an example. The vertex F; should be moved to
F} by 8,,/2 along the line PP, where P is the projective point of F; in the edge PP,
and its coordinates (zp,y,) can be calculated by the following formulas

Zp =2+ ky(zj41 — ;) ‘
(4)
Yo = Y5 + kot — us)
where
PB.Pp
kp = P}':__-_;i L5lm (5)
= e
| PPl
By using the coordinates of P, we can obtain the coordinates (xF,yF) of Pr as follows
z} =z + k(z, — z;)
. (6)
Y = v+ kY —u),

where 5
k o — m . f7
2| PP @

3.3 Parameters
In the original DDA, the strengths of penalty springs are initially taken as follows
F, =500F, .
(8)
F,=04P, .

where E., is the maximum Young’s modulus among all the material blocks. And then,
they will be adjusted after a step caiculation as follows

-P'n. = ma:];‘{?‘ls T2, ]/S}Pn (9)
where ¢
Ty = de (10)
DPm
re — £ 11
> P t
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im and p,, are the maximum tension and maximum penetration among all the contacts, d,,
is the allowed maximum displacement among all the blocks, and », is the allowed maximum
penetration among all the contacts.

P, and P; always change from step to step for the following two purposes: 1) their values
get as small as possible; 2) no penetration exceeds the allowed maximum penetration value.
As a result, the deformation from a discontinuity is unknown and also changed from step to
step.

Therefore, it is a noticeable problem that how to consider the deformations from discon-
tinuities in the use of original DDA.

In the use of new model, three more parameters kn. k¢ and 6, are needed. They can be

determired by experiment. Especially, k, and k: can be estimated from Young’s modulus E
and Poisson’s ratio v of a discontinuous zone as follows

ko = 4B
| (12)
k; - %G )
where [ is the length between two adjacent contacting point and  is shearing strength
' E
= — 13
¢ 2(1+v) (13)

Ii should be noted that the tension strength T should be also taken into account in the
determination of 4,. This is because that the maximum tension may gets too large before
tension broken if &, is not large enough corresponding to the tension strength 7.

Afn D Aft
B c [
E: 0 E Jutad
'
Em On - >
A -T Y. ok
(a) (b)

Figure 5: Allowed maximum tension and maximum shearing strains.

Therefore, it is better to designate an allowed maximum tension je¢} so that the tension
broken happens within the allowed tension range (Fig 5(a)). It is obvious that there is the
following relationship

knlstl .>_ T (14)
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In our program, if &, calculated from (12} can not make (14) true, it will be modified by the
value of T/|z;| automatically.

The shearing strength 7., should be also taken intc account in the determination of &;. In
order to prevent too large shearing deformation happens. it is better to designate an allowed
maximum shearing dislocation «y,, for the control{Fig 5(b)). It is obvious that there is the
following relationship

KtV 2 Tm (15)

In our program, if k; calculated from (12) can not make (15) true, it will modified by the
value of 7, /v,, automatically.

4 CONCLUSION

Original DDA is only suitable for ideal discontinuities, i.e., for the case that blocks are
completely divided by discontinuous lines. In practice, a discontinuity such as a joint or a
tault is not a dimensionless line but a zone. Large deformation may come from discontinuities.

For this reason, we have presented a non-linear model for discontinuities. The tension,
compression and shearing deformations of a discontinuity can be obtained from contacting
spring deformations.

The formulas for the new model have been given, and how to code the model in comput-
ing program is introduced. The determination of new parameters in the new model is also
discussed in this paper.
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ABSTRACT: Discontinuous deformation analysis, DDA, is a numerical method developed to
model the behavior of discontinuous media. It is a fully dynamic method that uses inertia forces to
determine the motion of a system of blocks. The inertia forces are updated after each time step, and
are dependent on the block displacements in the previous step. Consequently, sudden loading of
the block system at the beginning of an analysis, whether by gravity or any other applied load,
produces unwanted artificial accelerations and displacements of the blocks that propagate
throughout the first few critical time steps of the analysis. In order to minimize this problem, an
approach is proposed that involves conducting a static “gravity turn-on” phase prior to the
dynamic analysis. Additionally, two extra iterations are conducted within each time step in order
to guarantee accurate determination of the contact forces between the blocks. Although this does
involve some additional computational effort, the proposed approach is effective. As an
example, the simple case of a block on an inclined plane is investigated, and the DDA analyses
show definitively that the results produced by the enhanced gravity turn-on routine are more
accurate that those calculated without the enhanced routine.

1 INTRODUCTION
1.1 Discontinuous Deformation Analysis

Discontinuous deformation analysis, DDA, is a numerical method developed to model the behavior
of discontinuous media (Shi, 1988, 1993). DDA models a discontinuous material as a system of
individual deformable blocks, which move independently and interact without penetrating one
another. Its formulation is based on a dynamic equilibrium and it considers the kinematics of
individual blocks as well as friction along the block interfaces. The displacements and
deformations of the blocks are the result of the accumulation of a number of small increments,
corresponding to small time steps. The transient formulation of the problem, which is based on
minimization of potential energy, makes it possible to investigate the progression of block
movements with time. A complete description of the formulation of the equations can be found in
Shi and Goodman (1984, 1985) and Shi (1988, 1990, 1993).
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The formulation is both transient and fully dynamic. Large displacements are the result of
accumulation of displacements over a number of small time steps. The kinematical constraints of
the system of blocks are imposed using the penalty method, described as follows. Contact
detection is performed in order to determine which block vertices are in contact with edges and
vertices of other blocks. Numerical penalties analogous to stiff springs are applied at the contacts
to prevent interpenetration of the blocks. Tension or penetration at the contacts results in expansion
or contraction of these "springs,” which adds energy to the block system; the minimum energy
solution is one with no tension or penetration. Technically, however, the forces on each block are
in equilibrium, so the energy of the contact force between the blocks is balanced by the penetration
energy. When the system converges to an equilibrium state, there are very small penetrations at
each contact. The contact forces can be determined from the penetration values. Solution of the
system of equations is an iterative procedure in which contact springs are repeatedly added and-
subtracted until each of the contacts converges to a constant state.

1.2 The “Gravity Turn-On” Problem

One typical problem encountered when performing dynamic analysis on block systems with
realistic material parameters 1s commonly referred to as the “ gravity turn-on” problem (Desai and
Abel, 1972). There are several issues involved with this problem. First, the geometry of the rock
mass must be modeled in such a way that the in situ stress state is representative of the actual field
conditions, or the displacements will not be correct. The classic example of this is excavation of an
open pit. In reality, removal of the overburden will result in upward displacement of the floor of
the pit. However, if the post-excavation geometry is modeled without regard to the initial stress
conditions, the floor of the pit will displace downward as the material deforms elastically when
gravity load is introduced. This issue has been identified and widely addressed with regard to both
analytical (Goodman and Brown, 1963) and finite element methods (Clough and Woodward, 1967,
Coates, 1970, Dunlop et al. 1970, Pariseau et al. 1970). Other researchers are currently devising
methods to implement into DDA which correctly model the sequence of excavation or construction
of rock mass geometries to match in situ stress conditions.

Another issue exists in dynamic analyses. The sudden turn-on of gravity at the beginning of the
first time step produces displacements due to elastic deformation of the blocks and “seating” of the
contacts. Although these displacements are very small, they result in propagation of initial block
velocities and accelerations that should be dissipated prior to analysis.

DDA is a fully dynamic method that uses inertia forces to model the motion of the blocks. For
two-dimensional DDA analysis and assuming constant velocity and acceleration within a time step,
the x- and y-components of the force of inertia per unit area of a block are (Shi, 1993):

] [ofuwed]_ (2 [u] 2 [duwar 1 o
[ij_ M {BZV(t)latz]*— M [Aﬁ [v} At [av/at]}

where M is the mass per unit area, t represents time, and u and v are the x- and y-components of
the displacement vector. (See the Appendix for the derivation of this equation.) Inertia forces
are used for both dynamic and static analyses; the difference is that the initial velocities are set to
zero for each time step during the static analysis. For the dynamic analysis, the velocities are
updated after each time step, according to the following scheme:
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fou /ot | 2 Ju du /ot
- P ) At )
(ov/at],, \At* [v] At [dv/at]
2 |ul |ou/at
S At v |ev/at]
Consequently, for dynamic analysis, any displacement at all, regardless of cause and/or
magnitude, will result in velocity terms, which in turmn create inertia forces that propagate

throughout the analysis. (Technically, the displacements may be caused by initial stresses or any
type of applied loads, so the term * gravity turn-on” may not be entirely appropriate.)

2 PROPOSED SOLUTION

In order to minimize this effect, an optional routine has been implemented in DDA which consists
of a gravity turn-on phase prior to the first time step. A pseudo-static analysis is conducted, in
which the velocities are reset to zero at the beginning of each step, and artificially high joint
strength parameters are used to inhibit motion of the blocks aside from that due to development of
internal strain and small penetrations at the contacts. The gravity turn-on stage continues until the
normal and shear contact forces and the block displacements and strains have converged to a
specified tolerance. After the gravity turn-on phase is complete, the geometry of the system is
slightly different than originally specified. In most situations this deformed geometry is sufficiently
close to the initial state as to be of no consequence. However, analysis of a highly deformable
system may require development of a more sophisticated approach.

Since the completion of the gravity turn-on phase is dependent on the values of the contact
forces, it is of utmost importance that the force calculations be as accurate as possible. DDA’s
open/close iteration convergence criteria guarantee that the state of the contacts has converged to
the point where none of the contacts have changed from open to closed (or closed to open) during
the current iteration, but does not address any changes between closed and sliding states. Although
these changes are addressed by adding/subtracting shear contact springs in subsequent time steps,
the shear forces calculated during the current step may not be accurate. Yeung (1991) proposed
that for any time step during which the contact forces need to be explicitly calculated, two
additional iterations be conducted after open/close convergence in order to ensure that the closed
and sliding contacts are modeled correctly. Alternative contact force convergence approaches were
investigated, but Yeung’s proved to be the most efficient. A similar routine has been implemented
as part of the proposed gravity turn-on scheme; it requires the completion of two extra iterations
after open/close convergence, during every time step. Although the extra iterations do require more
CPU time, the improved accuracy is worth the additional effort, as demonstrated in the next section.
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3 EXAMPLE: BLOCK ON AN INCLINE

The importance of using the gravity turn-on routine may be illustrated through analysis of the
simple problem of a rectangular block on an incline as depicted in Figure 1. This problem was
examined quite extensively by Yeung (1991). DDA does not directly model edge/edge contacts
between blocks. Rather, an edge/edge contact is modeled as two point contacts where the block
vertices intersect the edge. According to this two-point model for the block on the incline, there
are two slightly different analytical solutions for the normal and shear contact forces at the
vertices, depending on the relative values of the friction angle ¢ and the slope angle o

When ¢ <
Ik

N, = Wcosa[—+—tan¢)
2 2b

1 h
Ny, =Wcoso| ———t
v = cos (2 oy anqb) (3)

S, =N, tan¢
S, =N, tan¢

When ¢z o

N, = Wcosa(~1—+—{l-tanaj
2 2b

1 h
N, =Wcoso ———tano 4
v [2 2b J )
S, =N, tanc
Sy, =N, tane

where (N, §)) and (N, S,) are the normal and shear forces at the lower and upper contact points,
and b, k, and W and the base, height, and weight of the block., The derivation may be found in
Yeung (1991).

scale: 1 cm=0.305m

Figure 1. Geometry of example problem involving a single block on an inclined plane. The base
and height of the block are 0.631 m and 0.315 m; the width in the third dimension is 0.305 m.
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A comparison of the analytical solution and the DDA results is shown in Figures 2 and 3.
Figure 2 displays the results computed with and without the contact force routine, and Figure 3
displays the results with the combined contact force and gravity turn-on routines. In each figure,
part (a) shows the results for the situation with ¢ < o, and part (b) corresponds to the case with ¢
2 o. The specific data considered in the two examples, as well as the analytical solutions for the
contact forces, are listed in Table 1.

Figure 2 shows that the DDA solution with the improved contact force routine (solid symbols)
matches the analytical solution (solid line) much better than without it (open symbols). For the
case with ¢ < o, the normal forces continue to fluctuate by as much as 10% after more than ten
calculation steps. This compares well with the results of Yeung (1991). He conducted dynamic
analysis of several cases with ¢ < o and found that the majority of contact forces calculated using
DDA were in the 15-25% error range after 100 steps of 0.01s (although with 1000 steps of 0.001s
the maximum error was less than 6%). With the improved contact force routine proposed in this
paper, the error is reduced to 5% or less, beginning with the very first step, and has reduced to 1%
or less after ten steps. Overall, the contact force calculations during the first ten steps or so are
basically an order of magnitude better when the enhanced contact force calculation routine is used.
For the case with ¢ > «, the improved routine allows the shear forces to monotonically converge
to within 10% of the analytical solution; without it the shear forces display large oscillations.

The results shown in Figure 3 indicate that the gravity turn-on phase took 17 calculation steps to
reach the desired convergence tolerance level (1% change in normal and shear forces, as well as
block displacements and strains, between successive time steps). The plots for both cases also
show that the contact forces, both normal and shear, match the analytical solution almost exactly
(within 0.5%), from the first calculation step of the analysis phase forward. The exception is the
shear force determination for the case with ¢ = o; the shear force at the upper contact calculated
using DDA is slightly higher than the analytical solution, and at the lower contact is slightly lower.
The reasons for this are discussed in the following section. The plots also show that when ¢ < o,
the forces are different during the gravity turn-on phase because of the artificially high strength
parameters used to prevent motion. This problem may be eliminated by using excessively high
cohesion only, rather than excessively high values for both cohesion and friction angle.

The figures indicate that the gravity turn-on routine produces results that are slightly better than
those using the contact force routine alone, and significantly more accurate than without either
one. For these simple validation problems, the major gain in accuracy corresponds to the first few
time steps; however, this first time step is particularly critical, since correct modeling of the shear
forces at the beginning of the analysis is absolutely essential for almost any type of problem.

Table 1. Analytical solution for the normal (N, and N,) and shear (S, and S,)) forces at the lower
and upper vertices of a block on an incline. The angle of the incline is a and the friction angle
between the block and the incline is ¢. The weight of the block in both cases is 1.54 kN.

1 15° 10° 0.8095 0.1427 0.6784 0.1196
2 15° 30° 0.8436 0.2260 0.6443 0.1726
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Figure 2. Comparison of analytical solution and DDA results, for calculation of contact forces at
the vertices of a block on an incline with slope o = 15°. The solid lines are the analytical
solution; the open symbols correspond to the data from the original DDA program, and the solid
symbols represent data from the enhanced version with the improved contact force routine. (a)

Friction angle ¢ = 10°. (b) Friction angle ¢ = 30°.
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Figure 3. Comparison of analytical solution and DDA results, for calculation of contact forces at
the vertices of a block on an incline with slope ¢ = 15°, using the enhanced version with the
combined contact force and gravity turn-on routines. (a) Friction angle ¢ = 10°. (b) Friction angle

¢ =30°
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4 DISCUSSION

The proposed gravity turn-on approach follows parallel approaches used in finite element (Yu and
Coates, 1979), finite difference (Coetzee et al. 1995), and discrete element applications (Itasca
Consulting Group, Inc., 1996), but it is by no means perfect. As discussed in the previous section,
the contact forces corresponding to the artificially high joint strength used to inhibit motion are not
exactly the same as those corresponding to the actual strength values. Therefore, when the gravity
turn-on phase 1s complete and the strength is lowered to the actual value to begin the analysis
phase, some readjustments will occur as the system reaches equilibrium under the new conditions,
again producing unwanted displacements. However, the magnitude of these displacements is now
much smaller and the gravity turn-on effect, while not totally eliminated, is significantly reduced.

Another minor imperfection was mentioned in Section 2. After the gravity turn-on phase is
complete, the geometry is slightly different than originally specified. Although in most situations
this deformed geometry is sufficiently close to the initial state as to be of no consequence, a more
sophisticated approach may be required for analysis of highly deformable systems, for example, an
impact problem with one block entirely separated from the main rock mass. The gravity turn-on
routine proposed in this paper would fail because of the displacement tolerance criterion. A simple
solution would be to develop a system that would allow the user to choose which criteria are to be
satisfied during the gravity turn-on phase of any particular problem.

During the gravity tumm-on phase, the normal forces at the contacts converge very quickly.
However, the enforcement of the additional criteria of convergence of shear forces and block
displacements and strains has ramifications that are not at all obvious. As discussed previously,
DDA models an edge/edge contact as two vertex/edge contacts located at the block vertices.
Therefore, any load transferred between the blocks is actually modeled as a point load rather than a
distributed load. The shear forces initially correspond to the individual normal forces (i.e.,
Ntan¢+c), but with subsequent iterations to reach shear and displacement convergence under
conditions where motion does not take place, the shear forces readjust to reach equal values, with
the sum of the two remaining constant. In the example discussed in the previous section with ¢ >
¢, this caused the shear force at the upper contact as calculated using DDA with the enhanced
gravity tum-on routine to be 7% higher than the analytical solution, and the shear force at the lower
contact to be 6% lower. Several of the characteristics of the DDA method combine to produce this
result.

First, DDA uses the “penalty method” to prevent interpenetration of the blocks. The normal
force N at a contact is equal to the product of the penetration distance and the penetration penalty
stiffness. The shear force S is equal to the product of shear penalty stiffness and the component of
the relative vertex/edge displacement parallel to the reference line. If the shear force S < Ntand-+c
(where ¢ and c are the friction angle and cohesion of the material), the contact is “closed” or
“locked” because the resisting shear force according to the Mohr-Coulomb model of joint strength
will balance the shear force. Although technically there should be no displacement of a locked
contact, the penalty method requires a slight “compression” of the shear contact penalty “spring”
to balance the shear force, which results in a small displacement of the vertex. The manifestation of
this is numerical “creep” of the blocks, a small but finite downslope movement with a constant
value that is directly proportional to the magnitude of the shear penalty stiffness.
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Second, DDA blocks are “simply deformable,” which means that the strain components are
constant everywhere within each block. Therefore, different shear displacements at adjacent
vertices due to “compression” of the shear penetration “springs” cannot be accommodated within
the block and iteration will proceed until the shear displacements reach equal values. Thus,
enforcing shear and displacement convergence results in shear forces at the contacts that do not
necessarily correspond to the normal forces. However, since the two point load model is itself just
an approximation to a distributed load, it is not clear representation which is more accurate.
Preliminary tests indicate that the benefits of enforcing the shear and displacement criteria outwei gh
the disadvantages.

5 CONCLUSIONS

“Gravity turn-on,” or sudden loading of a block system at the beginning of a dynamic DDA
analysis leads to propagation of artificial block accelerations and displacements throughout the
system. These artificial accelerations should be dissipated prior to the onset of the actual
analysis phase. The proposed approach to minimizing this problem is effective, although it does
involve some additional computational effort. The resuits of the analysis of the simple example
of a block on an inclined plane show that the DDA analysis with the enhanced gravity turn-on
routine is more accurate, particularly during the first several time steps, the most critical part of
the analysis. However, the benefit of increased accuracy should be weighed against the
disadvantage of increased computational effort. Two extra iterations are required during each
time step to guarantee accuracy of the contact force calculations, and a gravity turn-on phase is
required to dissipate the transient accelerations prior to analysis. The number of blocks and the
specified tolerance will directly influence the computation time. Further analysis is required in
order to fine-tune this approach.
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APPENDIX

The displacement of the center of gravity of a block during a particular time step, assuming
constant velocity and acceleration over a time step of length At, can be described by:

w] 1 9 u®] |, J[u® At® [3Pu(t)/ ae? du / dt
=—.— CAtY +— At =—- At-
_v] 2 &? _v(t):| " b liv(t)} ' 2 L}z v(t) / atz}L ' |:8v / at} @
Solving for the acceleration:
Pu)/9¢%] 2 u ou/ ot 2 tu| 2 |dufdt
= —At- == .=
_82 v(t) / 0+ At? [I:v:| |:av /ot At? |v| At |dv/at (A2)
The force of inertia per unit area of the block is then:
1, [3*ut)/a¢ 2 [u] 2 [du/at
. —_— - p—g —M - —— —— -
_1),:' M [82 v(t)/ o t21| (At2 |:V:| At l:av / atD (A3)

where M is the mass per unit area and t represents time.
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Practical Computing Formulas of Simplex Integration
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ABSTRACT: We have derived the solutions for the integration of a polynomial function in a
polygon area or in a polyhedronal volume based on the ordinary integral calculus. For easy
computing, we have given practical general formulas and attached C-code source functions
to this paper. By many practical calculations and comparison with the results from Gaussian
Quadrature method, the advantages of the new method have been summarized. It can be
expected that simplex method will be used more widely.

1  Introduction

In many numerical analysis methods such as Finite Element Method (FEM), Manifold
Method (MM) and Discontinuous Deformation Analysis (DDA), it is necessary to calcu-
late the integration of a polynomial function in a general polygon area B

f f z™ Y™ dxdy (1)
B
or in a general polyhedronal volume V

f / /v Yy 2" drdydz | (2)

where, n,, ny, and ns are non-negative integers.

Although Gaussian Quadrature (Stroud et al 1966) is a method widely used in the past,
it is only suitable for the integration in triangles, rectangles and rectangular hexahedral.
Furthermore, since it is only an approximate numerical method, large error may be involved
especially for high order polynomial functions.

Shi (1984) presented the analytical solutions of (1) and (2) in his simplex integration, which
have already been used in his numerical analysis methods: DDA and MM. However, Shi
only gave concrete formulas for second order polynomial function. He coded the individual
formula one by one in his DDA and MM programs. Up to now, there is no practical explicit
general formula available for computation. One should follow Shi’s theory to derive new
formulas for the given high orders in the development of high order DDA and MM or in
other applications. As a result, the practical application of simplex integration may be
limited very much because of the following reasons: 1). It is not easy for an engineer to
derive new formulas based on Shi’s complicated simplex theory; 2). It is difficult to deal
with concrete formulas for higher orders. For example, there are more than one thousand
of items for the function z'%%21%, so that, it is difficult to obtain such large amount of
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coefficients and code them in program without error. Also, the program will get too long if
thousands of formulas are coded in it.

For this reason, in this paper, we also derive analytical solutions of (1) and (2) just based
on the ordinary integral calculus without using any concept of simplex theory. For easily
programming, we present practical general formulas for two- and three-dimensional integra-
tion of any order polynomial function. C-language functions for calculating the integration
are developed and attached to the paper. By comparing with analytical solutions and results
from Gaussian Quadrature, the advantages of the new method are summarized.

2 Formulas of Simplex Integration

Simplex integration is only refereed to (1) and (2) in this paper, i.e., the integration of a
polynomial function in a general polygon area or in a general polyhedronal volume,

In this section, we derive general formulas for simplex integration just based on the ordi-
nary integration theory. At first, we show the solution for the integration of a polynomial
function in a regular triangle. And then, by coordinate transformation, we show that inte-
gration in a gemeral triangle can be converted to that in the regular one, which is usually
carried out in FEM. Finally, based on Shi’s idea, we show that integration in a general
polygon with n vertices can be converted to the algebriacal sum of integration in each of n
triangles;

y P
£
M P
PO
. —»x
(b)

Figure 1: The regular triangle and a general triangle

2.1 Integration in a regular triangle

The analytical solution for the integration of a polynomial function in a regular triangle A
(Fig. 1(a)) has been obtained by many researchers (Hammer et al 1956, Brebbia et al 1984,
Shi 1995)

s o121 1l
v ut uzdu; dus = — - ; ) 3
//:4 O R T ot i F izt 2)! (3)

where 4y, 4; and i, are non-negative integers, ug, u; and uy are homogeneous coordinates,
le.,

Ugt+ U t+us=1. (4)
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Please refer to Shi(1995) for detail derivation.

If 79 = 0, we have _
171ip!

gptig 2 — ]
ffA uy u duy dusg T+ (5)

2.2 Integration in a general triangle

When the integration (1) is carried out in a general triangle B as shown in Figure 1(b), by
coordinate transformation
I = ZTolUg + Z1U1 + ToUs

, 6
Y = YolUp + U1 + Yolis (6)

It can be converted to the integration in the regular triangle A (Fig. 1(a)) as follows
2 2
/[B ™y drdy = f/A(Z xiui)"l(z vits) ™| J | durdus | (7)
i=0 i=0

where (z;,y;) are the coordinates of triangular vertex P, , and |J| is the absolute value of
the Jacobi determinant, i.e.,

J = T1— Ty To— I (8)
Y=Y Y2~ Y%
For the following case
Iy = 0
; 9
{ Y =0 ®)
™y can be easily expanded as
i n]_!
(1 + 20" = 3 et sa R b (10)
oo k1! !
. no! ka2, k k2, k
(1w + goug)™ = 37 ey hagleynehey e (11)

Ea=0 kgl(’ng — kg)

Then, we have

1 Ty 1 1
M. No. _ _
2 — E E n1—k1 k1, na—ks ko, nitne—ky—ka, k ko
TYyT = o) Ta 'l Yoy Us (12)
- 1 —
k1=0 k=0 kl!(nl kl)' k2.(ﬂ.2 k2)]

Substituting (12) into (7) and using (5), we can obtain the analytical solution of (?7) as
follows

1 e
f[gm”lynfdxdy =733 a{ny, ng, ky, ka)a i~k ghyme—key ke (13)
k1=0 ko=0

where
71 !715! (n1 g —ky — kg)‘(kl -+ kg)'

('n1 + ns + 2)' kllkgl(nl - kl)!('l’lq — kg)!

a(nl, o, !’C1, kg) = (14)
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] ~J]
AP,P P, AP,P,P;
AP,P,P, APyPeP;
APP,P,

APP.P,

Figure 2: 6 triangles formed from the polygon with 6 vertices

2.3 Integration in a general polygon

When the integration (1) is carried out in a general polygon with n vertices, the integration
can be converted to the algebriacal sum of the integration in each of n triangles (Shi, 1993).

Numbering the n vertices of the polygon counterclockwise from P, to P, with Poa=P5,
and taking an arbitrary point P, inside or outside of the polygon, we can get the n triangles
(ARPPy, i=1,2,--- ,m). It is easy to show that the Jacobi detgrminant gf a triangle
AR FP;P;y, will have positive value if it runs counterclockwise from Py P; to PyP;.1, otherwise,
the value will be negative. For example, 6 triangles are formed from the polygon with 6
vertices in Figure 2. Two of them (APyP,P; and AP, P, ) have negative values of their
Jacobi determinants while others are positive. "Therefore, if the absolute sign of |J] in the
formula (13) is taken away, the sum of the integration in each of n triangles is right equal
to the integration in the polygon. Then, we have

n (3] ne
[ Lemyrdady =3 3 Y ofmn,m by ke Ratgrtl)  (15)

i=1 k1=0 ka=0
and
Ji = T — vz (16)

It should be noted that since Py can be arbitrarily taken, it has been taken at (0,0) here for
the most convenience.

2.4 Integration in a general polyhedronal volume

Using the same approach as shown in above two-dimensional integration, we can get the

formulas for calculating the integration of a, polynomial function in general polyhedronal
volume as follows

f f /V Y™ 2 drdydz

N my; ny n2 mnz ky ke k3

=D IDNCIDY DI a{n1, g, ng, k1, ko, ks, J1, J2, J3) f (Pig, Bijr1s Pijrz) (17)

i=1 j=1 k1=0 k2=0 k3=0 j| =0 72=0 js=0
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where

a{ny,nz,n3, k1, k2, ks, 1, J2, 73)
_ mnalng!(ny 4 no 4+ ng — ki — kg — kg)!
7105250 (7 + M2 + 723 + 3))! |
y (k1 + ko + ks — j1 ~ J2 — 7)1 {J1 + Ja + Js)!
(ny — &)Uk — 51)!(n2 — k2)! (k2 — J2)!(ns — k3) (ks — js)!

(18)

Tig  Tij+1 Tij42
Jij = | Yii Yigr1 Yije (19)
2§ Zij+1 Ziji2

and
—ky, K —k —ks k3—
f(PijspinvPiHQ) —i’?nl lxz;+fl$§;+2y:;2 2?ng+1 y’zj;+23n3 3Zzgs+f?azf;+2) (20)
N is the total number of the surfaces on the polyhedronal volume; m; (i = 1,2,---,N) is

. the number of vertices on ith surface; B; (7 = 1,2,---,m; +2) are vertices with coordinates
(zi5, ¥i;) on 4th surface. The vertices on a surface are also numbered counterclockwise and
there are -Pimi+1 = Pﬂa Pim;+2 = -P'.':‘Z'

3 Practical Computing Formulas of Coeflicients

The calculation of the coefficients given by (14) or (18) is the major task in the use of general
simplex integration formulas.

In the special case of n; = 0 or ne = 0, the coefficient formula (14) can be simplified very
much and the integration (15) can be easily calculated by the following formulas

n J Tl
n - t n1—k1 .k
[ [z dady = L T Dmry 2%k (21)
or iy
na ne—kz, ko
f f y"2dzdy = Z m +1)(n2 79 Rl (22)

In general, it is not a good idea to compute directly each factorial of (14) or (17). This is
not only because it will take a lot of computing time, but also the order will be limited. We
found that the computing error: Float Overflow (A value is larger than 1.0 x 10%%8) would
happen if the orders are higher than 2°°4°®. Therefore, (14) and (17) need to be simplified
further. As an example, we show how to simplify (14).

The coefficient given by (14) can be divided into three parts

a(ni, ng, k1, ky) = A1 A 45 . (23)
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Each part can be simplified as follows

( ny k1
ol ]:[ 7 / ]:[1 kl <N — ]CI
_ i- o i=ny—k1+1 =
BRI i B 0
H ) / H 7 kl 2 y — kl
. i=ki+l i=1
( no k2
ol H 7 / H 7 kg < Mg — kg
_ 2: _ ) izna—kem1 =1
A= (ng — kz)!kzl - ' nznz : n:—kz : (25)
i H ) / H 1 ko > ng — k:z
\ i=kptl i=1
k12 n32+2
( i )'k | HZ / H 1 k12<n12-—k12
Ao = N2 12)-F12: i=n12—kia+1 (26)
3 (77-12 + 2)_[ nm-—klz n12+2
/ k12 2 nia — k1o

3=k12+1
where
N2 =71 + No
k12 - kl + k2 .

Furthermore, the following formula is used in the programming

1/ Il 7= T G/ (28)

i=k1 i=n,

where

1.0 i— Tty > kz - kl (29)

It should be noted that (28) is based on the condition of ng—ny > ko—k;. I n, —ny > ko—ki,
numerator and denominator should be reversed.

wi:{ z—-n1+k1) i—n1Sk2—k1

The C-language codes for calculating two-dimensional simplex integration are listed in
Appendix B. By practical calculations, it has been found that the computing time becomes
much shorter after simplification. The order as high as 259459 can be still calculated.

4 Discussions

In order to verify the accuracy of the formulas and the program, practical calculations are

made based on the polygon shown in Figure 3. We choose the quadrangle just because we
can easily get analytical solution

b ibzm an+1bm+l (_al)n+1bm+l
Ty Ll :f m,n — 2 _ ) 30
[ [, 7z L rydady i D)mintd meyman 0

Also, for comparison, all examples have been calculated by Gaussian Quadrature method,
which is briefly described in Appendlx A.
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Figure 3: The polygon used in integral calculations

4.1 Accuracy with order

‘The integration for m = @, 1,--+,500 and n = 0,1,---,500 has been calculated one by one
when a; = 0.5, ao = 1.5 and b = 2.0. Some results are listed in Table 1. The first column is
the order for both m and n; the second and third columns are the relative errors of simplex
integration method and Guassian method to the analytical solution respectively.

Table 1: The results of integration with different orders from different methods

order Relative Error Result

mn (§-8,)/S (8—5,)/8 Analytical S Simplex S, Guassian S,
10 | 0.000000e+-000 2.018989e-015 1.464029¢+003  1.464029¢+-003 1.464029e+003
15 | 3.461625¢-016  1.038488e-015 -1.681513e+005 -1.681513e-+005 -1.681513e+4-005
20 | -3.141104e-016  0.000000e-4-000 2.371962e+007  2.371962e4-007 2.371962e4+-007
25 | 0.000000e+000  1.296528¢-009 -3.760157e+009  -3.760157e-+-009 -3.760157e-+009
30 [ -3.798434e-016  3.919172e-007 6.427403e4-011  6.427403¢-+011 6.427400e+011
50 | 1.108063e-015  7.823796e-004 8.280254e+020  8.280254e+-020 8.273775e+020

100 | -1.306820e-016  8.306050e-002 1.515668e+044  1.515668e+-044 1.389776e+044

500 | -2.030690e-016  9.962157e-001 4.345834e+233  4.345834e+233 1.644580e+231

It can be seen that the relative errors of simplex method are quite small and the accuracy
does not change even if the order gets as high as £°%5°, However, the relative errors of
Guassian method are small only when the orders are lower than z%y® and the accuracy
gets poorer and poorer when the order gets higher and higher.

Table 2: The results of integration in different shapes

bias

Relative Error
(§-5:)/8 (S —85)/8

Analytical S

Result
Simplex 5,

Guassian S,

100
104
108

0.000000e+000  2.028316e-006
0.000000e+-000  2.028316e-006
0.000000e+000  2.028316e-006

1.133787e-003
1.133787e+081
1.133787e+165

1.133787e-003
1.133787e+081
1.133787e+165

1.133785e-003
1.133785¢+081
1.133785e+165
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4.2 Accuracy with shape

In order to investigate whether the accuracy varies with the shape of the polygon, we take
ay = 0.0, a; = 1.0 and change the ratio of 8/a; from 1 to 10%. Then, we calculate the
integration of 22°y® for each shape of the quadrangle. Some results are listed in Table 2.

It can be seen that the accuracy of simplex method does not change even if the shape
is changed so much. However, the relative errors of Guassian method become much larger
than the results in Table 1. For the shape of a; = 0.0, a; = 1.0 and b = 1.0, the relative
errors of Guassian method with different orders are listed in Table 3. It can be seen that
the accuracy gets poor when the orders are higher than z!%y!S.

Table 3: The results of integration with different orders

order Relative Error Result
mn (§—-8,)/5 (5—-5,)/8 Analytical § Simplex S, Guassian S,
5 | 0.000000e+000  2.248202e-015 | 1.388889¢-002 1.388880e-002  1.388889¢-002
10 | 0.000000e+-000 1.469311e-015 | 4.132231e-003 4.132231e-003  4.132231e-003
15 | 0.000000e+000 5.182344e-009 | 1.953125¢-003 1.953125e-003 1.953125e-003
50 | 0.000000e+000 1.777038¢-002 | 1.922338¢-004 1.922338¢-004 1.888177e-004

5 Conclusions

We have derived the analytical solutions for the integration of a polynomial function in a
general polygon area or in a polyhedronal volume just based on the ordinary integral calculus.
‘The practical general formulas have also been presented for computing programming. C-
language functions have been developed and attached to the paper.

The following points can be summarized from this work: 1). Because of the presented
practical general formulas, it is no longer necessary to derive new individual formula for a
given order, which is very helpful in the development of high order DDA and MM or in
other applications. 2). By practical calculations, it has been found that a maximum order of
2°%99%% can be still calculated by using a PC computer. Therefore, it is possible to deal with
complicated function by series expansion. 3). It has been shown that the accuracy of the
presented method is not affected by the order of a polynomial function while the accuracy of
Gaussian Quadrature method gets poorer and poorer when the order gets higher and higher.
Therefore, the new method is of importance for high order integration. 4). The accuracy of
the presented method is not affected by shapes of polygons. Therefore, it can work well for
any shape of meshes.
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Appendix A: Gaussian Quadrature for Quadrangles

The standard Gaussian quadrature formula is based on a regular rectangle in the form

1 1 n n
[, [ femdsan=3"3" (e nusw; (31)
—1J= j=li=1
where the integration point coordinates ((£;,7;),%,7 = 1,2,--- ,n) and weighting factors (w;,i =
1,2,..-,n} are listed in Table 1 for n = 12. For a general quadrangle, the following coordinate
transformation can be made .
T =3 i1 PiTi
; 32
{ y=Ti piti (82)
where

2= 3(1+8)(1~-n)
3 = g(1+&) (L +n)

1 =3(1-8(1+9) ,
where ((z;,y;),i = 1,2, 3,4) are the vertex coordinates of the quadrangle. Then, the integration in
a general quadrangle becomes :

1 = %(1 -&(1—-n)
{ (33)

1 gl
[ / ™y drdy = f / ™ y™2|J]dédn (34)

B -1/

which can be calculated by using (31) with

f&m) = 2™y J]| (35)

and P
J=| % 3z ‘ (36)

ot  on

Table 4: The integration point coordinates and weighting factors

£ wy & £ w;

0.125233408511469  0.249147045813403  0.769902674194305 0.160078328543346
0.367831498998180  0.233492536538355 0.904117256370475 0.106939325995318
0.587317954286617 0.203167426723066 0.981560634246719 0.047175336386512
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Appendix B: Functions for Two-Dimensional Simplex Integration

double djiechen(int k1, int k2, int nl, int n?2)

{
int i, nk;
double s, k;
nk = nl ~ ki;
s = 1.0;
for (i = nl; i <= n2; i++}{
k=i~ nk;
if (k > k2) k = 1.0;
s=s%*1i/k;
}
return(s);
}
double coefficent{int nl, int n2, int k1, int k2)
i
int N12, K12, NK;
double a;
a=1.0;
NK = nl - Xi1;
if (k1 < NK) a *= djiechen(l, k1, NK+1, ni1);
else a *= djiechen(l, NK, kit+1, nl):
NK = n2 - k2;
if (k2 < NK} a *= djiechen(i, k2, NK+1, n2);
else a *= djiechen(l, NK, k2+1, n2);
Ni2 = nl + n2;
K12 = k1 + k2;
HK = N12 - Ki2;
if (K12 < NK) a /= djiechen{l, K12, NK+1, N12+2);
else a /= djiechen(l, NK, K12+1, N12+2);
return(a);
}
void Allcoefficent(int nl, int n2, double ##a)
{
int ki, k2;
for (ki = 0; k1 <= ni; ki++)
for (k2 = Q; k2 <= n2; k2++)
afki] [k2] = coefficent(ni, n2, ki, k2);
by
double Sint(int ni, int n2, double x[J, double y[1, int N, double **a)
{
double s, J, s1;
int i, k1, k2;
s = 0.0;
for (i =0; i < N; i++){
J = x[i] » y[i+1] - x[i+1] * y[il;
s1 = 0.0;
for (ki = 0; k1 <= nl; kl++)
for (k2 = 0; k2 <= n2; k2++)
sl = s1 + a[k1][k2] * pow(x[il,n1-k1)*pow(x[i+1],k1)*pow(y [i],n2-k2) *pow(y[i+1],k2);
s =58+ sl * J;
}
return(s);
}
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A METHOD OF SUB-MESHING IN DISCONTINUOUS DEFORMATION
ANALYSIS (DDA)

Dave Clatworthy and Friedrich Scheele
University of Cape Town, Department of Civil Engineering
Rondebosch 7701, RSA

ABSTRACT: A sub-meshing method is described which allows mixed formulation analyses, with
DDA blocks and FE meshes interacting within a single system. Blocks of particular interest can
thus be subdivided into Finite Element (FE) meshes in order to obtain a more accurate description
of their deformation.

The method takes advantage of the fact that both DDA and FE analyses use the principle of total
potential energy minimisation to obtain the solution equations for system equilibrium. Both DDA
blocks and sub-block triangular elements can therefore be treated initially as DDA blocks, using
the standard DDA formulation. Before solution, however, the equilibrium equations for the sub-
block elements are converted into FE format by a simple transformation procedure, thereby
allowing sub-block elements to be meshed together into FE analysis format. The solution
equations for standard DDA blocks are not affected, and are solved in their original form.

The method is efficient, and because it uses the DDA formulation to obtain the initial solution
equations for the FE meshes, it remains reasonably simple to incorporate into existing DDA
program codes. First and second order DDA blocks are considered in this paper, along with their
FE equivalents, the C*-linear and C°-quadratic triangular elements,

1 INTRODUCTION

Discontinuous Deformation Analysis is a tool for modelling blocky rock masses. It is an
assumption of this method that the rockmass deforms and fails primarily by sliding or separation
of the blocks relative to one another. Because of this, strains within individual blocks are given
only a cursory treatment in the analysis, and fracture of intact rock material is not considered.
While this approach is often valid, there are ‘occasions where it introduces serious limitations into
the method. This is particularly the case where engineering components interact with the
rockmass. Examples of such components are retaining walls, mining support structures and
tunnel linings. At present, these structures are generally modelled as a single DDA block, with
the assumption that stresses and strains are constant throughout the structure. This approach has
two drawbacks. The deformed shape of the structure is not accurately modelled, and this may
affect the course of the simulation. Further, it is not possible to obtain a model of the stresses in
the structure for design purposes.

2 METHODS FOR IMPROVING STRAIN DETERMINATION

Three broad solutions to this problem have been considered in the past by researchers.
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One approach is to use higher order blocks. By allowing a block more degrees of freedom,
strains may vary in a linear or quadratic form across the block. Second- and third-order blocks
have been incorporated into the DDA code by Chern et al. (1995) and by Koo and Chern (1996).
Alternatively, Ke and Goodman (1994) developed the ‘artificial joint concept’. This method
builds a block out of a number of triangular DDA sub-blocks, with neighbouring sub-blocks
connected together by penalty functions to ensure that they remain locked together., The penalty
functions have the same formulations as the normal or shear springs used in the modelling of
contacts in the DDA method.

Finally, Chang (1994) developed a mixed formulation code, where a Finite Element code is used
to model individual blocks as meshes, while interactions between blocks are controlled by the
DDA method. The FE and DDA solution equations are solved simultaneously, to arrive at an
overall system equilibrium.

The advantage of a meshing method such as that used by Ke and Goodman (1994) and Chang
(1994) is that the degree of mesh refinement, and hence the quality of the strain determination,
can be chosen by the user, and increased in areas of particular interest.

A disadvantage of the method used by Ke and Goodman (1994) is that the system has the same
number of solution unknowns as if the individual sub-blocks were separate blocks. In fact,
because elements in a mesh are restrained by their neighbours, the number of degrees of freedom
of a mesh is as much as six times lower than the sum of the degrees of freedom of the individual
elements. The extra element degrees of freedom do not contribute to the accuracy of the
solution, as they are restrained by the penalty functions. This is discussed further in Section 5.

A fourth approach is introduced in the remainder of this paper. The method has similarities to the
methods of Ke and Goodman (1994) and of Chang (1994). As with the ‘artificial joint concept’,
blocks are built up of a number of smaller DDA sub-blocks. However, the blocks are transformed
into FE format before solution. This eliminates the superfluous degrees of freedom described
above, and results in a solution system similar to that arrived at by the mixed formulation of
Chang (1994). However, because the sub-blocks, or elements, are treated as standard DDA
blocks for the purposes of developing the equilibrium equations, the method is much simpler to
incorporate into existing DDA codes.

3 DISPLACEMENT VARIABLES

The DDA method is based on the assumption that individual blocks are able to move
independently to one another, and therefore the displacement variables which describe the
displacement and deformation of the block are chosen to represent the individual blocks. The
displacement variables are the rigid body displacements and rotation of the centroid of the block,
uo, Vo and 7o, and the strains in the block, & , & and y,, which are assumed to be constant over
the area of the block.

The displacement (z, v) of any point (x, ) in the block can be found from these variables by
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vO
1 0 -y x 0 y/2| . .
u — —y X - .}_) 0 or u(x:y) =Tl(x,y)il (1)
01 ¥ 0y x/2]e, vix,y)) =
g}’
£
e y—x
where fx 0
Yy=¥Y—>»

and (xo, yo ) 1s the undisplaced position of the centroid of the block.

In the FE method, the displacement variables chosen are generally the displacements of nodes at
the corners and edges of elements. Because the elements are locked together corner-to-corner
and edge-to-edge, these values usually apply to more than one element.

In the case of a simple, 3-noded triangular element, it is assumed that the edges of this element
will remain straight if the element is deformed. A complete description of the element’s displaced
position can therefore be obtained if the displaced positions of the corners are known. The
displacement variables chosen are therefore u;, vy, uz, v», u; and vs, the displacements of the three
corner nodes in the global axis system.

The above descriptions of the displacement of a triangular block or element are equivalent, both
being complete first order displacement functions. It is also possible to convert between the two
sets of displacement variables. Using Equation 1,

(u!\ 3 -Ti 1 '(uo\
w| | EGWL,
[ . ¥ . ..
2l P “| o #=8d . @
vz - b Sx =
u, ; £
Z(xS:yS) g
Vs - = Ty

The 6 x 6 matrix S'is invertible, unless the block has zero area. Defining the inverse of S’
as Q, it follows that

d=gu ad d"=4"Q 3)
4 THE DDA SOLUTION METHOD

The DDA method is based on the principle of potential energy minimisation. The Total Potential
Energy (TPE) of the system, II, is defined as the sum of the internal strain energy of the system

and the external work done by applied loads. The system is in equilibrium if the TPE remains
unchanged for a small perturbation of any of its degrees of freedom:.
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In a DDA system of 7 blocks, the potential energy equations are built up in the general form
=d.X.d -df., )
where #, 5, t=1,..6n '

Minimisation of the TPE yields

C=Kd-f=0 . 5
ad fSS-f;' —_ ()

-

For a system of 7 blocks, the equilibrium equations are rearranged into the form

_K” Klz K13 Kln_(d!\ (fl\

}(—_21 }(.__22 ;23 Ezn ;z ;z

gsl gsz gas ESn 4 |= 23 or Kd=f (6)
nl n2 n3 nn .n 'n

_-K— £ £ £ _\d / \__f_ J

In the above equation, each element K? is a 6 x 6 sub-matrix, each element d' is the displacement
variables for block - (4o, Vo, 7o, &, &, }y ), and each term £ represents the loading on block
in terms of the displacement variables, a 6 x 1 array.

The system is solved by inverting the global matrix X and solving for the displacement variables.

5 INTRODUCING MESHING INTO THE DDA SOLUTION METHOD

Where a mesh is introduced into the DDA method, the individual triangular elements are treated
as normal DDA blocks for the purposes of creating the solution equations. No interaction
between elements in the same mesh is considered. It is only when the solution equations are in
the form of Equation 6 that there is any change in the DDA method.

The global solution equations are transformed so that, for elements that are part of FE meshes,
the solution is in terms of the nodal displacements, while for all other blocks in the system, the
solution equations remain unaltered.

In the stiffness matrix of Equation 6, the diagonal terms K* represent the internal stiffness of
individual blocks, while the off-diagonal terms, K? are produced by interaction between blocks
due to contact, or rock bolt connection. These off-diagonal terms are nuil matrices, unless blocks
i and j are directly interacting.

Considering a pair of interacting blocks , blocks p and g, within the system, the potential energy
of the pair can be written as

II=117 +11¢ =‘%QPT£PPQP +%QQT£%£€ +QPT£PQQQ +49T£qu}’ _.d_FTiP "éqriq (7)

88



Minimisation yields

aa; =£PPQP+£PQQQ_ZP :g
oII (®)
od? =£qqéq+£@gp_iq=g

If one of these blocks, e.g. block p, is a sub-block element, then Equation 3 can be substituted
into Equation 7, to obtain

H=%QPTQPT£‘DPQPEP +%4qT£qqiq+szQpT£png +éqT£quqy_q _EPTQPTZP _ qriq
aa; :ngéppg u gﬁrﬁpqéq _ngip =0
o ©)
oLl =K"d +KPQ%u’ — 1 =0
ed* = - — =7 = T
Alternatively, if both blocks are sub-block elements, then
H=%z_tprgp £ppgp£p+l2£9T_qTKﬁng pTQp K70 +u” 07 K¥Q%%°
_EPTgPTJ—rP _Eqrgqriq
o1l war, r AP prna g ApT rp _
=0 K" + Q" K -7 7 =
a , (10)
Ll 7Kg+ 0" KoQr -7 1=

However, if both blocks are sub-block elements within the same mesh, then in general 10
interaction matrices are required between them, so that &/ =KX¥ =0 .

Inspection of the above equations reveals a simple procedure for the transformation of sub-block
elements into FE format. For each sub-block element, m, the following process is implemented:

e The transformation matrix 0" is determined.
* All block stiffness matrices X ™ are post-multiplied by Q"
* Allblock stiffness matrices X " are pre-multiplied by Q”’T

* The force vector f” is pre-multiplied by Q”’T

This procedure is carried out in turn for all sub-block elements.
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The displacement vector is now partially in terms of the block variables of standard DDA blocks,
and partially in terms of the nodal displacements of sub-block elements. Because neighbouring
elements share the same nodes, the element stiffness matrix and displacement and force array
terms are distributed to the global nodal degrees of freedom, as is done in the Finite Element
method. This reduces the size of the global stiffness matrix relative to the DDA method, but the
stiffness matrix remains symmetric and invertible.

Figure 1. A simple DDA problem.

Figure 1 shows a simple illustrative example. Sub-blocks 3, 4 and 5 are elements of a single
block, while the other blocks are typical DDA elements. The solution equations are determined
by the DDA method, as shown in Figure 2a. The blank terms in the stiffness matrix are null sub-
matrices, as the blocks in question are not directly interacting. To mesh blocks 3, 4 and 5
together, the stiffness sub-matrices and load arrays in the shaded portions of Figure 2a are pre- or
post-multiplied by transformation matrices. The final solution equations are illustrated in Figure
2b. It should be noted that the arrays °, 4* and d° of Figure 2a have been replaced by in Figure
2b by the single array # °, the 10 translational degrees of freedom of the corner nodes of the
meshed polygon. Similarly, the three stiffness sub-matrices, X *, K * and _K ¥ have been
transformed by both pre- and post multiplication, and then merged into the single 10 x 10 sub-
matrix K%,

The terms in the unshaded regions of Figures 2a and 2b remain unaffected throughout.

(@) (b)

Figure 2. The global solution equations (a) before and (b) after transformation.
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After solution of the global equations, the displacements and strains in the sub-block elements
may be recovered by pre-multiplying the element nodal displacements by the transformation
matrix Q"

6 HIGHER ORDER BLOCKS AND ELEMENTS

The triangular three-noded element is the simplest element available for two-dimensional meshing
in the FE method. Alternatively, meshing can be based on the second-order DDA block devised
by Chern et al. (1995). The displacement function for this block is a complete quadratic series in
x and y. The block’s equivalent in the FE method is a six-noded triangular element, with nodes at
the corners and the mid-side points. Both have 12 degrees of freedom. The method of
transformation between the two is similar to that described for first-order elements, with the
matrix I'(x,y) of Equation 1 now a 2 x 12 matrix.

The various quadrilateral elements commonly used in Finite Element analysis cannot be
formulated as DDA blocks by this method. This is because the displacement functions of these
elements are not complete to any particular order, containing some terms from higher orders.
Hence, the deformation of the element will be dependent on its orientation to the global axis
system, and the method described above will not produce consistent results.

7 PERFORMANCE OF MESHES IN THE DDA METHOD

In order to guarantee that a particular element, if used in a mesh, will converge to a correct
solution with increasing refinement of the mesh, two conditions must be met.

The continuity condition requires that the displacement solution should be continuous at element
boundaries. In effect, this means that neighbouring elements may not separate or overlap along
their common edges. The completeness condition states that the element’s displacement function
and its first derivatives should be able to assume any constant value. The classic test of this
condition is the patch test (see e.g. de Arantes and Oliviera 1977).

Both the first and second order elements meet these convergence requirements. It is therefore
guaranteed that both will yield a correct solution to a problem as mesh refinement approaches
infinity. However, the convergence conditions do not give any indication of the performance of
elements in coarse meshes, and further tests are required to evaluate this.

7.1 The Cook Cantilever Test

Cook et al.(1989) describes a common test for two-dimensional elements subjected to bending.
This consists of a short, tapered cantilever which is subjected to a uniformly distributed load at its
free end. The geometry of the problem is shown in Figure 3. Also shown is the displaced shape,
as modelled by a 32 element mesh. The displacements are exaggerated for clarity. The results of
this test are tabulated in Table 1. No closed form solution exists for this problem, and the results
are compared to a ‘best known value’, vgo, which is the result obtained from a FE analysis, using
100 8-noded reduced integration elements.
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- Figure 3. The geometry and meshing of the Cook cantilever test (Cook et al. 1989)

No. of 1% Order Elements , 2™ Order Elements
) No. of No. of No. of
h | El I No. of d.o.f,

Mes| ements Nodes dof. Ve { Veo Nodes 0. ofd.o ve/ Vao
(a) 2 4 8 0.251 1 18 0.768
(b) 4 5 10 0.262 13 26 0.794
© 8 9 18 0.302 25 50 0.898
@ 18 16 32 0.456 49 98 0.946
(e) 32 25 50 0.529 81 162 0.973
N 50 36 72 0.650 144 288 0.983
(@) 72 49 98 0.693 169 338 0.989

Table 1. Results of the Cook cantilever test.

It can be seen from Table 1 that the 1¥ order elements perform poorly in the test. First order
DDA elements are equivalent to the three-noded linear elements used in FE applications,
commonly known as the Constant Strain Triangle (CST). These elements are noted for their poor
performance in bending. The 2™ order element performs considerably better in the test. This
element is identical to the six-noded C’-quadratic triangular element found in the FE method.

The same tests were carried out using the commercial FE package ABAQUS (1996). The results
obtained using the equivalent elements are identical, within the range of rounding errors. This
confirms that the DDA meshing method does vield a FE solution within blocks.

7.2 Uniaxial Compression Test

Figure 4 depicts a model of a uniaxial compression test, using 2™ order elements. Due to
symmetry, only a quarter of the block is modelled, and the upper edge is restrained horizontally,
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and displaced vertically downward, by 1%. The problem is modelled twice, using 1* and 2™
order elements.

. ]
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Figure 4. Geometry of the uniaxial compression test

The two meshes each have 38 nodes, and therefore 76 degrees of freedom, and are composed of
54 1% order blocks, and 14 2™ order blocks, respectively. The original number of block
deformation variables for the sub-block elements is therefore 324 for the 1% order mesh, and 168
for the 2* order mesh. It can be seen that there is a considerable reduction in the number of
degrees of freedom of the system during the meshing method.

In Figure 3, the vertical stress, oy, is plotted. Both meshes show a similar distribution of stresses
across the sample, with a stress concentration at the corner of the sample, where it is restrained by
the loading platen. Stress distributions obtained using the FE program ABAQUS (1996) are
identical to these plots.

> | 560
L 520
480 | 480
| 440 L 440
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L 400
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(@ ®
Figure 5. Contour plots of 6,, (MPa) for (a) 1™ order and (b) 2™ order elements.
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8 CONCLUSIONS

Incorporating a meshing method into DDA extends the scope of the method in modelling
engineering problems. The sub-blocking method of Ke and Goodman (1994) is the most common
meshing method used at present. The primary disadvantage of this method is that all of the sub-
blocks retain their six degrees of freedom. As shown above, using the nodal displacements as the
block degrees of freedom can considerably reduce the number of solution equations, with no loss
of accuracy.

The meshing formulation described above achieves this, while taking advantage of the numerical
similarities of the two methods to incorporate FE meshing into the DDA method in a manner
which is relatively simple to undertake, and computationally inexpensive.

The 1* order elements do not perform well in bending, but do provide satisfactof‘y results in

situations where bending is not the primary mode of deformation. 2™ order elements perform
well in general, but are more expensive to use, as they have a greater number of degrees of
freedom.

It should be noted that elements must display geometric isotropy, and therefore quadrilateral
elements cannot be formulated. However, non-linear material behaviour could be incorporated,
and the introduction of a fracture mechanism would further extend the usefulness of this analytical
tool.
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METHOD OF STABILITY ANALYSIS
OF A DAM-FOUNDATION-PLANT SYSTEM

Jue-Min Pei
Department of Hydraulic Engineering, Tsinghua University
Beijing 100084, PRC

ABSTRACT: DDA is a strong tool for stability analysis of dam foundation. This paper
introduces the application of DDA on a complex foundation of a typical gravity dam. This dam
consists of tens of dam blocks. Several blocks of the dam have a high foundation, which is cut
down deeply behind the dam for setting the power plant. Because of the existence of large joints
in dam foundation, the stability analysis of the dam-foundation-plant system is an important
problem. DDA is used to compare with the traditional method calied limit equilibrium of rigid
bodies.

1 METHOD OF STABILITY ANALYSIS
1.1 Method of Limit Equilibrium of Rigid Bodies

A large gravity dam infroduced here consists of tens of dam blocks. Of them several dam blocks
are located on the left bank. These dam blocks have a high rock foundation, which is cut down
deeply to the power plant behind the dam. It makes dam, foundation and plant to work as a
combined system for bearing the loads of gravity and water pressure. The total height of dam
and foundation is about 180 meters. The geological condition is complicated. There are large
Jjoints of multi-layers which cut across the foundation with an angle of near 25 degrees inclined
to down stream. The stability analysis of the dam-foundation-plant system is a very complex
problem.

The standard method of stability analysis used in China is the limit equilibrium method of
rigid bodies. It is an experimental method of material mechanics, that is easy to use for
engineers, but is too simple for important large projects. Satisfying the demand of simplifying
calculation, we have to conceptualize the real distribution of joints to a simple plane and have to
1solate the foundation to blocks arbitrarily, as shown in Figurel. In the calculation, the moment
on contact plane 1s ignored and the strength parameters on isolated contact face is assumed, so
the equilibrium formulas can be written as following:

Ki=[i(W,~Urtz, )+c,l, }/ (PF),) (1)
K=l { (W 4755 ~T3)cos O~ F o —F 35 )sin6y—U, | +¢,0,} / [(Wyttys—1y; Jsin— Fy—F5; ) cos 6, J(2)
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Ks={f; [(Wi=15,)cos0,-F3,5inl= U, [ +c;313} / [(Wy—13, )sinGp+F 5, cos6; | 3)
and K,=K,=K;=K, (4)

here, X is the stability safety factor of block 7; £;1s the friction coefficient and ¢; is the cohesion,
{, is the length and & is the angle of sliding plane 7; W,is the self weight force, U, is the
buoyancy force, P is the water pressure, F;is the thrust force and z;is the shear force on contact
plane between blocks i and j, K, 1s the demanded stability factor, 7 and / = 1,2,3 is the number of
block. Supposing 7,=0, K, and F;; can be found.

Block 3

Figure 1. Limit equilibrium of rigid bodies

Obviously the reasonableness of above method is doubtful. The problems are those as
followings. z; should not be equal to zero, the moment on contact plane also can not be ignored,
K; of each segment of the sliding plane is impossible to be the same, the sliding planes of multi-
layers work interactively and do not work only on a plane of single layer, and most importantly
the joints exist naturally and could not be isolated arbitrarily.

1.2 Method of DDA

Based on the DDA, above problems are easy to be overcome. The DDA method of stability
analysis does not need to assume any joints and blocks. The joints and blocks all are real and
natural, shown in Figure 2. [t shows that there are about 50 large joints in foundation. Their dip
angles all incline to downstream. It is very disadvantageous to the stability of dam and
foundation. The power plant is used to increase some resistant force to the dam and foundation.
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It forms a combined action system of dam-foundation-plant. Due to the existence of joints of
muiti-layers, the combination of sliding planes is very complex. There are two single sliding
planes, ac and ag, which are possible to slide independently, and five combined sliding planes,
AE, Al, AGSOWY, JI and MPNIE, which are possible to slide interactively as a dam-
foundation-plant system. Their dominant combination will be the planes AE, JI and MPNIE.
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J6[T34 . 37|16 T |28 |T14T 297144 £0 ITISG
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Figure 2. Distribution of joints in DDA

~ The coefficient of strength reserve, K, is used as the stability safety factor. As taking
K=1234 and 5, we can obtain a relationship curve of K (the stability safety factor) versus S
(the slid displacement of joints) of each connected sliding joint planes. From that the limit value
of K, can be found. This limit X is determined by the limit displacement on sliding plane. It can
be used to check the stability factor of the force equilibrium, X,. They are completely identical
in both situations and are coupled m calculation.

From the relationship curve of X ~ S, we can find the suddenly increasing point on the
displacement curve. Corresponding to this point, the safety factor of limit displacement, X, can
be found. Beyond this limit point the sliding will occur. At same time, the safety factor of limit
equilibrium, X, can be calculated as below. Assume o, .0, .7, is the stress on ith segment of
sliding plane, 6, is the angle of inclination of ith segment, then the normal stress o,,;, and the
shear stress 7, on ith segment will be wriiten as:

Ty =0 ¢y-008° (90-8p )+ &, ) -sin’ (90-G,, 1423, -sin (90-6,) -cos (90-6,,)
Tay= (O ;= Gy :511(90-8,)-cos (90-O 1+ 7,5, -[sin” (90-6,)) —cos® (90-6,)1 %)
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If ¢ is the friction angle and ¢ is the cohesion, then the unit resistant force S, and the unit
sliding force T, of segment i will be:

Sw= G tangy + ¢
T(i):' Tow 6)

The unit resistant force S; and the unit sliding force 7, on whole sliding plane will be:

Sy =2 Sﬁ) 'W(f)
T; =2 i=l Tﬁ) ‘Ww

Here, L, is the length of ith segment of sliding plane, 271 L is the full length of n segments,
W, is the weighting function and 2", W, is equal to 1. From formula (7), the limit stability
safety factor of force equilibrium on whole sliding plane can be written as:

K, =5,/T; &

Comparing X, with X, both values ought to be identical. If it is not, X will be reselected until
both identical.

2 STABILITY TENDENCY OF DAM-FOUNDATION-PLANT SYSTEM

The method of limit equilibrium of rigid bodies supposes that the blocks can only slide in a
static state on a certain sliding plane. Therefore the sliding on a single plane is considered to
take place instantly and there is no interaction among the sliding planes of multi-layers. It means
that the strength on the sliding planes has to reach the limit value in same time and no stress
transfer between planes occurs in sliding process.

Based on DDA, the dynamic process analysis of the stability of sliding planes of multi-layers
shows that above hypothesis of limit equilibrium method is not true. It proves that in the
dynamic sliding process the slid displacements on joint planes are developed gradually, and with
the displacement developing the stress redistributes correspondingly among the sliding planes of
multi-layers. The interaction of sliding planes is evidently and they do not work singly.

Figure 3 shows the sliding states of sliding planes of multi-layers when K— . It gives a
displacement tendency of dam-foundation-plant system. The sliding process indicates that the
different sliding plames have various slid displacements. The shallow layers ac and ag are
possible to slide individually and to cause large displacement first, because they are separated
from the plant block at beginning. Once planes ac and ag move slightly, the stress in dam toe will
be redistributed to upper part of plane AE, that will make the deformation of longitudinal seam
of dam and the thrust force on AE enlarged. Because the stability of plane AE is not enough, the
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Displacements of blocks

Figure 3. Slid displacement tendency on joint planes

plant block has to suffer a part of sliding force. The stability of sliding planes will be supported by
dam-foundation-plant system. Its dominant sliding plane is combined with planes of AE, JI and
MPNIE according to calculation. The combined system of dam-foundation-plant will act on
planes AE-JI-WPNIE commonly in the sliding process. Figure 4 shows the sliding tendency of
dam-foundation-plant system. The dam block tends to move down stream, and its half part behind

Figure 4. Combined sliding planes
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the longitudinal seam will sink along the plane AE. Planes AE and JI tend to slide down stream
and the plant block tends to rotate clockwise on plane WPNIE around the point M of tooth
trench. This situation will be kept till the bearing capacity on plane WPNIE is lost. Only as plane
WPNIE already slid, the sliding force can transfer to the lower plane of AGSOWY and cause it
sliding in deep foundation. Therefore the sliding contro! planes of the system will be combined
with AE-JI-WPNIE, which gives a minimal stability factor of the combined system.

3 COUPLED ANALYSIS OF DEFORMATION AND STABILITY

3.1 Contact Modes

The contact modes of joints include three kinds of A, —before block slides, the parameters of the
strength, f (friction coefficient) and ¢ (cohesion), are existent, M, —as block slides, only f exists
and M,,—as joint plane bears tensile force, then f=0 and c=0. Because the slid displacements and
bearing forces of joints and rock bridges are different, the strength parameters of contact planes
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Figure 5. Contact modes of sliding planes

also are variable. Only the relative displacement on the contact plane reaches to a yield limit
value, the sliding will occur. Figure 5 shows the fracture process of several segments of sliding
planes. The number 1,2,3,-- is the segment order that is numbered from the top of sliding plane.
If the displacement is less than the yield limit vatue, the contact mode is M, otherwise it is My,
and if the joint opens it is M,,. Figure 5 shows that on the segments of sliding planes, the contact
modes are not as the same. If all the blocks on the whole sliding plane slide, it can be said that
the sliding plane is really sliding. At this time the contact modes of all blocks are A,
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3.2 Limit Displacements

The block shiding is gradually developed. With the coefficient of strength reserve, K, increasing,
the slid displacement S on sliding plane will increase too. As S suddenly increases to a large
value, all the blocks on whole sliding plane are sure to slide. We can consider X at this turn point
as a limit X, which can be seen as the stability factor of whole sliding plane. In the foundation,
there 1s a certain plane of the sliding planes of multi-layers which will reach to the limit X first,
and others may be not. Figure 6 shows the relationship curves of X~§ of different sliding planes.
The most instability plane is ag, whose yield limit S is about 50 mm. Its corresponding X, =1.4.
We can use this yield limit value of 50 mm to judge if other sliding planes to be stable, shown in
Tablel.
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Figure 6. Shid displacements on sliding planes
3.3 Limit Equilibrium

Above K is found from curves of K~S. It has to identify with K, which is the stability factor
obtained by the equilibrium of contact forces. In the calculation of X, the contact forces and
contact modes of different sliding planes are considered. According to the formulas 5 to 8, we
can obtain K, of various planes. Table1 shows the percentages of M,,., M, and M,,, sliding and
resistant forces and the safety factors of all the sliding planes in interaction. The calculated X, is
compared with K It indicates that they fit close. The limit displacement and limit equilibrium
are coupled each other. If the difference between them is too large, the limit S should be
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reselected until both closed. The stability factor of pure friction, X is used for checking, which
is assumed the complete sliding occurring on whole shiding plane and considered the friction
strength to be reduced to eighty percent.

Table 1. Stiding plane, contact modes, unit resistance and shiding force, and XK, X, K,

Slide plane Contact mode(%) Unit force(¥/m) K, K, K,
M, M, M, R T

Ac 0 100 G 2937 18.10 1.60 1.62 1.30

ag 0 100 0 30.52 2168 1.40 141 1.13

AE 13 87 0 36,64 27.37 1.30 1.34 1.00

Al 0 100 0 24.63 13.68 1.90 1.80 1.44

AGSOWY 20 80 0 54.57 1492 3.50 3.65 2.70

Al 60 0 40 114.37 67.53 1.60 1.69 1.13

MPNIE 75 0 25 88.56 29,76 3.00 2.97 1.4%

AE-JI-MPNIE 43 28 24 7633 4768 1.74 1.76 1.07

In Table! the situations of stability of different sliding planes can be seen. The single sliding
plane ac and ag has lower stability factors K, of 1.30 and 1.13. The lowest stability factor X is of
plane AE, it is 1.00. Although as so, plane AE is not a single sliding plane as ac or ag, it acts in
combination with the plant block and others. Its stability ought to be evaluated in the combined
action. '

3.4 Combined Action

In certain degree, the stability of foundation is dependent upon the combined action of dam and
plant. If there is no support of plant, the stability factor of AE can not be satisfied the condition
of K, >1.0. Table 1 shows that X, of the plant is 2.97 and X, of the foundation is 1.34~1.69.
Under the combined action of dam and plant, the whole stability factor K, of dam-foundation-
plant system can raise to a higher value of 1.76. Its corresponding value of X is 1.74 and that
of K, is 1.07. These results show the effects of combined action. The stability factor X, of plane
AFE will be enlarged from 1.0 to 1.07 together with the dam—foundation-plant system. But the
stability factor of totality is still not high enough in value. Even considering the assumption of
DDA method being more actual and detailed and its trusty of calculation more than any other
methods, the reinforcements such as anchorage and grouting are still necessary.

3.5 Structure Safety
Under the combined condition, the dam and plant still need to take care to the problem of

structure. The longitudinal structure seam of dam is possible to be opened by tension and the
plant block is possible to be inclined with rotation, which may effect on the safety of pressure
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pipe and turbine generator. According to the calculation, the longitudinal structure seam of dam
will open with a horizontal span of 47 to 120 mm and will sank vertically with a differential
settlement of 48 to 84 mm at its bottom as X changing from 1 to 5. The acting force loaded on
power piant changes from 1500 t/m to 5000 t/m on thrusting and from 0 to 2000 ¢/m on shearing
as K changing from 1 to 5. The safety of deformation and stress of the pressure pipe, which is
across the dam and power plant, should be checked later in this situation.

4 CONCLUSION

Using DDA to amalyze the stability can thoroughly overcome the shortcomings of limit
equilibrium method of rigid bodies. This method of stability analysis of discontinuous deformed
blocks can couple the deformation and stability into a whole. In here the results of stability
analysis and deformation calculation are identical, that enhances the stability analysis method to
anew level.

The new method has many advantages. (1) There is no any hypothesis, the joints can be
modeled as nature. (2) The contact forces include the shear force, normat force and the moment.
(3) Three kinds of contact modes are used on sliding planes. (4) The stability factor can be
calculated by limit displacement and limit equilibrium, they are identical. (5) i can calculate the
combined action of sliding planes of multi-layers in dynamicat state.

Because this new method considered more actual situation, which is ignored in other methods,
the calculated stability factor reduces about 40% than that calculated by limit equilibrium
method of nigid bodies. It means that using limit equilibrium method of rigid bodies to calculate
the stability factor will lead to an over high value.

The limit equilibrium method of rigid bodies was developed in the fifties of this century. In
that .time the computer and the numerical method were not very developed. Using the
experimental method of material mechanics in that time was normal. As the time up to now, the
computer and numerical method, including DDA, are used very widely, we ought to change our
conception and to use some new method in our works. According to above comparison, we can
say that DDA as a strong tool of the stability analysis is doubtless,
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ANALYSIS OF CYCLIC PLASTIC DEFORMATION
OF RATLROAD BALLAST BY DDA
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ABSTRACT: This paper presents an analytical study to elucidate the cyclic plastic deforma-
tion of railroad ballast in ballasted railway track under train passage, that is "track deteriora-
tion". The simulations of full-scale vertical cyclic loading tests of railroad track regarding a
ballast particle as a DDA block were performed, and the applicability of DDA to the cyclic
plastic deformation of railroad ballast was discussed. It was found that the cyclic plastic defor-
mation of railroad ballast could be defined as the fabric transformation of particle alignment
accompanied by sliding between particles. DDA is useful to trace the movement of particles
and to unveil the complex deformation mechanics of granular ballast materials.

1 INTRODUCTION

At a ballasted railway track, the phenomenon such that irregularity of rail level under train
passage increases, so called "track deterioration”, is frequently observed. Since it threatens the
safety of train operation, the mechanism of track deterioration is one of major assignments to
be elucidated in railway engineering, and the theories to explain track deterioration have been
proposed in many countries for several decades. The track deterioration is a concept different
from total failure of structures like landslide, because it is an accumulation of deformation due
to cyclic loading. In other word, the dominant factor of track deterioration is supposed to be
the plastic deformation of "railroad ballast,” which is a track component of ballasted railway
track composed of crushed stone (ballast), caused by cyclic train passages. But the conven-
tional analysis method, which assumes railroad ballast as a continuous structural body, can't
evaluate such a feature. Now it is urgently necessary to develop a reasonable analysis method
of track structure in order to rationalize the design method of ballasted railway track.

In order to investigate track deterioration in detail, vertical cyclic loading tests with a
full-scale track at special test facilities (Ishikawa et al. 1999) and monotonic and cyclic load-
ing triaxial compression tests of ballast samples (Ishikawa et al. 1997) had been performed by
the authors et al. in the past. At the same time, the possibility of application of DDA (Dis-
continuous Deformation Analysis, Shi and Goodman 1985) to the coarse granular materials
was discussed by simulating laboratory triaxial tests of ballast (Ishikawa et al. 1997). We
found that the deformation of railroad ballast could be estimated most effectively by regarding
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ballast as an assemblage of coarse granular materials. It was shown that DDA is to some ex-
tent an effective method to analyze the behavior of ballast. But it was revealed that DDA had
some difficulties to handle the deformation of coarse granular materials that had large friction
angle between gravel surfaces such as ballast.

Considering the above mentioned results, the simulations of full-scale track tests regarding a
ballast particle as a DDA block were performed in this study, and the applicability of DDA to
understand the cyclic plastic deformation of railroad ballast was discussed in comparing ana-
lytical and experimental results. Also the suitability and limitation of DDA application to track
deterioration were discussed considering the mechanics of granular materials. This study 1s
fundamental for establishing the theory of track deterioration that could explain the mechanism
of the cyclic plastic deformation of railroad ballast.

2 ANALYTICAL METHOD
2.1 Modeling

Figure 1 shows the size, dimension and boundary condition of analytical model (section pro-
file) for simulating cyclic loading tests of a full-scale track. This profile is normally used for
Japanese railway. Detailed testing method and experimental results can be examined in
Ishikawa et al. 1999. Figure 2 shows some element meshes of DDA model before loading,
which are two-dimensional models using linear elastic elements with plane strain. Each poly-
gon element (block) expressing ballast particle is made by the method of Voronoi tessellation.
The gradation curve for the railroad ballast of DDA model is shown with real gradation of
ballast in Figure 3, and Table 1 shows the features of DDA model in comparison with test's
conditions. CaseA is different from caseB in the block size of ballast blocks because their di-
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Table 1. Features of DDA model

100 1?.2 19.IO 26.531.537.5 33.063.9 {(mm)  Property caseA caseB test
[—— test &) Number of ballast blocks 571 336 —
=0 fi—o—: caseA e Uniformity Ue 124 1.29 1.70
S 80 i—&—: caseB [/ Mean grain size Dso 37mm  48mm  36mm
70 A Porosity n 15.4% 16.0% 43.2%
& 60 /
5 50 /j 72 Table 2. Material ies of analvtical model
> 40 able 2. Materal properties oi analvticai mode
- [1] ¢ Property tie_ ballast _ roadbed
g 30 3 Unit mass y (DDA) 2.38tm> 2.77tm° 220tm”
= 20 ] Young's modulus E (DDA) 30 GPa 20 GPa 75 GPa
10 il i[ Poisson's ratio v (DDA}  0.20 0.10 0.40
. X ad | Cohesion Cu (DDA) 0 0 0
10 20 30 40 50 60 70809%00 Friction angle ¢= (DDA} 37 s 55 3 37 5
iametor | (mm).  Unit mass ¥ (FEM) 238tm” 1.70tm” 2.20tm
Young's modulus E (FEM) 30 GPa 150 GPa 75 GPa
Figure 3. Grain size distribution Poisson's ratio v (FEM) 0.20 0.35 0.40

vision number by Voronoi tessellation are different (Table 1). While, four models as shown in
Figure 2 are different in the porosity distribution inside railroad ballast. Especially three mod-
els of the Cases Al, A2, A3 are ones that remove some DDA blocks from ballast blocks of
caseA under sleeper (tie) or between neighboring sleepers at random. Removal of blocks is to
simulate the field condition disturbed by an ordinary maintenance operation around sleepers
using a hand-held tamper. Here, the actual density distribution of railroad ballast isn't simulat-
ed in both caseA and caseB. The actual laminated state of railroad ballast under test conditions
is 3-dimensional and shows 40.4%~45.9% range of porosity (Ishikawa et al. 1999}. From
the past study (Ishikawa et al. 1997), it was known that the porosity of two-dimensional
model can be converted into that of three-dimensional model using the reasonable ratio of 2.4.
. The DDA calculation is two-dimensional and the porosity of their model is probably estimated
in the range of 19.1 % from 16.8 %, which is nearly equal to our Voronoi model. DDA simu-
lations were performed as follows; in order to set up a model configuration at the first stage
the package of ballast blocks was made by throwing blocks one by one into a form of track
profile to express the random particle alignment in a restricted area. Subsequently the form
was removed and the stability analysis was done by dead weight. In the case of Figure 1
blocks are randomly thrown in two a rectangular box with invisible sleepers and the initial
loading state was made by loading the gravity force. Then the triangular vertical load were ap-
plied to the center sleeper (Fig. 1) five times at the load frequency of 2Hz with the amplitude
of pulsating compression load.

2.2 Analytical conditions

Table 2 shows the material properties of blocks and the interface properties of block edges.
The reason why the block friction angle ¢« between ballast blocks was set equal to 55° is that
the internal friction angle derived from the DDA analysis results with ¢.=55° indicated the
best fit to the actual triaxial test results of ballast samples (Ishikawa et al. 1997). As for ¢« be-
tween ballast block and sleeper block, the value was set equal to 37° referring to conventional
studies. Furthermore, the parameters except ¢« needed for the analysis was derived from the
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Table 3. Analytical conditions

Model name __Pmax{test)  Pmadanalysis) Loading ratio
caseA 40.0kN 1.56kN 3.9%
caseA 30.0kN 0.75kN 2.5%
caseA 20.0kN 0.40kN 2.0%
caseAl 40.0kN 1.08kN 2.7%
caseA2 40.0kN 2.04kN 5.1%
caseAl 40.0kN 1.16kN 2.9%
caseB 40.0kN 1.36kN 3.4%
— : caseA —— : caseB
’2“40 === : Test at the Ist cycle // s :’2‘40 [-~=~ : Test at the ist cycle y N
& [—-— : Testat the 2nd cycle,- 73/ o [—-— : Test at the 2nd cyclg 22% A !
- Py 7 ~ L N/ 4V S
A, 30 L ,(),’ 1 ,’j Q_*30 }’,’ y N ;
o L :{/:n ) 7 ;7 y - L ’I:/lf i \ ) /
E 20 ,’,5‘: ,’f P _}'/4,’/,‘:,?- / LS 20k "/a:,"ri’, : ';/,’r /.I,,:r/- /
ER: 2 f-,{?'/',"i/ ERS s .{-‘,f" 0
S10F 577 ,r,',‘/:f}::c;’,_ﬁf.'/ SN0 AP
N o o S | A
//’.’ - ~ il | 1 | L i ! ’/’;! . 3"’1" ) ] 1 | 1 ] 1
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06

Vertical displacement # (inm)

Figure 4a. P-u relations (caseA)

Vertical displacement # {mm)

Figure 4b. P-u relations (caseB)

<

actual triaxial compression test results. Table 3 shows the analytical condition of each simula-
tion briefly. Here, the loading ratio is the value that divided the analytical load by the experi-
mental load when the vertical displacement of analytical results coincide with that of experi-
mental results. According to Table 3, the analytical load is much smaller than the experimental
load because the loading ratios are in the range of 2.0 % to 5.0 %. Also it is recognized that
the loading ratio increases as the vertical load becomes bigger, and that the loading ratios of
cach model are different even if comparing them at the same load. So in this paper, the value
that divides the analytical load by the loading ratio as shown in Table 3 is regarded as the cy-
clic vertical load Pmax of analytical results.

On the other hand, the simulations of full-scale track test were also performed with FEM in
order to compare the DDA results with the ones by FEM. The simulations of FEM were done
with a three-dimensional element mesh and two two-dimensional element meshes, which sec-
tions are similar to the element mesh of DDA model. The element of FEM is the linear elastic
body, whose material properties are also shown in Table 2. The analytical parameters for rail-
road ballast are derived from the triaxial test results of ballast samples under the same stress
condition of railroad ballast on train passages (Ishikawa et al. 1997). The parameters except
railroad ballast are the same as DDA model. But neither the discontinuity between sleeper and
railroad ballast nor the discontinuity between ballast particles is considered in FEM models.

3 CYCLIC PLASTIC DEFORMATION
3.1 Influence of block size

Figure 4 shows the load-displacement relations of Pma=40kN from the 1st cycle to the 5th cy-
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cle comparing analytical results of caseA and caseB with experimental results. Here, the verti-
cal displacement u is the settlement of ballast blocks. Figure 4 shows a big hystersis-loop in
loading curve and unloading curve at the 1st cycle and permanent settlement increases in a
great amount. But the area of hystersis-loop of the 2nd cycle and later decreases and the de-
formation characteristics of railroad ballast become elastic and constant. Such a tendency of
analytical results agrees with experimental results qualitatively. Further comparing the result of
caseA with that of caseB in relation to the shape of the loading curve, the latter is nearer to
the experimental result than the former because the loading curve of caseA turns in the neigh-
borhood of #=0.35mm. Figure 5 shows the transition of vertical displacement ures at unloading
and vertical displacement umar at the maximum load under cyclic loading of Pmax=40kN com-
paring analytical results with experimental resuits. In particular, ures is used as a measure of
cumulative permanent settlement. According to Figure 5, both the permanent settlement gener-
ated at the 1st cycle and its increment of the 2nd cycle and later in analytical results of every
model are smaller than experimental results, and the result of caseA is closer to the experi-
mental result than that of caseB as to the quantity of plastic displacement. Figure 6 indicates
how the vertical component of displacement vector that connects the center of gravity of a
block at initial loading state with the one at the designated load is distributed in loading of
Pra=40kN at the 1st cycle comparing analytical results of caseA with that of caseB. Here, the
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more a block moves toward the vertical direction, by the brighter color it is painted. Figure 6
shows that some ballast blocks adjacent to a loading block form the subsidence area, looks
like an eggplant shape, where its loading block is the center at loading. And the some blocks
don't come back to the original position of initial loading state at unloading. From the preced-
ing results, it is concluded that the cyclic deformation of railroad ballast originates in the
movement of ballast particles accompanied by the fabric transformation of particle alignment
during cyclic loading. Comparing the result of caseA with that of caseB, the subsidence area
of the latter becomes larger than that of the former. And the area of residual subsidence in
caseB decreases very much. In general, the movement of individual block in the example
analysis with a few blocks influences the deformation of whole model strongly. So it is con-
sidered that the analytical results of caseA with many blocks, of which mean grain size Dso is
almost equal to that of actual tests, became closer to real behavior than that of caseB with a
few blocks in case a difference between case A and caseB isn't found in both porosity 7 and
uniformity coefficient Uc as shown in Table 1.

3.2 Influence of porosity distribution
Figure 7 shows the load-displacement relations of Pma=40kN from the 1st cycle to the 5th cy-
cle comparing analytical results of caseAl, caseA2 and caseA3 with experimental results,

whereas Figure 8 shows the transition of vertical displacement ures and umex under cyclic load-
ing of Pma=40kN. Comparing analytical results of caseAl that there are some pores at ballast
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Figure 9. Property of plastic deformation Figure 10. Deformation characteristics
blocks under sleeper with that of caseA2 that there are some pores at ballast blocks between
neighboring sleepers, the former is closer to the experimental result as to the shape of the
loading curve than the latter, but the latter is nearer to the experimental result as to both the
change of hystersis-loop with the repetition of load and the increasing tendency of plastic dis-
placement than the former. Also the permanent settlement of caseA3 generated at the 1st cycle
is nearly as large as that of experimental results and the amount of the plastic displacement
generated at the 2nd cycle and later is almost the same as experimental results. Besides,
Figure 9 shows the relations between #mar and ures at the 1st cycle comparing analytical results
of each model with the approximation line derived from experimental results. According to
Figure 9, ures of each model increases with the increment of zmax as well as experimental re-
sults. Also comparing analytical results of each model at the same uma, it is recognized that
the plastic displacement by models having some pores only under sleeper is smaller than the
one by models having some pores between neighboring sleepers, and that the relation of
caseA3 is closest to that of experimental results among all analytical results. From the preced-
ing results, it is considered that the distribution of pores under sleeper has a considerable in-
fluence on the rigidity of ballast blocks, and that the distribution of pores between neighboring
sleepers has a considerable influence on the cyclic plastic deformation of ballast blocks. The
reason why above mentioned consideration was derived from analytical results seems to be
that the principal mechanism of cyclic plastic deformation inside railroad ballast changes by
the distribution of pores. Figure 10 shows the relations of each model between direction of
principal axis Oprincipat defined as Equation (1) and vertical load P at each region as shown in
Figure 1 in loading of Pma=40kN at the st cycle. Here, Oprincipal is the prominent direction for
the vector of contact force. However the direction 0 for the vector of contact force is measured
from the horizontal plane counterclockwise.

Oprincipal= -Zl'-arCtan—Z:Sl—nzek- 0=6< 180° )

2 Y c0s20k (D
Seeing Figure 10, Oprincipat of every model at regionA is almost a constant value of about 90°,
whereas at regionB Oprincipal of caseAl is almost a constant value of about 90° but Bprincipal of
caseA2 and caseA3 is almost a constant value of about 55°. These results indicate that the
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stress distribution inside ballast blocks changes by the distribution of pores and the deforma-
tion characteristics of ballast blocks at regionB change compression into lateral flow in case
there are some pores between neighboring sleepers. According to triaxial test results of ballast
(Ishikawa et al. 1997), it is revealed that the ballast behaves mainty as a elastic body until the
dominant mechanism of deformation changes compression into shear deformation. And the
plastic behavior of ballast changes volume shrinkage by compression into volume expansion
by shear deformation with the increase of the principal stress ratio. As such experimental re-
sults can explain the analytical results mentioned above sufficiently, it seems to be adequate to
conclude that DDA model considering the actual density distribution of railroad ballast can
simulate the movement of ballast particles under cyclic loading to some extent without setting
any particular constitutive relation except the frictional law, which causes the cyclic plastic
deformation of railroad ballast.

4 PROBLEMS ON APPLICATION

From the preceding results, it is revealed that DDA is to some extent an effective method to
analyze the cyclic plastic deformation of coarse granular materials such as track deterioration.
Hence, the application of DDA to track deterioration seems to produce a significant and novel
theory to make a geotechnical treatment of railroad ballast in designing ballasted railway track
reasonable although the cyclic plastic deformation of railroad ballast had been estimated with
an experimental equation in the Japanese conventional theory of track deterioration. But it was
also revealed that there were some assignments in applying DDA with two-dimensional ele-
ments characterized by plane strain to the design of ballasted railway track. So herein, their
assignments are discussed on the basis of analytical results in this paper.

4.1 Mechanism of stress transmission

According to Table 3, the analytical load is an unrealistic value because of being 5.0% or less
of experimental load. Also it is recognized that the loading condition can't be determined so
long as the loading rate isn't set according to each analytical model. These phenomena are
similar to the analytical result that the peak stress level in analysis was lower around 60% than
the one in the actual test, which was derived in case of simuiating the monotonic loading
triaxial tests of ballast by DDA (Ishikawa et al. 1997). So it is considered that these phenome-
na are caused by the reason that the frictional contact mechanism of block surface includes
some defects as well as the analytical results of monotonic loading triaxial tests. But it is hard
to consider the analytical results in this paper was caused by only the above mentioned reason
because the rate of analytical stress to drop for the real value in this paper is much lower than
the one in the last paper. Therefore some factors except the above one, for example the differ-
ence as to density distribution and grain size distribution or the effectiveness of two-dimen-
sional analysis to three-dimensional problem, seem to influence it, too. It is commonly said
that the particle breakage has a considerable influence on the deformation characteristics of
coarse granular materials. So a setting method of block friction angle ¢» that paid attention to
a change in a quantity of particle breakage during cyclic loading is one of assignments that
should be examined in future, too.
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4.2 Effectiveness of two-dimensional analysis

From the preceding results, it is revealed that the it is recognized that the plastic displacement
calculated with an analytical model of line profile not having any pores between neighboring
sleepers is smaller than that of experimental results. However in simulating track deterioration
with an analytical model of cross section (Ishikawa et al. 1999), it is impossible to express any
pores between neighboring sleepers. Further, Table 4 shows the rates of load bearing capacity
in each panel of a sleeper in loading of Pma=20kN at the 1st cycle, comparing analytical re-
sults by DDA or FEM with experimental results. Here, the rate of load bearing capacity

Table 4. Rate of loading bearing capacity

Model name Bottom panel  Side panel End panel
DDA (line profile) 74.2% 25.8% —
DDA (cross section) 91.9% — 8.1%
FEM (line profile) 60.7% 39.3% R
FEM (cross section) 92.6% — 7.4%
FEM (3-dimension) 56.3% 40.6% 3.1%

1s the value that divided the loading bearing capacity in each panel of a sleeper by the total
load bearing capacity of a sleeper. Also a panel of 24em wide x 17cm height is called "end
panel” and a panel of 200cm long % 17cm height is called "side panel”. Seeing Table 4, it is
recognized that the discontinuum analysis is more useful for an analytical method of ballasted
railway irack than the continuum analysis because the evaluation for discontinuity between
sleeper and railroad ballast has serious influences on the reliability of analytical results in
comparing the analytical results by DDA model of line profile and FEM model with the ex-
perimental result. On the other hand, in comparing the analytical results by DDA model of
cross section with the experimental result, the former is much larger than the latter. It is con-
sidered that this phenomenon was caused by the reason that it is impossible to express the
load bearing capacity of side panel sufficiently in case of using DDA model of line profile.
These results indicate that to examine the effectiveness of two-dimensional analysis to
three-dimensional problems is one of significant assignments controlling the reliability of ana-
lytical results.

4.3 Deformation characteristics of blocks

According to the results of FEM models, loading points on sleeper subsided more than periph-
eral departments and the sleeper was deformed into wavy form toward the longest axial direc-
tion. However it is impossible to express such a deformation pattern with DDA model because
of using the first order approximations of displacement as the displacement function for each
block in this paper. But it is revealed that the movement of ballast particles influences both the
generation of local shear stress and the density distribution inside the railroad ballast strongly,
and that the deformation characteristics of railroad ballast change with the repetition of load
because the movement of a ballast particle changes by the cyclic loading depending on either
the contact state between the under-surface of sleeper and ballast particles or the distribution
of pores inside railroad ballast. Therefore, in case the deformation characteristics of a block
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such as a sleeper in analytical model of cross section have a considerable influence on that of
the whole analytical model, the selection of displacement function becomes a factor to let the
reliability of analytical results deteriorate.

5 CONCLUSIONS

The following conclusions can be obtained;

1. DDA which takes into account the actual density distribution of railroad ballast with
modified porosity can simulate the cyclic plastic deformation of railroad ballast to some extent
without setting any particular constitutive relationship except the frictional law between
interfaces. The cyclic plastic deformation of railroad ballast is considered to be the movement
of ballast particles accompanied by the fabric transformation of particle alignment during cy-
clic loading in terms of the mechanics of granular materials.

2. The principal mechanism of cyclic plastic deformation inside the railroad ballast, that is
compressive or lateral flow, changes by the porosity distribution and the grain size distribution
inside railroad ballast because they have a considerable influence on the movement of a ballast
particle. Therefore, to bring a DDA model close to the real laminated state of railroad ballast
is indispensable to improve the reliability of analytical results.

3. As the evaluation for discontinuity influences the reliability of analytical results strongly
in analyzing the deformation of track structure, the discontinuum analysis was more useful
than the continuum analysis. However there are some assignments as for the frictional contact
mechanism of block surface or the deformation characteristics of block itself in applying DDA
to the design of ballasted railway track.
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THE VOUSSOIR BEAM REACTION CURVE

Yossef H. Hatzor
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ABSTRACT: The influence of joint spacing (s) on the stability of a Voussoir beam having a
fixed span (B), total thickness () and individual bed thickness (7) is studied here using DDA. It is
found that: A) The required friction angle (¢ rq) for stability against shear sliding along the
abutments decreases with increasing spacing down to a minimum value beyond which increasing
spacing requires increasing joint strength. The corresponding parabolic function is referred to
herein as the “Beam Response Function”; B) The axial compressive stress at the beam (o,)
increases with increasing spacing up to a maximum value beyond which increasing spacing
leads to decreasing level of axial thrust and increasing levels of vertical loads

) A new concept: the “Beam Reaction Curve” is proposed in which maximum deflection at
mid section vs. time is plotted using DDA. Such numerically developed curves can indicate the
expected failure modes: shear sliding along the abutments, onset of stable arching after initial
shear deformation, or completely stable arching. With the help of such synthetic diagrams
monitoring data from real excavations can be analyzed with respect to the ongoing failure
mechanisms in the roof, and conclusions can be drawn concemning imminent failure or
stabilization.

1 INTRODUCTION

There is no close form solution for the stability of a horizontally bedded roof with vertical joints,
a geometric configuration referred to here as a Laminated Voussoir Beam. Classic beam theory
can be utilized for the calculation of shear and axial stress distribution, as well as amount of
deflection, in the analysis of a bedded roof with beds of varying thickness (Obert and Duvall,
1976) and with given friction angle (Goodman, 1989). In these solutions the beam is assumed to
be clamped at the ends and therefore the problem is statically determined. When the beam
consists of a single bed with vertical joints, the so called Foussoir beam is obtained, and the
problem becomes statically indeterminate as the beam is free to displace on either the abutments
or across mid joints. Evans (1941) developed a design procedure for Voussoir beam geometry, a
method which was later extended by Beer and Meek (1982) and is reviewed in detail by Brady
and Brown (1993). However in these solutions only a single layer is modeled, and the influence
of spacing and friction between the vertical joints are ignored. Little experimental work has been
performed on the mechanical strength of a voussoir beam. Passaris ef al. (1993) studied the
crushing strength of the beam, and the mechanism of shear sliding along side walls has been
investigated by Ran et al. (1991), both of which have used non liner finite element analysis. In
both studies the analysis was extended to the case of multiple mid joints and the spacing between
joints was considered, but friction along the discontinuities was not modeled.

In order to truly simulate deformation characteristics of a laminated voussoir beam a
numerical method must be used. The selected method should allow rigid body movement and
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deformation to occur simultaneously, and convergence in every time step should be achieved
after relatively large block displacement and rotation, without block penetration or tension.
Furthermore, the vertical load which is typically assigned explicitly, must be evaluated and
updated implicitly in every time step, since it varies with vertical location in the beam, as well as
with the progress of beam deformation. Finally, the model must incorporate the influence of joint
friction on block displacement and on the arching mechanism.

In this paper the failure of a laminated voussoir beam is back analyzed. All geometrical
variables including beam span, beam thickness, joint spacing, and bed thickness are determined
from careful field mapping and site investigations. All mechanical parameters are determined
from expedient rock mechanics testing. The beam geometry and intact rock properties are used as
input parameters in both classic Voussoir Beam Analysis (Beer and Meek, 1982) and in
Discontinuous Deformation Analysis (Shi, 1993) and the results are compared. Finally using
DDA results some new insights regarding the mechanical behavior of a laminated Voussoir beam
are proposed.

2 THE FAILURE OF A LAMINATED VOUSSOIR BEAM - A CASE HISTORY
2.1 A Brief Description of the Failure

In the archeological site of Tel Beer Sheva, an ancient city dated back to the Iron stage (1,200 -
700 B.C.) an underground water storage reservoir dated back to approximately 1,000 B.C. was
explored. The reservoir was excavated in horizontally bedded chalk with vertical joints clustered
in three joint sets. The most abundant joint sets (J1 and J2) are orthogonal with mean spacing of
20 to 25 cm; the mean bed thickness is about 50 cm. The intersection of horizontal layers and
vertical joint planes creates a dense network of cubic blocks which form the roof of the
excavation. The roof collapsed into the shape of a three dimensional dome, probably during time
of construction, and the ancient engineers have erected a massive support pillar in the center of
the opening in order to support the remaining roof. The collapsed roof is considered here a failed
laminated voussoir beam. Hatzor and Benary (1998) provide details of the failure including maps
and cross-sections.

2.2 Rock Mass Properties

The studied rock mass consists of a horizontally bedded and vertically jointed chalk, covered by
Sm. of a well cemented conglomerate, and by about 3m. of soil in which the archeological
remains are.found. Individual bed thickness in the chalk is between 30 to 80 cm. with an average
thickness of 50 ¢cm. The rock mass RQD values determined from core recovery range between 44
- 100% with typical values between 65 - 80%. The unconfined compressive strength of the chalk
is 7 MPa , the Elastic module (E) and Poisson ratio (v) as measured in unconfined compression
are 2GPa and 0.1 respectively. A linear Coulomb-Mohr failure envelope fitted to the peak
strength values yield a cohesion of 3.1 MPa and internal friction angle of 32°. The porosity of
the chalk is between 27 to 30% and the unit weight is between 18.1 to 20.1 kN/m’. The
Atterberg limits of the interbedded marl indicate relatively low plasticity and low swelling
potential. Estimation of input data for rock mass classification methods yields an estimated Q
value between 0.4 to 4.0 and an estimated RMR value of 43. These values indicate a fair to poor
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rock with an expected stand up time of one to several days. The estimated rock mass
classification values help explain the historic failure: with the given lithological conditions and
considering modern experience we do not expect the rock mass to have been able to sustain the
loads which were induced by the attempted excavation, for a significant period of time

2.3 Estimated Shear Strength of Joints

Three principal joint sets are defined. The joints are clean and tight with planar surfaces. The
roughness of the joint planes is estimated using a profilometer measurements. 10 measured
profiles are compared with JRC standards and the mean JRC value is estimated at 9. The residual
friction angle of the joints is determined using tilt tests performed on mating saw cut joint planes.
The mean residual friction angle is estimated at 35°. In order to asses the peak friction angle
which was available at time of deformation the empirical criterion of Barton is used with the
following input parameters: JRC = 9; JCS =7 MPa; o, = 0.25 MP3; ¢ resiguar= 35°. The maximum
normal stress active on the joints (o,) is a function of beam thickness and is determined here
from DDA results (see below). Using the criterion of Barton the dilation angle is expected be
about 13° and therefore the peak friction angle is expected to be about 48°.

3. VOUSSOIR BEAM ANALYSIS

The assumed stress distribution in a “classic” voussoir beam (Beer and Meek, 1982, Brady and
Browm, 1993) is shown in Figure 1, where the beam consists of a single layer . As the number of
intermediatc joints is irrelevant, the only relevant geometric parameters in the classic analysis are
beam span (B) and beam height (d). The geometry of a laminated voussoir beam is shown in
Figure 2. The principal geometric parameters are beam span (B), overall beam height (d),
individual layer thickness (t), and joint spacing (s). This geometry is used in DDA with fixed
point location as marked in Figure 2 by the small triangles.

Y

Figure 1a. Assumed stress distribution in classic voussoir beam analysis

The maximum axial stress (o) in the classic voussoir beam analysis is computed for beam spans
ranging between 3 to 9 meters and beam thickness between 0.25 to 2.5m. (Figure 3) . It can be
seen that in general 6, increases with increasing beam span and decreases with increasing beam
thickness. The calculated results however are only valid for a beam consisting of a single layer.
The case of Tel Beer Sheva is shown in the heavy line in Figure 3 for a beam span of 7m. The
value of o, obtained for an individual layer thickness of 0.25m, is 2.45 MPa.
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Figure 2. Geometry of a laminated voussoir beam as used in DDA experiments

For a single layer beam with thickness of 2.5m o, is 0.244 MPa. At Tel Beer Sheva the average
bed thickness is 0.5m. Assuming that each bed transmits the axial thrust independently from the
neighboring layers above and below, o, within a single layer should be 1.22 MPa. These values
are significantly lower than the unconfined compressive strength of the rock which is about 7
MPa, and therefore the beam should be considered safe against failure by local crushing at hinge
zones, according to this analysis.
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Figure 3. Maximum axial compressive stress (o, ) as a function of beam thickness according to
classic voussoir beam analysis

Brady and Brown (1993) show that for joints and abutments of zero cohesion the factor of safety
against failure in shear along the abutments is given by:

(D

T ta 050.nd t ]
ngé: n an¢=o-ntan¢

F.S.=
v 0.57Bd ¥B

120



Where: T = resultant horizontal (normal) force; V = resultant vertical (shear) force; ¢ = available
friction angle along abutment wall or vertical joint; n = assumed load/depth ratio (compressive
zone thickness is given by n x d); d = beam thickness; B = beam span; y = unit weight of rock.
The factor of safety against shear failure by sliding along the vertical abutments is calculated in
Figure 4 for different values of available friction angle and beam thickness using Eqn. 1. It can be
seen that the sensitivity of the factor of safety to beam thickness is quite high and a logarithmic
scale is used for better resolution.

100
Roof Span B = 7m

Factor of safety against
shear along abutmnets

0.g5 0.5 0.75 i 1.25 1.5 1.75

01 L Beam Thickness (m)

Figure 4. Sensitivity of factor of safety against shear sliding along the abutments to the available
friction angle and to the beam thickness according to classic voussoir beam analysis

The available friction angle for Tel Beer Sheva is estimated at 48° ; a heavy line representing
available friction angle of 40° is shown in Figure 4 above. With a given friction angle of only 40°
the opening should have been safe against shear along the vertical abutments, for any beam
thickness between 0.25 to 2.5m. In fact, the required friction angle for stability according to
classic voussoir beam analysis is not greater than 36°, for every beam thickness.

The results obtained using classic voussoir beam analysis can not explain the failure. The
local compression which develops at the hinge zones is too low comparing to the available
compressive strength; the shear stress which develops along the vertical abutments due to beam
weight is lower than the shear strength of the abutments, considering a conservative estimate of
friction angle. We must conclude therefore that the approach taken by classic voussoir beam
analysis, which ignores the influence of joint spacing and the existence of multiple beds, may

prove unconservative, and should not be applied in practice for the analysis of a laminated
voussoir beam.

4 DISCONTINUOUS DEFORMATION ANALYSIS
4.1 Set up of DDA experiments
The carefully documented geometry of the failed roof is used here in back analysis of the failure.

The active span is assumed to be 7m as before, but a distinction is made now between overall
beam thickness, and individual layer thickness. The overall beam thickness is represented by the
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height of the mapped loosened zone, about 2.5m. Individual layer thickness is taken as the
average bed thickness, about 50cm. The geometric and mechanical parameters, which are used as
variables, are mean joint spacing and joint friction, respectively.

DDA runs are performed for the geometry which is schematically shown in Figure 2,
where fixed point location is marked by small triangles. In each analysis a constant mean joint
spacing value (s) is used, and the value of friction angle along the boundaries is changed until the
system shows stability. The stability of the roof is defined by a specified value of maximum
deflection at beam mid section, the magnitude of which would not change regardless of the
number of time steps. In this research the roof is considered to arrive at stability when a
maximum deflection of up to 5.5cm is detected at mid section, after at least 25 time steps. The
maximum allowable displacement ratio, namely the maximum allowable displacement per time
step divided by half the vertical dimension of the region, is set to 0.01. In the analyzed case study
the maximum allowable displacement per time step is 3.5cm.

The joints are considered planar and cohesionless with zero tensile strength, an honest
representation of the situation in the field. The friction angle of vertical joints and horizontal
bedding planes is assumed equal, merely for simplicity; this is by no means a limitation of the
method. The input material parameters are: Mass per unit area = 1900 k,g/m2 ; Weight per unit
area = 18.7 kN/mz; Young’s modulus £ = 2%10% kN/m; and Poisson’s ratio v = 0.1. Seven mean
joint spacing values are analyzed: s = 25¢m, 50cm, 87.5cm, 116cm, 175¢cm, 350cm, and 700cm.
The roof is modeled for friction angle values between 20° and 90°. The maximum deflection at
mid section for a given friction angle value is noted in each run. Typically stability and cease of
motion is detected after 12 to 16 time steps.

4.2 DDA results

An example of DDA results for a layered beam with s = 25¢m. is shown in Figure 5 a, b, ¢, for
available friction angle values of ¢ avaiable = 20°, 40°, and 85° respectively. The beam fails in
shear along the abutments when the available friction angle is 20° (Figure 5a). An available
friction angle of 40° (Figure 5b) is sufficient to induce arching but the roof deflection is
excessive, Umax = 20cm. The roof remains completely stable only when the available friction
angle is increased to 850 (Figure Sc).

The results of all DDA experiment are graphically demonstrated in Figure 6 for a roof of
7m span and 0.5m horizontal layer thickness. Maximum deflections at mid section (Upax), arrived
at after up to 25 time steps, are plotted against the value of friction angle which was modeled for
all discontinuities. The tests are performed for six different vertical joint spacing values (s).

The results of the DDA experiments demonstrate that for the case of Tel Beer Sheva, with
mean bed thickness of 0.5m and mean joint spacing of 0.25m, the required friction angle is 80°, a
shear strength which was not available at time of construction and thus the failure.
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Figure 5. Three DDA’ experiments for the deformation of a laminated Voussoir beam aftre 25

time steps (see text for details). Beam geometry: B=7m, d=2.5m, t=0.5m, s=0.25m. A)

Gavaitable=20°, Umax = 0.83m; B) Gavaitabe=40°, Umax=0.211; C) Pavaitabie=85°, Umax=0m
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Figure 6. Maximum deflection at beam mid section after up to 25 time steps as predicted by DDA

5 THE VOUSSOIR BEAM RESPONSE FUNCTION

The influence of joint spacing, or block length, on the required friction angle for stability is
demonstrated in Figure 7 below. The results indicate that the required friction angle for stability
decreases with increasing block length, or joint spacing. However, the empirical function is not
monotonously decreasing but presents a minimum, when the number of blocks in an individual
layer is 4 (s = 175). When the number of blocks further decreases (block length or joint spacing
increases) the required friction angle for stability increases. Ultimately, when each individual

layer consists of a single block the required friction angle is 90° because the abutment walls are
vertical with zero cohesion.
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Figure 7. Influence of joint spacing on the stability of a laminated voussoir beam
The empirical function in Figure 7 above is referred to here as the “Beam Response Function™.
The logic behind this parabolic function may be rationalized as follows: with increasing joint

spacing the moment arm length in individual blocks increases, and the arcing mechanism by
which axial thrust is transmitted through the blocks to the abutments is enhanced. However,
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above a limiting value of block length, the weight of the overlying blocks becomes more
dominant. Consequently, the stabilizing effect of greater axial thrust is weakened by the
destabilizing effect of dead load transfer from the weight of overlying blocks. This rational may
be tested if we investigate the developed axial thrust at beam mid section (upper hinge point) as a
function of block length or joint spacing. Resuits of DDA calculations (Figure 8 below) confirm
the stated rational above.

0 100 200 300 400 500 600 700
s {cm)

Figure 8. Maximum axial thrust at beam mid section (o) for a given vertical joint spacing (s) as
determined by DDA,

6 THE VOUSSOIR BEAM REACTION CURVE

The dynamic formulation of DDA enables us to gain further insight into the mechanical
behaviour of a laminated voussoir beam, in particular its deformation with respect to time. When
joint and abutment wall friction is low with respect to the developed vertical shear load
continuous sliding deformation along the abutments is expected. With increasing shear resistance
onset of arching deformation ensues after initial vertical slip takes place. The beam is completely
safe when arching deformation is preceded by minimal vertical slip. The deflection of the beam
with time is referred to here as the “Beam Reaction Curve” . Three different reaction curves are

shown in Figure 9 for three different beam configurations. Such developed curves can indicate
" the expected failure modes: shear sliding along the abutments, onset of arching after initial shear
deformation, or completely stable arching. With the help of such synthetic diagrams monitoring
data from real excavations can be analyzed with respect to the ongoing failure mode in the roof,
and conclusions can be drawn concerning imminent failure or stabilization.

7. CONCLUSIONS

» DDA is more appropriate and more conservative than classic voussoir beam analysis for the
analysis of a laminated voussoir beam because it can model joint spacing and joint friction,
and it can allow for multiple layers in a beam.

e For a laminated beam with a constant layer thickness the resistance to shear along the
abutments improves with increasing joint spacing up to a critical value of block length,
beyond which the composite beam becomes less stable.
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e Using DDA synthetic Beam Reaction Curves which predict vertical beam deflection with time
may be generated. With the help of such synthetic diagrams monitoring data from real
excavations can be analyzed with respect to the ongoing failure mechanisms in the roof, and
conclusions can be drawn concerning imminent failure or stabilization.
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Figure 9. Three different “Beam Reaction Curves” for three different voussoir beam
configurations as predicted by DDA.
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DDA Analysis of The RCC Modification for Pueblo Dam

Joseph T. Kottenstette
U.S. Bureau of Reclamation,
Denver, CO 80225 USA

ABSTRACT: Pueblo Dam is a massive head buttress structure founded on horizontally bedded
sandstone and shale. Prominent shale beds beneath the structure daylight in the spillway stilling
basin excavation downstream of the dam. Due to foundation sliding concerns the stilling basin
has been filled with roller compacted concrete (RCC). The DDA model was used to check the
stability of the modified structure assuming that no cohesion was available along the base of the
RCC-plug/stilling basin lining contact. The DDA method is most effective when the structures
are below the limit of equilibrium and movement has started, unfortunately at this point the
structure is failing. This is not the case at Pueblo Dam.

The potential sliding surface at Pueblo Dam is composed of segments with different available
friction coefficients (tan ®, ). To evaluate the potential for instability, the friction coefficients
for each segment were divided by a constant factor of safety and the resulting values were
applied to the DDA model. The reduced friction coefficients which just allow movement to
begin are defined as the required friction coefficients (tan @, ). The factor of safety for the
system is estimated by the ratio of the shear strengths (FS = tan @,/ tan ®@,).

1. INTRODUCTION

This paper describes Reclamation’s Discontinuous Deformation Analysis (DDA) analysis of the
spillway section at Pueblo Dam. Pueblo Dam is a composite earth and concrete structure located
six miles upstream of Pueblo Colorado on the Arkansas River. The Structural height is
approximately 220 feet and crest length is about 11,500 feet. Zoned earthfill embankments flank
each end of the concrete section. Bedrock for the concrete dam foundation is the Dakota
Sandstone formation and the earth dam sections are founded on Graneros Shale. The concrete
portion was constructed with 23 individual massive head and buttress sections. Buttresses 8
through 14 make up the overflow spillway and outlet works part of the concrete dam. A stilling
basin was excavated downstream of these buttresses to dissipate energy from the overflow
spillway.

In December of 1996 Reclamation performed a risk analysis for the dam based on geologic
information provided in the original design and construction related reports. The Dakota
Sandstone foundation for the concrete section consists of nearly horizontally bedded sandstone
with carbonaceous zones and shale interbeds. The risk analysis indicated a stability concern for
the spillway Buttresses 8 through 14 upstream of the stilling basin excavation. The weak shale
layers beneath the buttresses daylighted in the stilling basin excavation and created a potentially
unstable foundation.

Exploration and excavation performed during the original construction identified and removed
portions of weak planes under the downstream portion of the buttresses. This included
excavation of a continuous thick shale seam under buttresses 8 and 9. This additional excavation
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was backfilled with a concrete block. However, the significance of a thin shale seam at
elevation 4715, less than 10 feet below the massive concrete block, was not recognized.

The risk assessment indicated that the lower daylighting shale seam created a continuous weak
slide plane and an inordinate risk to the public. A modification was required to reduce this risk.
This paper describes the DDA analysis that was used in conjunction with other methods to
evaluate the stability of the modification,

2. BUTTRESSES 8 AND 9 POTENTIAL SLIDE PLANE, AND MODIFICATION

The stilling basin excavation at Pueblo Dam daylighted a shale bed creating weak potential slide
planes below buttresses 8 and 9 of the spillway section. The foundation model for buttresses 8
and 9 is shown in the geologic section (Fig-2.1); note the lower potential sliding plane
daylighting at elevation 4715. The horizontal shale beds shown on this section were mapped in
the foundation and identified in numerous core holes. They form a continuous potential stepped
foundation slide plane below buttresses 8 and 9.

fe—— § af Don fis

Butiress 8 Legend

— — — lnital Excovation

Fire! Excavation

Shole Sean (opned or interpreded
Inferred Shale Seon

i g (mpged or interpreted)
Inferred Bedding Hure

Il

s B4T
Plag —
Ky

fL 4710

RCL Plug

Kd

Kpg

SH

SHALL 1 snbe SHAL 88"

Figure 2.1 Buttresses 8§ and 9 Geologic Cross Section and RCC Blocks
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The RCC blocks are designed to correct this weakness by blocking the potential sliding plane.
The RCC plug fills in the stilling basin preventing the plane from daylighting. Good bond
between the RCC and existing basin concrete is anticipated. However, if good bond is not
obtained, potential sliding on these surfaces may be possible. This mechanism was evaluated for
the buttress 8 and 9 RCC blocks using DDA.

3. DDA MODEL GEOMETRY

The location of the RCC contraction joints, the geometry of the stilling basin, the potential
sliding plane geometry, and the design of the RCC blocks, dictated the block geometries for the
two-dimensional DDA model. The DDA model for buttresses 8 and 9 consists of five dam
blocks, two foundation blocks, and five RCC blocks.

The dam blocks modeled the equivalent stiffness and mass of the structure in a two
dimensional section. This was required because the dam is a massive head buitress structure and
it does not have a constant upstream-downstream cross section. Figure 2.1 shows the RCC
blocks and Figure 3.1 shows potential sliding surfaces.

The two foundation blocks consisted of an upstream Dakota Sandstone block, and the
downstream concrete block. Both blocks have horizontal potential sliding planes of shale
(®,=17deg).

The RCC blocks are: the cap, the toe block, the D/S end of the RCC plug, the middle of the
RCC plug, and the upstream end of the plug. The plug was divided into three blocks defined by
the upstream and downstream contraction joints and the stilling basin contact,

A small corner of the plug was removed from the middle RCC block at the break in slope
between the base and down stream end of the stilling basin. This geometry change provided a
smooth sliding mode that was controlled by the shear strength of block boundaries and not the
change in geometry. The sharp corners create stress concentrations that may crush if movement
occurs. Removing them results in a more reliable model of the potential sliding mode.

3.1 Critical Potential Sliding Mode

The DDA model was used to help select the critical potential sliding mode for buttresses 8 and
9. The shale beds below the two foundation blocks and the sloping stilling basin lining/RCC
interfaces are the critical potential sliding surfaces. The available friction angle for these
surfaces is estimated at 17 degrees for the shale and 45 degrees for the RCC. With these values
the model is stable and no movement occurs. However, the margin of safety is unknown. The
initial shear strengths for the DDA model were reduced by a safety factor of 1.5 (1.5 = (tan P, )
/(tan @, ) with no cohesion. The DDA model with these reduced shear strengths was stable for
the reservoir at elevation 4898.7 (spillway crest). The sidz resistance (see section 5) was then
reduced to zero to induce sliding in the RCC block system on the critical surfaces. The critical
potential sliding mode in the RCC blocks involved sliding on the upstream and downstream
sloping stilling basin walls. Figure 3.1 Shows the potential sliding mode. This potential sliding
mode produces tension on the base of the plug, and is considered the critical one for buttresses 8
and 9.
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Figure 3.1 Potential Sliding Mode
4. ANALYSIS METHOD

Reclamation has often used a three dimensional limit equilibrium analysis to estimate the safety
factor on large individual foundation blocks with daylighting potential sliding planes and simple
sliding modes. The blocking mechanism precludes simple limit equilibrium methods. The
design deliberately blocks the potential sliding plane and prevents it from daylighting. This
forces the system into a multiple block sliding with complex movements, and makes it necessary
to use the DDA type of analysis developed by Dr. Shi. The DDA program provides a method for
evaluating discontinuous blocky structures with multiple blocks sliding on different surfaces and
in the different directions. Reclamation used the DDA program for both static and psendo static
earthquake evalunations of the Pueblo Dam modification.

The DDA computer program models deformations and is effective in detecting the onset of
movement. This affects the analysis procedure for stable structures that are designed with safety
factors. Structures do not demonstrate significant block movements until they are below the
limit of equilibrium. Unfortunately, at this point the structure is sliding. Conventional sliding
factors of safety are difficuit to apply to a blocky system with potential complex block
rnovements.

The main reason for the DDA modeling is a concern about the reliance on cohesion in the
RCC when there is a potential to create tensile stresses along the block boundaries and RCC lift
lines. The blocking mechanism of the deeper potential sliding plane and the RCC plug was
evaluated with a reduced strength limit equilibrium approach described in the next section. The
approach assumed no cohesive strength on the boundary of the RCC modification.
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4.1 Reduced Strength Method

After defining the critical potential sliding mode the side resistance (see Section 5) was again
included as an external load. The friction angles on the critical surfaces was decreased in small
increments by a constant safety factor until sliding occurred on the critical sliding surfaces. The
limit equilibrium friction angles (® requires) a1t Telated safety factor (FS = tan @ /tan @) is
defined by this trial and error procedure.

The RCC and shale shear strength values (friction coefficients) were each decreased such that
the safety factors for the shale seam and the RCC contact were always equal. The shear strengths
required for pseudo static earthquake limit equilibrium were estimated in the DDA model by
decreasing them from the measured values on the RCC and the shale until the DDA model
became unstable. The new dynamic safety factor was calculated from these results similar to the
static case except that dynamic loads were included.

The DDA method for stable structures can make use of a reduction in shear strength on the
discontinuities until movement starts. A back calculated safety factor is estimated by the ratio
between the available strength and the required strength at movement (FS = tan & Jtan @ ).
This reduced strength method was used for this analysis and the results are presented for both
static and pseudo static earthquake loading conditions.

5. SHEAR STRENGTH

The shale beds have an estimated shear strength of 17 degrees (& avaitante ) A0d no cohesion. This
estimated strength indicates sliding at the historic maximum (RWL = 4888.5) loading conditions,
a condition known to be stable. In reality, there is side resistance that is not accounted for in a
two-dimensional model. An additional resistance of 350 kips per foot was added to correct the
‘model for side resistance.

Side resistance strength for buttresses 8 and 9 was limited to the back calculated value (about
350 kips/ft) for the historic maximum loading conditions (FS = 1.0) because of the uncertainty
and risk related to potential sliding of this structure. Research and test results indicate an
available friction angle along the RCC plug contact of 45 degrees (® available J-

6. LOADS

Three types of loads were used in this analysis; 1) reservoir, 2) uplift, and 3) pseudo static
earthquake. The preliminary limit equilibrium analysis and the design criteria were used to
define the critical combinations of loads and safety factors.

6.1 Reservoir

The reservoir water loads have a downward component and 2 downstream component because of
the slope on the upstream face of the dam. Loads on this surface were based on the water level in
the reservoir for the spillway crest (elevation 4898.7), the top of joint use (elevation 4893.7), and
historical maximum (elevation 4888.3). Only the results at the spillway crest are presented in
this paper.
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6.2 Uplift

A line of piezometers under buttress 7 and additional instruments installed in 1997 were used to
define the uplift profile based on the reservoir and piezometric levels obtained in 1997. The
1997 piezometers were adjusted to the various reservoir water surfaces as follows:

DHR = (PL-TWL)(RL-TWL) )
PL = DHR (RL - TWL) + TWL @)

Where DHR is the "Differential Head Ratio™, PL is Piezometric Level, RL is the Reservoir
Level, and TWL is the Tailwater Level. Differential Head Ratios were calculated for the uplift
values measured at the historic maximum reservoir levels and uplift values were extrapolated to
other reservoir levels using the relationships described above.

6.3 Pseudo Static Earthquake

A three dimensiona] response history finite element dynamic analysis of the structure was used to
calculate dynamic loads at the base of the dam. The time history record from the Oct. 31, 1935
Helena, MT earthquake was used for the dynamic analysis. This earthquake has peak horizontal
acceleration components of 0.17g (E-W) and 0.15g (N-S). The dynamic loads result from the
time history acceleration acting on the mass of the dam and reservoir. Separate calculations were
performed to identify the time step at which the critical dam loading and inertia forces. (the
product of mass and acceleration) occurred. Dynamic loads for this time step (T = 2.69 sec) and
the reduced strength method described above were used to check the pseudo static earthquake
safety factor for the RCC modification. Reclamation’s version of the DDA program is not
designed to accept time history accelerations for direct dynamic evaluation of the full earthquake
record. '

7. RESULTS

The DDA model was stable for the design friction angle values. The static limit of equilibrium
friction angle was 7.20 degrees on the shale and 22.45 on the RCC with the reservoir at the
spillway crest. This corresponds to a safety factor on these surfaces of 2.42. The pseudo static
earthquake limit of equilibrium friction angle was 14.29 degrees on the shale and 39.81 on the
RCC. The corresponding safety factor on these surfaces of 1.2. These values include 350 kips
per foot for side resistance.

The RCC design effectively blocks the potential sliding plane. The DDA model shows
acceptable safety factors of the RCC block structure assuming the cohesion is lost due to
excessive tensile stresses. The blocking mechanism stabilizes these buttresses without cohesion
for both the static and pseudo static earthquake loading conditions.
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ABSTRACT: Some possibilities and limitations of the discontinuous deformation analysis in
modelling concrete fracture are illustrated on several simple benchmarks, in particular in tracing
the entire range of fracture evolution from a continuum to discontinuum. Illustrative examples
include a plain concrete beam and the RILEM pull-out benchmark problem. Solution: control
strategy for monitoring progressive fracture via linearised eigenvalue analysis is considered.

1 INTRODUCTION

Modelling of gradual fracturing of concrete (strain localisation, followed by separation by
cracking or shear slip) represents a complex computational modelling task. Continuum based
nonlinear material models are usually adopted, which are traditionally based on concepts of
damage mechanics, strain softening plasticity or some higher order plasticity theory, where no
discontinuities are admitted in the trial displacement field. Further sophistication leads to
discontinuous shape function enrichment or internal discontinuity bands on an element level,
however the identification of the failure mode again does not consider the actual separation of
structural parts.

The discrete crack framework (Ingraffea 1997) relies on some energy based criterion for crack
advancement and extensive remeshing strategies following an introduction of a displacement
discontinuity across the introduced crack. Most formulations assume that cracks once open do
not close and there is no consideration of a possible re-establishment of contacts between the
cracked surfaces. Lattice based modelling approaches have also been very successful, in
particular in simulation of the micromechanical behaviour of concrete.
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Discontinzous modelling frameworks have become increasingly researched in concrete
fracture simulations, including the discrete element method, rigid block spring method and the
discontinuous deformation analysis. The DDA method has recently been reformulated as a subset
of a more generalised framework, and the procedure is seen as an alternative approach along with
a number of approximation procedures suitable for modelling discontinuous media. The most
recent generalisation is the Manifold Method (Shi 1997), which advocates very similar ideas as
the ones used in the meshless methods (Belytschko et al 1994) and in the method of moving least
squares (Nayroles 1992), the development of which can be traced back to early irregular finite
difference networks in 1960s. Many common features exist in both approaches, where the
meshless methods stem from a continuum side and the manifold method from the discontinuum
end of the spectrum, indicating a possibility of a more rigorous treatment in modelling of the
development of progressive discontinuities in quasi brittle materials.

Imposition of block contact constraints is established in various algorithmic ways. The initial
approach (Shi 1988) adopted the penalty format, where the contact spring with a penalty stiffness
is placed between the vertex of one block and the side of another. The convergence process may
sometimes be very slow indeed, as both activation and deactivation of contacts during the
iteration process is possible. The advantage of the penalty format lies in its simplicity, as the
number of system variables does not change and the changes of the secant stiffness matrix are
obtained iteratively by augmenting components of the stiffness matrix with components arising
from the potential energy of any active contact penalty springs. The convergence of the solution
algorithm depends highly on the choice of the penalty term and the process may often lead to ill
conditioned matrices, associated with the very large penalty term employed to ensure the contact
constraint. The Lagrange multiplier method leads to additional unknowns of the problem, where
the system of equations is augmented by the presence of any active contact. The number of
unknowns to be solved for at every increment becomes variable as contacts are activated and
deactivated. The procedure has a major disadvantage as the resulting system matrix contains a
zero sub-matrix associated with A;s and it may not be positive definite, requiring the use of a

special matrix pseudo inversion procedure.

The most advanced treatment of contact constraints is the Augmented Lagrangian Method,
which has been recently advocated in the DDA context (Lin 1995, Amadei et al 1995), where an
iterative combination of a Lagrangian multiplier and a contact penalty spring is utilised. The
ensuing iterative procedure, to obtain the correct contact forces, proceeds until the penetration
distance and the norm of the out of balance forces is not smaller than some specified value. As
the number of unknowns does not increase, the method retains the advantage of the penalty
method. The rate of convergence of the ensuing iterative procedure to obtain the contact forces is
clearly controlled by the penalty stiffness term and the iteration process is ended when the norm
of the out of balance forces in between the two iterates is less than a specified tolerance limit.

2 FRACTURING IN DISCONTIONUOUS DEFORMATION ANALYSIS

In the context of DDA, concrete fracturing can be modelled by releasing contact constraints
along predetermined block interfaces of by the through block fracturing, thereby creating new
blocks. The formulation deals naturally with discontinuities along block boundaries, which are
created according to the Mohr-Coulomb criterion (with or without the tension cut-off) and this
strategy resembles early concrete fracturing FE simulations (Ngo and Scordelis, 1967). The
algorithimic argumentation is simple, as the normal and tangential contact springs, which are

134



added to the system whenever a vertex is in the vicinity of a vertex or a side of another block, are
released instantaneously if a pointwise Mohr Coulomb or tension cut off condition (in terms of
stress resultants) is violated. Similar possibilities exist within the combined FEM/DEM
framework, where the Rankine criterion has been utilised to invoke fracturing and local
remeshing (Munjiza et al, 1995), as well with interface elements in concrete mechanics (Rots and
Schellekens, 1990)

A block fracturing algorithm through block centroids has been proposed recently (Lin 1995),
in the context of rock fracture, comprising again the Mohr-Coulomb fracturing criterion with a
tension cut-off, where the newly formed discontinuities are introduced and are are further treated
in the same way as the original discontinuity planes.

It has been increasingly recognised that concrete behaves as a quasi brittle material and the
fracture energy control of the reduction of material strength has been frequently adopted in a
continuum based softening simulations of localised failure in concrete. Along similar lines,
within the discontinnous modelling frameworks it is necessary for contacts to be released
gradually and that process should be associated with energy dissipation. Such a control has been
recently introduced into the block separation criterion within the RBSM framework (Kitoh et al
1997}, by converting the relative displacement between the two rigid blocks into an equivalent
cracking strain, which is then related to the reduced interface strength. Similar concept is clearly
applicable within the DDA framework, which differs from the RBSM in the manner the medium
deformability is accounted for (in RBSM deformability is concentrated on the block interfaces,
with DDA within the blocks themselves). Within the DDA framework it is necessary to
introduce energy dissipation across block interfaces. In an algorithmic sense, this could be done
by converting an equivalent cracking strain across a given boundary into a non zero crack
opening, which is then in turn used as a contact constraint (a finite gap, rather than zero) on the
same interface. The iterative process would need to satisfy this modified constraint, which is at
the same time associated with a reduced interface strength. A full block separation would follow
only after the crack opening reaches a critical value, which is controlled by the fracture energy
release rate at the interface in question.

3 BENCHMARK PROBLEMS FOR CONCRETE FRACTURING

Several discontinuous modelling attempts in modelling the fragmentation of concrete
structures have been reported. A series of RBSM block size sensivity tests have been conducted
(Kitoh et al 1997), exploring both the geometric size effect on fracture for series of normalised
plain concrete beams, as well as the influence of the discretisation effect, resulting from different
block sizes.

The Kitoh plain concrete beam four point bending problem (A=100mm) is here modelled with
two DDA discretisations (Fig 1). The failure load predictions from a course discretisation using
130 simply deformable blocks is compared to the failure load prediction from a model
comprising 455 simply deformable blocks and both results are set against the failure load
prediction reported by Kitoh. The block material characteristics and the interface material law are
identical in both cases (E = 27.5 MPa, v=0.20, ¢c=0.0047 MPa, £=0.0029 MPa, ¢=37°), the
values which correspond to the data adopted in the RBSM analysis. The analysis has been
conducted using an enhanced version of the Shi’s original code, as a force controlled analysis,
with an adaptive load incrementation in approaching failure.
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Figure 1. Kitoh Plain Concrete Beam (h=100mm) (a) Failure mode for coarser DDA

discretisation (130 blocks), (b) Failure mode finer DDA discretisation (455 blocks),
(c) Comparison of P-d diagrams for (a) and (b) together with the RSBM failure load.
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Another example (Fig 2) illustrates the results of the displacement controlled analysis of a
plain concrete pull-out test. The problem geometry, similar to the RILEM Round Robin analysis
corresponds to the tests carried out at the Delft University of Technology (Vervuurt et al, 1993).

Here, only the bolt head was modelled, utilising the displacement controlled DDA formulation
(Pearce et al 1999).
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Figure 2. DDA Simulation of the Pull Out Test. (a) DDA discretisation (704 simply deformable

blocks) and geometry (dimensions in mm). (b) Close-up of anchor head at end of analysis.
(c) Load vs. displacement of anchor head.
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The resulting load displacement diagram indicates the peak load which is approximately 70%
of the experimentally observed ultimate load. The overly brittle post peak response follows as a
direct result of the instantaneous interface release adopted in this analysis, confirming the need
for a gradual energy controlled interface fracturing. In addition, there is a clear need for the DDA
simulations of such problems to utilise computational strategies associated with overcoming
limit points, used successfully in the context of the finite element analysis (e.g. arc length
method). Close-up of the anchor bolt head at the end of the analysis is also illustrated.

4 EIGENVALUE ANALYSIS IN MONITORING PROGRESSIVE FAILLURE

A convenient way of monitoring progressive failure can be established by tracing, as the solution
progresses, the evolution of the lowest eigenvalue of the DDA block system, similar to the
current stiffness concept used in the finite element context. It was argued that such a monitoring
strategy (Pearce et al 1999) can be used to signal a necessary switch in a solution procedure in
order to ensure a robust treatment in overcoming limit points.

In light of the above, it is important to distinguish between the algorithmic stiffness matrix and
the stiffness matrix to be used to assess the current eigenvalues when using the Augmented
Langrangian format to impose the DDA block contact constraints. The Augmented Lagrangian
approach utilises a low penalty term and establishes the correct contact forces in an iterative way.
Such an approach is clearly computationally desirable to improve numerical conditioning,
however the ensuing algorithmic DDA system stiffness matrix on its own does not reflect the
block constraint conditions. Therefore, for the purpose of a current stiffness eigenvalue analysis,
the DDA system matrix needs to be modified by replacing the low penalty terms by the high
penalty terms, which secures that the block constraints are satisfied in a linearised eigenvalue
analysis.

A benchmark problem considering progressive fracturing of a cantilever beam subjected to
point load is considered (Fig 3). Evolution of the four lowest eigenvalues of the cantilever beam
in various stages of fracturing is indicated, where it is interesting to note that some stiffness
eigenmodes are less affected by the presence of discontinuities than others. The current stiffness
ratios A/Ag are also given for various stages of fracturing and various deformation modes.

5 CONCLUSIONS

Some aspects associated with the discontinuous deformation analysis framework in modelling
concrete fracture have been discussed. The displacement controlled analysis, required for tracing
structural response beyond the limit point was illustrated on two illustrative problems. It is noted
that - for the purpose of a linearised eigenvalue analysis - the algorithmic DDA system stiffness
matrix associated with the Augmented Lagrangian approach needs to be replaced by a stiffness
matrix, which correctly reflects the block constraints. It is suggested that the current stiffness
ratios can be used as failure indicators in simulations of concrete fracture, in particular to indicate

changes in nonlinear solution strategies needed to overcome algorithmic difficulties near limit
points.
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Figure 3. Progressive fracture of a cantilever subject to end point load.
Changes in eigenvalues and eigenmodes corresponding to different stages of fracturing and the
evolution of the current stiffness ratio A/Ag
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ABSTRACT: The Large Block Test (LBT) is one phase of the field-scale thermal testing
program of the Yucca Mountain Site Characterization Project (YMP). It is a thermal test on an
exposed block of fractured rock. Because the block is a well mapped fractured rock mass, it is a
good candidate for analysis using discontinuum models such as the Discontinuous Deformation
Analysis (DDA). The approach is to use both DDA back and forward analyses to analyze the
temperature and deformation data obtained during the LBT. In the DDA back analyses, local
deformations at anchor points of multi-point borehole extensometers (MPBXs) will be used as
input to obtain the global deformed configuration of the block. From the computed global
deformed configuration, fracture deformation will be calculated and compared with measured
fracture monitor data. In the DDA forward analyses, the measured temperature as a function of
time will be used as input to predict the global deformed configuration. The computed global
deformed configuration will be evaluated to determine if it is consistent with measured MPBX
and fracture monitor data. Preliminary results from a DDA back analysis show that while the
computed fracture deformation follows a reasonable trend, the magnitude of the fracture
deformation computed is in general larger than that measured. Furthermore, in some cases the
computed and measured deformation are of opposite sense. These findings point to the need to
refine the simplifications and assumptions made in the analysis. To resolve the discrepancy
between computed and measured results, additional refined analyses will be performed.

1 INTRODUCTION

The Large Block Test (LBT), conducted at Fran Ridge, near Yucca Mountain, Nevada,
comprises one phase of the field-scale thermal testing program of the Yucca Mountain Site
Characterization Project (YMP). One of the primary goals of this program is to aid in the
understanding and characterization of coupled thermal-hydrologic-mechanical-chemical
(THMC) processes in the near field environment of a potential high-level waste repository. The
particular objective of the LBT was to monitor and characterize coupled THMC processes in an
isolated block of fractured rock subject to a one-dimensional thermal gradient (Wilder et al.
1997).

The deformation of the block during the LBT was simulated using two- and three-dimensional
continuum models (Blair et al. 1996), and Blair and Wood (1998) found poor agreement between
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the predicted and observed deformations. Because the block is an unconfined, and well mapped
fractured rock mass, it is a good candidate for analysis using discontinuum models. One such
model is the Discontinuous Deformation Analysis (DDA), which will be used to analyze the
thermal-mechanical behavior of the block during the LBT.

In this paper we present a brief discussion of the temperature and deformation data obtained
during the LBT, describe the approach we will use to analyze the LBT data using DDA, and
present preliminary results of a DDA back analysis of the LBT data.

2 DESCRIPTION OF LARGE BLOCK TEST

The LBT was conducted on a rectangular prism of rock 3 m x 3 m in cross-section and 4.5 m
high that was exposed from an outcrop by excavating the surrounding rock (see Figure 1).
Detailed geologic mapping showed that two subvertical sets of fractures and one set of
subhorizontal fractures intersect the block. The subvertical fracture sets are approximately
orthogonal, with spacings of 0.25 to 1 m and are oriented generally in the NE-SW and NW-SE
directions. Moreover, a major sub-horizontal fracture is located approximately 0.5 m below the
top surface. This fracture is visible in Figure 1.

To create a one-dimensional thermal field within the block heaters were placed in the rock to
simulate a plane heat source at a height of 1.75m from the base of the block, and a steel plate
fitted with heating/cooling coils was mounted on the top of the block. This plate was connected
to a heat exchanger to allow thermal control of the top surface. The block was heated for more
than 12 months, from Feb. 27, 1997 until March 10, 1998.

The overall three-dimensional mechanical response of the rock to the heating was monitored
using six multi-point borehole extensometers (MPBXs). Three were oriented horizontally in the
N-S direction; two were orented horizomtally in the E-W direction, and one was oriented
vertically. In addition, deformation of several major fractures that intersect the surface of the
block was monitored using three-component fracture monitors. These were installed at 17
locations on the surface of the block. A few of the fracture monitor locations are visible as T-
shaped grooves in Figure 1. The fracture monitors measured movement in directions across the
trace of the fracture parallel to the face, and along the trace of the fracture both parallel and
perpendicular to the face. In addition, temperature, moisture level and electrical resistivity in the
block were also monitored.

Preliminary monitoring data have been presented by Wilder et al. (1997). Only temperature
and deformation data will be discussed here.

3 SUMMARY OF TEMPERATURE AND DEFORMATION DATA

The temperature measured near the center of the heater plane is plotted against time in Figure 2.
This figure shows temperature increased from ambient to 90 °C in the first few hundred hours of
heating. A power outage caused a drop in temperature at approximately 600 hours. When power
was restored temperatures quickly rose back to pre-outage levels, and near the heater temperature
reached approximately 98 °C after 750 hours of heating. The overall temperature profile is
consistent with conduction-dominated heat flow in the block, except for the temperature
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Figure 1. Site of the Large Block Test.
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Figure 2. Typical temperature-time history and typical MPBX deformation-time history.
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excursions at 2520 and 4475 hours. These excursions are thought to be breakdowns in the
metastable hydrothermal regime and formation of transient heat-pipes. Currently the exact
mechanism causing this behavior is poorly understood.

Preliminary analysis of data from the MPBX systems shows that within a few hours of the
heater start-up the block started expanding. The deformation-time history for a typical MPBX
anchor is shown along with the temperature in Figure 2, which shows that the overall
deformation is directly correlated with the heating history. Note that the MPBX data do not
indicate contraction during the thermal perturbations at 2500 and 4475 hours, indicating that
these temperature perturbations are local events within the block.

Overall horizontal deformation of the block after approximately 60 days of heating shows
similar amounts of expansion in both the E-W and N-S directions. These data are plotted in
Figure 3, which shows that horizontal expansion is a linear function of height above the base.
The observed horizontal deformation increases with height and is independent of the thermal
profile above the heater plane. Moreover, MPBX data from boreholes in the upper third show
that most of the deformation occurs in discrete vertically oriented zones. This may be caused by
opening of vertical fractures in this upper region. Data also indicate that strain in the vertical
direction is less than that observed in the horizontal direction, and that the region of the block
above the heaters is moving upward as a unit.

Results from the fracture monitors are consistent with those from the MPBX in that the
fractures are generally opening. Analysis of the fracture monitor data indicates that several of
the fractures opened by an amount between 0.13 mm and 0.38 mm (0.005 and 0.015 in), and that
closure of some fractures was observed. Moreover, observed shear displacements are generally
larger than normal displacements across the fractures, and at three locations 0.51 mm (0.02 in) of
shear displacement was observed.
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4 ANALYSIS OF LBT DATA USING DDA

4.1 Approach

The block of fractured rock tested in the LBT will be treated as a discontinuous system of rock
blocks bounded by fractures. Sections through the block will be developed to allow two-
dimensional analyses using DDA. Two types of analyses using the DDA method, namely the
back analysis and the forward analysis, will be performed.

In the DDA back analyses, local deformations at anchor points of the MPBXs will be used as
input to obtain the global deformed configuration of the block. From the computed global
deformed configuration, fracture deformation will be calculated and compared with measured
fracture monitor data. It may be interesting to note that Shi and Goodman (1984) developed the
original DDA as a back analysis used to interpret the data obtained from another “large block
test.”

In the DDA forward analyses, the measured temperature as a function of time at various points
in the block will be used as input to predict the global deformed configuration. The computed
global deformed configuration will be evaluated to determine if it is consistent with measured
MPBX and fracture monitor data.

4.2 DDA Back Analysis

Using the fracture maps of the five exposed faces of the block, a three-dimensional physical
model of the block was constructed to aid in the selection of sections to be analyzed and fractures
to be included in the sections for analysis. Because the fractures in the block are nearly
horizontal and vertical, meaningful analysis can be performed on two-dimensional vertical and
horizontal sections through the block.

To take advantage of the MPBX data, sections should be developed that cut through planes
containing or close to containing MPBXs. One such section is a horizontal section 1 m from the
top surface of the block (Section 1), which is near MPBXs designated WM2 and NM3. Using
the three-dimensional physical model of the block, all through-going fractures (fractures that cut
through the whole block) were identified and included in Section 1. Fractures that terminate
inside a rock block and do not form rock blocks were ignored. The fractures are represented by
connecting straight line segments in Section 1 as shown in Figure 4.

The MPBX data are used as input in the DDA back analysis. Because the deformation of an
MPBX anchor is measured relative to a reference point which is not fixed in space, an
assurnption must be made on the deformation of the reference point. The assumption used in the
analysis is that the block expands outwardly from the center during the test so that the N-S plane
of symmetry of the block does not deform in the E-W direction, and the E-W plane of symmetry
does not deform in the N-S direction. Based on this assumption, the intersection point between
an MPBX and a plane of symmetry does not deform in the direction along the length of the
MPBX, given that the MPBX is normal to the plane of symmetry. Therefore, all the anchor
deformations in the direction along the length of the MPBX can be referenced against this
intersection point. To obtain deformation data in the direction normal to the length of the
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Figure 4. Section 1.

MPBX at the anchor points, an additional assumption made is that all the anchor points of an
MPBX have the same deformation normal to the length of the MPBX,. Using this assumption,
the deformation at an anchor point in the direction normal to the length of an MPBX can be
interpolated from deformation data from another MPBX normal to the MPBX. With these
assumptions and using the data from the two MPBXs (WM2 and NM3), the deformation-time
histories in the N-S and E-W directions for anchor points on Section 1 shown in Figure 5 were
computed. In addition, grid points shown on Figure 5 were defined and their deformation-time
histories taken from those for the anchor points. For example, for the grid point at the NW
corner of the section, its N-S deformation is the same as the N-S deformation for the anchor point
on the north boundary of MPBX NMS3, and its E-W deformation is the same as the E-W
deformation for the anchor point on the west boundary of MPBX WM2.

With the deformation-time histories of the anchor points and additional grid points on Section
1 as input data and additional input data including those on intact rock and fracture properties, a
DDA back analysis was performed using DDA programs (Shi, unpubl.) to compute the global
deformation of the section with time. Figure 6 shows the deformed configuration of the section
at the end of the heating period analyzed (2500 hours of heating). It can be seen from this figure
(although not too apparent because of the small deformations) that some fractures in the section
have opened (e.g. E-W trending fracture within the southern half of the section) and some
. fractures have sheared (e.g. see deformed south boundary). These observations are consistent
with measured deformation data.

Using the DDA results, the deformations of selected fractures at the boundaries of Section 1
were computed. Four locations on fractures near fracture locations monitored during the LBT by
fracture monitors WF4, EF4, NF4, and SF1 were considered, as labeled in Figure 5. For
example, fracture location on the north boundary of Section 1 labeled NF4 in Figure 5 is close to
fracture monitor NF4; therefore, the computed fracture deformation at this location can be
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Figure 6. Deformed configuration of Section 1.
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compared with that measured by fracture monitor NF4. The deformation has two components,
one parallel and one normal to the section boundary. For comparison, the fracture deformation
paralle] to the section boundary measured and computed by DDA are plotted with elapsed time
on the same plot for each of the four fracture locations. A typical plot of this type is shown in
Figure 7 for the NF4 location. Similarly, the fracture deformation normal to the section
boundary measured and computed by DDA are plotted with elapsed time on the same plot for
each of the four fracture locations. A typical plot of this type is shown in Figure 8 for the WF4
location. The sign convention used in these plots is that positive fracture deformation parallel to
the section boundary indicates closing of the fracture and that positive fracture deformation
normal to the section boundary indicates right-lateral shear.

Some observations can be made from the plots comparing measured and computed fracture
deformations. In general, the computed fracture deformation follows a trend consistent with the
input deformation-time histories. However, the magnitude of the fracture deformation measured
is generally smaller than that computed by DDA, as is the case in Figures 7 and 8. Furthermore,
in some cases, the sense of deformation measured is opposite the one indicated by DDA results
(see for example Figure 7).

The apparent discrepancy between measured fracture deformation and fracture deformation
computed by the DDA back analysis may be explained by the various simplifications and
assumptions made in the analysis. First, the section analyzed is a two-dimensional section
through a three-dimensional block. The fact that the fractures are not perfectly vertical or
horizontal and that a major subhorizontal fracture exists just above the section analyzed may
cause discrepancy between computed and measured results. Second, the actual fractured rock
mass was simplified and represented by a block system delineated by straight-line segments.
The number and locations of the fractures had to be estimated. Often a fracture zone was
represented by a single fracture; this may explain the higher fracture deformation computed than
measured because the computed fracture deformation is actually for a fracture zone while the
measured fracture deformation is for one of many fractures in the fracture zone. Furthermore,
because fractured rock mass behavior can be “chaotic” in nature, the computed fracture
deformation can conceivably be affected greatly by adding, eliminating or changing a single
fracture. Third, assumptions detailed earlier in this section were made to obtain additional
deformation data from the limited MPBX data available. It is possible that these assumptions do
not reflect the actual conditions. Lastly, DDA assumes constant-strain blocks and therefore may
not adequately model blocks with varying strains under a temperature gradient. To evaluate the
effects of these simplifications and assumptions and to resolve the discrepancy between
measured and computed results, additional analyses will be performed.

5 CONCLUSIONS

The LBT is an in-situ thermal test on an exposed block of fractured rock. Because the block is a
well mapped fractured rock mass, it is a good candidate for analysis using discontinuum models
such as DDA. The approach is to use both DDA back and forward analyses to analyze the
temperature and deformation data obtained during the L.BT. In the DDA back analyses, local
deformations at anchor points of MPBXs will be used as input to obtain the global deformed
configuration of the block. From the computed global deformed configuration, fracture
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deformation will be calculated and compared with measured fracture monitor data. In the DDA
forward analyses, the measured temperature as a function of time will be used as input to predict
the global deformed configuration. The computed global deformed configuration will be
evaluated to determine if it is consistent with measured MPBX and fracture monitor data.

Preliminary results from a DDA back analysis show that while the computed fracture
deformation follows a reasonable trend, the magnitude of the fracture deformation computed is in
general larger than that measured. Furthermore, in some cases the computed and measured
deformation are of opposite sense. These findings point to the need to refine the simplifications
and assumptions made in the analysis. To resolve the discrepancy between computed and
measured results, additional refined analyses will be performed.
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ABSTRACT: The methodology of "numerical etching” used to study the stress distribution of a
patterned thin film residing on a silicon wafer was developed. Silicon underlying the pattern was
thinned down -through etching so that the deformation caused by residual stress in the
microstructure could be detected by a Twyman-Green laser interferometer (TGLI). Successive
etching model, a numerical approach based on discontinuous deformation analysis (DDA), was
implemented to simulate the etching process which linked the stress state of the microstructure
on a regular wafer to that on a silicon diaphragm. An initial stress field on the pattern was
assumed, and its effect on the deformation of the Si diaphragm beneath was calculated and
compared with experimental results. The discrepancy between them was used to modify the
initially assumed stress field and was repeated until a satisfactory match was achieved. The
stress field from numerical analysis accurately predicts the actual stress distribution in and
around the patterned structure under investigation. The stress distribution in a titanium pad on a
Si3N/ S10,/Si composite diaphragm is used as an example.

1 INTRODUCTIONS

For quality control and reliability analysis in semiconductor manufacturing, it is crucial to
understand and assess the stress field in semiconductor devices. Such stress may result from
process integration in thin film deposition, etching, passivation and thermal treatment. In
practice, the residual stress in a blanket thin film can be measured by either using a bending
beam method (Tu et al. 1992) or an X-ray diffractometer (Malhotra et al. 1996). Though this
gives a good reference to the relative stress level in the materials, device engineers are more
concerned with the local stress in and around the patterned microstructure. There have been
three key approaches in the industry to measure the localized stress in devices, namely, micro-
bearn X-ray, micro-indentation, and Raman-microscopy.
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During the past decade, the beam-size of X-rays has been reduced to 0.8 um in diameter with
great sensitivity (Marcus and Lutterodt, unpubl.). Such a technique can measure all six strain
tensor components, and offers a direct measurement of strain without the involvement of other
physical assumptions. However, the sample alignment is complicated, and the technique is
extremely expensive. Micro-indentation, as a convenient way of measuring stress, has been used
in the industry as an alternative. Sub-micron sized indentation mark analysis was made a long
time ago (Doerner et al. 1986); however, it seems that the industry still has doubts about
measurement interpretation when the substrate is of a multi-layer nature. Raman-microscopy has
also progressed recently (Englert et al. 1980, Ajito et al. 1995). This technique can achieve a
less than 1 pm spatial resolution and a 25 MPa sensitivity in Si. However, the technique has
limited application in polycrystalline and amorphous materials.

In this paper, we propose a methodology to study the stress field in and around the patterned
microstructure. Stress analysis of a Ti pad on a SisN4/ Si0,/Si composite diaphragm is used as an
example. We etch the top layer of the Ti film to form a pad, and then etch the back of the Si
wafer to form a Si diaphragm window beneath the Ti pad. Deformations on the Si diaphragm
caused by residual stress in the Ti pad and two insulating layers are detectable by a Twyman-
Green laser interferometer (TGLI). Successive etching model, a numerical approach based on
discontinuous deformation analysis (Shi 1993, Shyu 1993, Chang 1994), is implemented to
simulate a dynamic etching process and record all the changes in the mechanical fields of the Ti
pattern, the insulating materials, and Si substrate. An iterative process is followed until the
computed and measured deformation of the final Si diaphragm is reasonably matched.

2. THEORY

2.1 Background

The numerical etching algorithm is designed to simulate the random or sequential processes of
dry and wet etching. The method of numerical etching process is developed on the basis of
discontinuous deformation analysis (DDA). DDA, developed by Shi (Shi 1993), is a powerful
numerical model for analyzing a system containing many solids. This technique uses the
variation principle in solid mechanics. In order to resolve the stress re-distribution in a patterned
thin film and its substrate, the simulation of an etching process in chip manufacturing is similar
to the step-by-step sequential or random excavation in tunneling. Therefore, constituting from
the theory and method of DDA, we developed a numerical model called “successive etching
model” combining DDA with axially symmetric finite element model to effectively resolve
stress distribution in patterned microstructure.

2.2 Successive Etching Model

Etching is an irreversible process. The process of mass or energy loss from the system cannot be
reversed. For a specified patierning, energy loss will be different for various methods used in the
etching procedure. If we etch portions A and B instantaneously in case I and sequentially in case
IT as shown in Figure 1, the energy loss in case II is approximately five times of that in case 1.
During the process of substrate thinning, the substrate varies from a thick plate to a thin
membrane, thus, the modeling problem involves a solid/plate problem, through combined
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membrane plus plate (M+P) transition stage, and to the membrane stage. For a very thin
diaphragm that is traditionally considered a membrane problem, combined M+P effects still need

to be considered due to the fixed-end boundary condition near the corners of the substrate
window.

thin silicon substrate a

optimal thickness /
3 (membrane + plate) \ /

1 i

\ /
\ /

0 \\__‘/ c |
thick silicon substrate /’/—

position

Figure 1. Energy loss for different patterning Figure 2. Deformation profile at different thickness

Plate and membrane have totally different mechanisms. Bending and shearing are considered
in a plate problem to support the vertical load. On the other hand, when the membrane effect
governs, in-plane stress produces vertical forces due to local curvature to balance the vertical
load. The plate effect is neglected in a membrane case, and a plate problem does not include the
membrane effect. One may think that with a patterned thin film on top of the substrate, the
thinner the substrate, the larger the substrate deformation caused by the residual stress in the thin
film. However, calculations show that there exists an optimal thickness such that the diaphragm
deflection reaches its maximum. This creates the highest measurable deflection profile under the

fixed TGLI resolution. This optimal thickness lies in the mechanical transition zone of M+P
behavior.

With the complexity of mechanical behaviors involved during the substrate etching process,
and because of the desired optimal thickness of a substrate required to obtain the best or largest

b

a ¢

Figure 3. Computed interferometric pattern for Si thickness of
{(a) 0.5 pm, (b) 3 pm (optimal thickness), (¢) 10 um
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deformation pattern, this numerical modeling problem becomes a highly nonlinear one. An
iteration method called nonlinear sequential analysis (NSA) (Biao and Qing 1984) was
developed to break through the impasse in the numerical etching process, especially in the
combined plate/membrane problem. An interferometer pattern generated from numerical
simulation output was compared with the experimental result. Figure 2 illustrates the profiles of
the deformation field of an etched substrate at different thickness with a patterned thin film
located at its center. Figure 3 demonstrates that successive etching model can perform predictive
analysis and find an optimal substrate thickness of Si for local stress measurement.

3 COUPLED EXPERIMENTAL AND NUMERICAL ANALYSIS ON MECHANICS OF
PATTERNED MICROSTRUCTURE

3.1 Procedure

This analysis involves coupled experimental work and computer simulation, as illustrated in
Figure 4.

Numerical
Experiment Etching Process
Assume adjustable
Parameters parameiers
measurment ¢
' ¢ Numerical patterning
1 of the thin film
Thin film J' ar-all-?nneiers
patterning Etching P n
J’ silicon substrate
Etching Compare with
silicon substrate Lab measurement
e A
l' ,\‘ (fringe pattern & &)
Measure ¢

deflection profile No

Yes

Analyzing resulis

Figure 4. Schematic diaphragm for coupled experimental and numerical analysis

The experimental work includes the following steps:

(1) provide testing sample's geometric configuration and elastic properties such as Young's
modulus and Poisson's ratio;
(2) test thin film patterning;
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(3) perform substrate etching to its required thickness and obtain its deformation using
profile TGLI; and

(4) repeat steps 1-3 with a different setting of substrate thickness to obtain optimal thickness
and the best fringe patterns based on predictive numerical result of successive etching
model.

Computer simulations perform the following steps:

(1) prepare the sample's configuration and assume some adjustable parameters such as initial
stresses of thin films and the substrate;

(2) start the numerical etching process according to the experiment's procedure;

(3) compare the output of computed substrate displacement and numerical interference
picture with the experiment;

(4) if results from the computer simulation do not match with those from the experiment,
adjust certain parameters, and restart steps 1-3 until the data matches; and

(5) once a match is achieved, output the stress and deformation distributions of the patterned
thin film on the solid substrate. These are results for the patterned microstructure
problem.

3.2 Example

A titanium pad with a radius of 100 um and thickness of 0.525 pwm is patterned on top of a
composite substrate of SisNy4 (0.142 pm, top) / SiO; (0.1125 pm) / Si (substrate 525 um). The
etching processes were conducted according to the procedures mentioned previously. During the
etching processes, all the stress, strain, and deformation fields in and around the patterned
microstructure show dramatic changes. Figure 5 compares the results of interference patterns
from the Iaboratory test with numerical etching.

Figure 5. Comparison between (a) lab interferometric and (b) computed fringe patterns
for a 100 um Ti pattern on a 4.5 pm thick composite Si diaphragm

A magnified displacement field near the edge of the Ti pad is shown in Figure 6. Large
distortion occurs after the Ti layer has been patterned. The Ti pad tends to shrink toward its
center position (left), thus pulling the insulating layers and Si substrate up to the left. The area
around Point A in Figure 6 is shown to be a critical region.
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Figure 6. Deformation field near the edge of the Ti pad

Figure 7 illustrates the distribution of in-plane stress o in the vicinity of point A. The top
legend is for stress fields of the Ti pad and the two insulating layers, while the bottom legend is
for the Si substrate. Stress concentrations, with both tensile and compressive values, are found in
all materials around point A. The highest tensile stress is found in the SisN, layer under Point A
that reaches over 1,500 MPa. If there is any defect or material non-homogeneity in this area,
cracks will form and spread rapidly to the Si substrate. It could be demonstrated that (a) adding
an oxide layer between Ti and nitride will make the device stiffer and less likely to fail as before;
and (b) changing nitride to a more ductile material or increasing its plasticity will make the
device even stiffer and perform better.
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Figure 7. Stress contour near the edge of a Ti pad on a solid composite Si diaphragm
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4 DISCUSSIONS

The idea of coupling experimental and numerical analysis on stress distribution in a patterned
microstructure utilizes only the mechanical behavior of the stress pattern. Therefore, this
approach is not limited by the crystalline properties of the materials to be studied. The above
example could be used for measuring the residual stress in electroless Ni for flip-chip packaging
applications. Semitech® has been trying to evaluate this problem, however, it has been hampered
by the fact that X-ray does not apply readily, since electroless Ni consists of an amorphous
matrix with dispersed NizP nano-crystals after annealing. Micro-indentation also has a problem
because the typical thickness of Ni used is about 5-10 pum depending on solder array pitch. This
coupled experimental and numerical analysis could be a candidate to resolve the problem. We
have performed some preliminary research and the result will be published elsewhere (Zheng et
al., unpubl.).

5 CONCLUSIONS

The simulation of an etching process in chip manufacturing is similar to the step-by-step
sequential or random excavation in tunneling using DDA. An iteration method called nonlinear
sequential analysis (NSA) was developed to solve highly nonlinear problems due to the
complexity of combined membrane plus plate (M+P) behaviors involved during the substrate
etching process. It has been demonstrated that coupling experimental and numerical analysis
using the successive etching model and sample deflection measurements appears to be a solid
approach to resolve stress in a patterned microstructure problem, which is a typical reliability
concern in IC and MEMS industries. :
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ABSTRACT: This paper presents three newly developed extensions of the DDA (Discontinuous
Deformation Analysis) method for modeling excavation-induced response of jointed rock. The
first extension introduces the plane strain condition to Dr. Shi’s original DDA program in which
only plane stress condition was available. All the examples shown in this paper are conducted in
plane strain condition. It is mostly suited boundary condition for the analysis related to
underground excavations. The second extension provides the capability of simulating the
progressive excavation-induced response of jointed rock around tunnels. The induced stresses
and deformations in the jointed rock can be captured at different excavation stages. The third
extension provides more extensive capability of bolt installation in rocks along with the
progressive excavation process. The optimum layout of rock bolts for tunnels can then be
determined by the analysis. This paper also includes some practical excavation examples using
the newly developed DDA programs.

1 INTRODUCTION

A final disposal program for spent nuclear fuel has been conducted in Taiwan for more than 10
years. ITRI (Industrial Technology Research Institute) has been authorized by Taiwan Power
Company to conduct the Phase III work (regional investigation stage) of the final disposal
program. In order to safely dispose of the spent nuclear fuel, the widely accepted concept of
Deep Geological Disposal is also recognized in this program.

Rock mechanics was introduced to this program about two years ago. Various techniques of
numerical modeling of rock masses are being evaluated. The DDA method originally developed
by Dr. Shi in 1984 was readily introduced into this program. In the past year, three extensions to
the method have been accomplished as a part of the establishment of numerical modeling ability
for underground excavations. The first extension follows the classical theory of mechanics. The
constitutive law between stresses and strains is modified to meet the plane strain condition. Since
it is a very straightforward modification, it will not be introduced in this paper. All the details of
the other two extensions are presented in the following sections.
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2 PROGRESSIVE TUNNELING EXCAVATION

Underground structures such as tunnels can be excavated using full face or partial face
excavation method. The choice of excavation methods should consider the geological condition
nearby the tunnel and the possible extent of the induced excavation disturbed zone (EDZ) if
necessary.

This extension to the DDA method provides both excavation methods. All the jointed rocks in
tunnel face can be “excavated” (or removed) in any specified time step. Any one of the
excavated blocks disappears when its specified time step given by the users is reached. All the
“remaining” rocks and their stresses (or strains) need to be updated and carried through the rest
of the analysis. This excavating process can be continuously impiemented till all the given time
steps for excavations are executed.

In order to make the excavated blocks disappeared from the analysis, three things are required
in the rest of the analysis. The first thing is to release all the possible contacts between the
excavated blocks and existing blocks in the rest of time steps. In other words, the stiffness matrix
of /K]y should be zero if either i or j belongs to any one of the excavated blocks. The second
thing is to update the zero stress and strain for the disappeared blocks in the rest of time steps.
The last thing is to modify pre-processor and post-processor programs for the new DDA main
program. The pre-processor program should include the desirable excavating process that
consists of the order and excavated blocks for every excavation. The post-processor program
should only plot the existing blocks for any time step. The information of the existing blocks in
any time step is obtained from the analysis of running the new DDA main program. The major
advantage of this developed method is that a2 minimum change of the original DDA program is
required. Only the timing of excavations and the stiffness matrix /KJ; of excavated blocks are
needed to be located and modified during the analysis.

3 INSTALLING ROCK BOLTS WITH PROGRESSIVE TUNNELING EXCAVATION

The geological condition near excavated tunnels is always a very important factor to the
deformation of the tunnels. The installation of rock bolts is to improve the geological condition.
The efficiency of installing the rock bolts would be dramatically increased if the bolts were
installed with right numbers and right depths along with right directions as well. The good
efficiency might obtain limit deformations from the tunnel surface with minimum number of
boits

The DDA method treats rock mass as real isolated blocks bounded by preexisting
discontinuities. The installation of rock bolts can be possibly simulated by the following manner.
The methodology to be introduced in this section was first introduced in Dr. Shi’s thesis
published in 1988.

Consider a bolt or a bar (as shown in Fig. 1) connected at point (x,y1) of block i and point
(%2,¥2) of block j. The length of the bar is

I= (e %) + (0 ~3,)" . (L)
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Figure 1. A bar connected to block i and block j.

The displacements at the end points of the bar are

dx, =u, =u(x,,y,)
dy, =v, =v(x,, 5,)
dx, =u, =u(x,,y,)
dy, =v, =v(x,,5,).

@)

The deformation of the bar is then obtained by taking the total derivatives of Equation (1) as
follows '

dz=§[(x, — %, ), —de,) + (0, - 3, ) ~ ;)]

= %[(xl =X, )@ 1)+ (7 — Y,)0 —v,)]

I )
=[(u1 VJ{IZJ_(uz Vz{lj]] @)

l.'\': Ix
= {[Di]T[Ti]T[I J—[.DJ-]T [Tj]r(l ]]}

where [D;] and [D;] are the deformation matrices of block i and block j, respectively, and /7]
and [7;] enable the calculation of the displacements at any point within the block i and block j,
respectively. The direction cosines of the bar Z and J, can be defined as

I l(xl -X,)
J: f _ @
ly 7(3’1 "'yz)
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Assuming the stiffness of the bar is 5, the bar force is

f=—s£ll~. &)

The strain energy of the bar is then
I, == fdl == (dly’ ©
b2 21 '

Substitute Equation (3) into Equation (6), therefore

s T T T II T T T Ix ’
—El“ ED;] [ i] [Iy)_[Dj] [ j] [ZJJ] . (7)

After the curl bracket is expanded and rearranged in Equation (7), we then get

11, =%[Di]T[EiIEi]T[‘D ]——lD 1" [E;XG;1" [D; ]+ 7[D; I'[E;IG;I"D;1  (8)

where

(el\ fgl\
€, £

! I

[E,-]=[T.-]T["]= % and [G,-]=[T,-]"["J= B ©)

l €4 ly 84
€ &8s
\E / \&s )

The derivatives of 77 in Equation (8) are 6x6 stiffness sub-matrix of block i or j. They can be
computed as follows

k_aznb s @

T I —
= ad ad, ZIadad([D][E][E][DD_ ee, ,rns=1->6 (10
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which form a series of 6x6 matrix as

(el e, € é¢é, & 86)_>[K:':'] (11)

~ |
a
~

\ %/
added to the sub-matrix of [Ky] in global stiffness matrix;

.
e, )

2% e, g g 2 8 8)—IK;] (12)

\&s /
added to the sub-matrix of [Ky] in global stiffness matrix;

(8,)
8,
SRS (el €, € €, & eﬁ)__)[Kﬁ] (13)
Ilg,
&

\ &5/

added to the sub-matrix of [Kj] in global stiffness matrix;

(g]\
g,
slg
-7 g3 (g, 8. & 8 & 8)~IK;] (14)

4
&gs

\&s )

added to the sub-matrix of [Ky] in global stiffness matrix.
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The function of installing a bar between blocks i and j would be successfully implemented in
the DDA main program when all the computations as shown in Equations (11)-(14) are
conducted and correctly added into the global stiffness matrix. More extensively, the newly
developed main program is able to progressively install the rock bolts in any given time step. All
the designed rock bolts are given when executing the newly developed pre-processor program.
The installing time steps for all rock bolts are then given when the main program is executed. All
the bolting process should be recorded in an output file that is required for the later use by the
post-processor program. All the programs need to be modified to accomplish this extension.

3 EXAMPLES

All the extensions introduced in previous sections are employed to the analysis of underground
excavations to demonstrate the capability of the newly developed programs in this section. This
section is composed of two examples. The first example introduces the simulation of a series of
progressive excavations in a tunnel using the newly developed DDA programs. The second
example demonstrates a more extensive capability of installing rock bolts in a progressive
process of tunneling excavations. Both examples utilize the same tunnel, material properties and
geological conditions of excavated rock masses.

Consider a 10m wide and 11.25m high tunnel constructed in 30m wide and 32.5m high jointed
rock masses, consisting of 203 blocks as shown in Figure 2. Two sets of joint spacing are formed
in examples. One set is 1.77m at a dip angle of 45° upward from the horizontal. The other set is
3.54m at a dip angle of 45° downward from the horizontal. A uniform vertical stress of 10.6 MPa
is applied downward on top of the model to simulate the overburden of 393m. Three boundary
blocks are used and firmly fixed so that no lateral displacement is allowed along the vertical and
bottom boundaries. The intact rock has a unit weight y=0.027 MPa, a Young’s modulus E=60
GPa, and a Poisson’s ratio v=0.2. The angle of frictional resistance in rock joints is 20°. The
stiffness of rock bolts is assumed to be 200 GPa. No bolt was installed to rock mass around the
tunnel for Example 1 but 6 rock bolis were installed on “key” blocks around the tunnel for
Example 2. The definition of key blocks can be seen in Shi’s key block theory (1985).

Figures 3a-f of Example 1 demonstrate the capability of progressive excavation of jointed rock
masses in a tunnel. Figures 4a-f of Example 2 show another capability of installing rock bolts in
the progressive excavation of jointed rock masses in a tunnel as shown in Example 1. The time
increment is 0.001 seconds. A maximum of 15,000 time steps was conducted in both examples.
Table 1 shows the measured displacements from the locations of installed rock bolts as shown in
Figure 4f The bolts are numbered 1 to 6 from top to bottom of the tunnel. The results
demonstrate that the deformations on the tunnel side wall were largely decreased when the rock
bolts were installed. It could be explained that the frictional resistance in rock joints was induced
much more if rock bolts were installed. The jointed rocks in the turmel side wall had a tendency
to deform and slide down together. However, the block deformation on the top of the tunnel was
decreased but not much even if the rock bolts were installed. Figure 5 shows that the blocks on
topper part of the tunnel deformed much more than the blocks on the lower part in the case of no
installation of rock bolts.
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4 CONCLUSIONS

This paper presents the first attempt of using the DDA method to simulate progressive
underground excavation and rock bolt installation in a tunnel. The analytical results shown in
examples demonstrate that the newly developed DDA programs work quite well. This capability
indeed provides the possibility of determining the optimum layout of rock bolts in tunneling
excavations if the geological condition near the tunneling surface is obtained. Further
applications of the capability will be studied in the near future.

One of the other methods to decrease the deformation of tunneling excavation is to install the
lining system to the excavated tunnel surface. This work can be implemented using the DDA
method if the sub-block method originally proposed by Lin et. al. 1996 is employed and
associated with the presented extensions in this paper. The irregular shape of the lining system
can be constituted by small sub-blocks which also give stress (or strain) distribution in the lining.
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Figure 3. Example 1: progressive underground excavation

in a tunnel.
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Figure 4. Example 2: progressive underground excavation
with bolt installation in a tunnel.
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Displacerﬁent (cm)

Table 1. Measurements of rock bolts after 15,000 time steps
for Examples 1 and 2.

Location Displacements (no bolt) Displacements (6 bolts)
No. (cm) (cm)
dx dy dl dx dy dl
1 22.2 26.3 344 21.1 24.8 32.6
2 -10.3 -11.1 15.1 -6.2 -7.3 9.6
3 -14.7 | -154 213 -5.1 -6.0 7.9
4 -13.9 | -145 20.1 -5.1 -5.7 7.6
5 -7.6 -8.1 11.1 -4.9 -54 7.3
6 -6.2 -6.8 9.2 -5.0 -5.1 7.1

Note: dl = +Jdx® +dy? , the total displacement of the measured point.

-=-No bolt
-+ 6 bolts

0 2 4 6 8 10
Distance (m)

Figure 5. Displacement distributions on the same locations of rock bolts
of tunnel face after 15,000 time steps.
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TWO EXAMPLES OF THE APPLICATION
OF KEY BLOCK THEORY IN CHINA

Jue-Min Pei,
Department of Hydraulic Engineering, Tsinghua University
Beijing 100084, PRC

X1a0-Chu Pen
Central South Institute of Investigation Design Research
Changsha 410014, PRC

Shan-Ru Hang
Water Conservancy Bureaun of Shanxi Province
Taiyuan 030002, PRC

ABSTRACT: This paper introduces two examples of the application of key block theory in
China. One is the collapse of a tunnel roof. The joint pyramid method of key block theory is
used to check the accident. Another is the sliding of a dam abutment. A three dimensional
chained key block method is used. The calculations of these two examples all are successful.

1 TUNNEL COLLAPSE
1.1 Accident Situation

Fen-he Reservoir was built on Fen-he River in Shanxi province of China in fifties. Due to the
silt accumulation a new tunnel for sediment transport was excavated in 1991. The diameter of
excavation is 9.6 meters. The total length of the tunnel is 1050 meters. The thickness of
overburden is 40 meters. The rock mass consists of granite-gneiss and hornblende schist. The
joints are well developed, they can be divided into three sets: (1) NS0°W / NE40°; (2) N70°W /
SW85°; (3) N48°E / NW88°. Otherwise, there is a fault across the tunnel with the strike and dip
direction of (4) E270°W / NE80° at the location of stake No.0+728 — 0+760 (meters, beginning
from intake). As the tunnel was excavated to this place, the collapse of tunnel roof occurred.
Avoided the occurrence of similar accident in later excavation, key block theory is applied to
predict the stability situation of the tunnel. At first the verification of the collapse is conducted.
It proves that the calculated pyramid block of collapse is existent. It is very close to the
prototype collapse in shape and size. Further searching, there is no other discovery of big fallen
block existing in the remained part of tunnel. So the tunnel is safely excavated later in
construction.
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1.2 Measured Records

The measured records shows before collapsing that there was some presage to omen the damage.
As the tunnel was excavated forward upstream o the stake No.0+760, there were five to six
blocks of rock roof fallen down one after another. Due to the sizes of fallen rock blocks being
not too big, no any support was done. As the excavation going from the stake No.0+760 to
No.0+728, the tunnel happened to meet the fault. Its length of longitudinal section on the up-
fanlted plane is 25 meters. Three sets of joints on up-faulted plane are intersected very densely,
that cause the crushed rock fallen and finally extended to form a big collapse with the volume of
more than 300m’. Figure 1 shows its measured figuration of the collapse. It indicates that the
first set of joints cut across the tunnel obliquely from 2 meters to 9 meters above the tunnel top
and the second set of joints cut two sides of the tunnel in high angle. The thickness of joint layer
is 4 to 6 cm filled with the soft clay and fragments. The third set of joints cut the tunnel at
upstream and the fault cut the tunnel at downstream. The shape of collapse formed by this
consists of five faces with a height of 9 meters and a length of 25 meters.
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Figure 1. Shape of measured collapse
1.3 Key Block Calculation

Key bock theory is used to check the collapse and to find its causality. According to the field
observation, the up-faulted rock is cut by joint sets very densely, that forms a crushed band.
Figure 2 shows the statistic distribution of key blocks near and in the crushed band. In Figure 2,
it indicates that there are five smaller key blocks distributed on the roof of tunnel. It is similar
with the actual situation happened as the excavation reaching to the stake No.0+760, there five
to six blocks are fallen down. In the crushed band on up-faulted disk a huge rock coliapse
appears, which is possible to divide two parts to fall. The shadow part is fallen down first, then
the dash part is fallen, seen as in Figure 2.
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Figure 2. Statistical distribution of key blocks
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Figure 3. Maximum key block of JP1110 and JP1011

The maximum key block shows in Figure 3. It consists of joint pyramid codes: JP1110 and
JP1011. These two parts combine into a big block. Its total volume is 316 cubic meters, which is
very close to the measured one in field. As seen in figure, this maximum key block is bigger on
the top of block. If the block is in a whole, the collapse is very hard to occur. Just the rock to be
crushed, the scattered small blocks involved in the huge block can fall down. This result is the
same as in actual process.

1.4 Sliding Modes

The sliding modes and crfical angles of the key blocks of JP1110 and JP1011 are shown in
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Figure 4. From the figure, it can see that block JP1110 slides on the combined plane of thurd
joint set and the fault, and block JP1011 slides on the plane of second joint set. Their critical
friction angles are individually 55° and 85°. Because the actual friction angles are less then
those, the collapse is not able to avoid. It has be proved by the actual collapse of tunnel roof.

Figure 4. Sliding modes and critical angles

1.5 Conclusion

The application of key block theory on the tunnel collapse proved its correction on theory and
method. The further analysis for later excavation is conducted. According to the exploration, the
prediction by key block method is done. It shows that the tunnel in later excavation stage is
impossibie to further produce any large scale of collapse. But the scattered key blocks as JP111
(on roof), JPG10 and JPO11 (on right wall), and JP101 and JP100 (on left wall) are able to
appear. This conclusion is also proved by the later construction.

2 SLOPE SLIDING
2.1 Brief Introduction

Man-wan Dam is located on Lan-chang-jiang River in Yunan province of China. Its left dam
abutment slid on a large scale at half-hour later after a blasting excavation in 1989. The total
volume of the sliding is about 80 thousand cubic meters with a depth of 20 meters. At sliding
place four sets of joints are well developed. Their attitudes are (1) N15~30°W / SW42~52°, )
N40~60°W /SW50~60°, (3) EW /SN75~85 °and (4) N50~60°E / NW70~50°,

Because the above pyramid block method can not depict the real situation, a new three
dimensional chained key block method is developed to analyze the sliding of dam abutment. It
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generates the 3-d joint plane meshes by statistical joint rosettes of an exploration tunnel in the
slope mass and finds 3-d blocks by searching closed loops of block edges in the rock space.
According to the order of the stability of blocks, first take off the block, which has the lowest
safety factor, thus a new free surface can be formed. In the second round the searching can be
done on the new free surface. Step by step then the chained key blocks can be found. This paper
shows the result of calculations and the sliding order of blocks. It indicates that the final sliding
plane is stable and the anchorage scheme is sure enough.

2.2 Statistical Joint Distribution

The geotectonic stress field controlled the development of joints in rock mass. In the rock mass,
the joints are distributed according to the statistical character. We can measure the local joint
distribution in exploratory tunnel so as to model the statistical distribution of joints in certain
limits of rock slope mass. The pole density graph 1s usually used in statistical analysis of joint
attitudes. Figure 5 is a pole density graph of rock slope mass. It is measured in the exploratory
tunnel. The total measured dots are seventy joints. Figure 5a shows its statistical raw data in
exploratory tunnel. Then we use the Monte Carlo method to simulate the sample data in whole
slope mass. Figure 5b shows its simulated pole density graph with 300 dots. Comparing two
graphs, we can see that the simulation is very close.

S .
POLT DENSITY GRAPH FOR RAW DATA , SIMULATED FOLE DENSITY GRAPH
Dots: 70 Dots: 300 ’
Figure 5a. Pole density graph of raw data Figure 5b. Simulated pole density graph

Figure S. Pole density graph

2.3 Three Dimensional Net Work and Blocks

Figure 6 shows the three dimensional joint net, which is drawn in light of simulated pole density
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graph. The distribution of faults is confirmed by field measurement as shown in Fig.6a and the
distribution of joints is confirmed by the statistics. Figure 6b shows the distribution of fauits and
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Figure 6. The net work of joint and faults Figure7 Blook and Loops

joints. In Figure 6 the shadow area is the dam pit, which is dug down to the dam foundation. The
calculated section of the slope mass is taken from the abutment of left bank. The calculated
section involves the dam pit. The total height of the calculated section is 150 meters with a
width of 60 meters. With the statistical densities, diameters and attitudes of joints, the joint
planes are simplified as disks and distributed in space. Then we can get a three dimensional net
work of intersecting planes of statistical joint disks and confirmed faults. The intersecting lines
in figure are the edges of different blocks. Each plane of block is a closed loop of edges. As long
as we find out ail loops of the block, its shape, location and size can be exactly fixed. Figure 7
shows an arbitrary block and its loops. The searching of loops can begin from an arbitrary plane
such as G. Assume that Lp, and LP,; are two loops of disk G, then judge which loop belonging
to the block. As all the loops are judged, the block is found.

2.4 Chained Key Blocks

The unstable blocks in net work are chained with stability sequence. Figure 8 shows the sliding
process of sequence 31 and 32. In the figure, the shape and location of unstable block 31 and 32
are shown. If we take off the unstable block 31, then the new free surface is formed. The next
step is to take off the chained unstable block 32, then a newer free surface can be found. So on
till no new free surface and chained key block generate, the searching can stop. This method can
step by step find out all unstable blocks, which slide in a chain with their sliding sequence.
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Figure 8. Sliding chained key block and its location

Figure 9 shows the slope surface before and after the sliding and its distribution of sliding
force contour map: (a) the unstable block location on original slope plane; (b) the final sliding
plane after sliding and (¢) the contour map of sliding forces on final sliding plane. In the figure,
the dash point zone is the limits of chained key blocks on original slope plane, the shadow area
1s the final sliding plane and the contour lines is its sliding force. The total volume of sliding
blocks in the calculated section is 254,959 m’, converted into whole sliding slope is 80
thousands m’>. The calculated sliding depth is 20 meters. These results are very close to the
actual situation. The total sliding force is 168,829 KN. It means that the average unit sliding
force.is 6.6 KN/m3. The dip direction and dip angle of sliding blocks is 220° to 267° and 33° to
59° individually.

(2) (b) (c)

Figure 9. Chained key block location, final sliding planes and contour map of sliding forces
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2.5 Collapse Sequence

Figure 10 shows the collapse sequence of the sliding. There are four sets of key blocks. The
single key block 4 is on the elevation of 900 to 912 m. The chained key blocks 5, 6 ,7 are on the
elevation of 885 to 900 m. The chained key blocks 2, 3, 8,9, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21,22,23,24, 25,26,27,28, 29, 30, 31and 32 are on the elevation of 912 to 999m. The chained
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Figure 10. Collapse sequence
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key blocks 1, 10, 11 are on the elevation of 1005 t01030m. The numbers of blocks stand for the
sliding sequences of chained key blocks. In the figure, the dashed area is the location of slid
blocks and the number 1 to 32 is the sequence of block sliding and the block number. The
shapes and sizes of blocks are plotted out. The block shapes are very different from the joint
pyramids. Some blocks are very complicated in shapes and their planes even are more than
twenty. Compared with the maximum key block theory, it is more reality, because the joint
planes are not extended infinitely and are cut each other. The difference of sizes of blocks also is
rather large. There are four sliding zones on slope. On the main sliding zone, the sliding
sequence essentially is from lower to upper. The collapse is chained block by block. It indicates
that the causality of the slope sliding is the excavation at slope toe. Obviously the failure of
slope toe causes the upper slope sliding. If the slope can be strengthened before hand, may be
the slope can avoid from sliding. Unfortunately, it is anchored after sliding and the calculation
shows after sliding the new plane of slope has been stable. The anchorage scheme is to anchor
the slope after sliding with more than one thousand pre-stressed steel cables with length of 30 to
50 meters and with the pre-stress of 100 to 300 tons per cable.

2.6 Conclusion

Using statistical method to generate a three dimensional random net work of joint planes can
search out the probability distribution of chained key blocks. If the statistical data are simply
reliable, 1t can predict and judge the stability and possibility of slope sliding statistically. The
three dimensional chained key block method and program developed by authors can analyze the
chained action of slope sliding, describe the complex shapes of rock blocks and evaluate the
slope stability and the support safety. The calculation of Man-wan slope proves that the new
slope plane generated after original slope sliding is stable, there is no need to reinforce if the
base of slope is not cut down again. The pre-stressed anchorage, which has adapted, can
mcrease the stability safety of the slope additionally. The best way to increase the slope safety is
to move the power plant to a certain distance for diminishing the base cut, that has done together
with the anchorage. So the reinforced slope is very stable at present.
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ABSTRACT: Slope stability at the portals of Yerba Buena Island Tunnel is presented as a case
history. The key block theory along with the Newmark’s sliding on two planes was used to assess
deformations of a potential failure wedge at the west portal slope. Discontinuous Deformation
Analysis (DDA) was utilized at the east portal slope to evaluate a toppling mode of failure. Field
measurements for these analyses are critical as the outcomes of the studies largely depend on the
input parameters. The major emphasis was placed at gathering site specific data which led to a very
comprehensive field investigation program to assist in selection of appropriate input parameters to
be used in the analysis procedures. Rational judgements based on understanding of fundamental
mechanics are needed because no amount of field investigation can fully reveal the complete
geologic data.

1 INTRODUCTION

Yerba Buena Island is comprised of Franciscan Formation located between the cities of San
Francisco and Oakland. The rock outcrop forming the island rises over 100 m above the sea level
providing a natural break between the east and west spans of the San Francisco-Oakland Bay Bridge,
as shown in Figure 1. The construction of the tunnel started in 1933 and completed in 1936, and
the excavation into bedrock created slopes at the east and the west portals. As a part of the
earthquake retrofit program for California Toll Bridges initiated by the California Department of
Transportation, seismic vulnerability studies have been conducted at the Yerba Buena Island Tunnel.
From the tunnel performance around the world, the tunnel portal is one of the most vulnerable areas
to damage during earthquakes which is often caused by slope failure.

A geologic study was conducted as a part of the larger investigation to assess the seismic
vulnerability of the tunnel liner and the tunnel portals. The complete field investigations included
geologic mapping, continuous rock coring, laboratory and field rock-strength testing, down-hole
. pressure-meter testing, down-hole digital video imaging, down-hole seismic velocity measurements,

_and specialized testing for Spectral Analysis of Surface Waves (SASW). Although some of these
investigations were intended to study the performance of the tunnel liner, they also provided
important information for assessment of rock slope stability at the portals.
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Figure 1. Geologic Cross Section of the Yerba Buena Island Tunnel

2 GEOLOGIC DATA AND SITE INVESTIGATION

Figure 1 is the longitudinal cross-section along the tunnel showing the general geological structure
and rock types. Rocks at the tunnel area are primarily sandstone of the Mesozoic-age Franciscan
Formation (100-200 million years old). The bedrock formation is generally covered by a thick
blanket of sandy soil. Exposures of bedrock in the tunnel area occur primarily in excavations made
for the various roads and the tunnel. The rocks exposed at the surface are generally weathered
yellowish-brown, medium-grained graywacke sandstone. At depth, weathering decreases and the
rocks are predominantly gray and black. The rocks are moderately hard to very hard except in
highly fractured zones.

During the field investigation, geologic mapping was conducted mostly at the portal areas
to collect information on orientations of discontimious planes, characteristics of joint surfaces, and
weathering conditions. Rock was cored at three locations as shown in Figure 1; and the boring
depths range from 32 m to 75 m. Point load tests and unconfined compression tests have been
conducted on selected intact cores while direct shear tests were conducted on samples with the
existing joints. Seismic wave velocities were measured in the boreholes with down-hole geophysical
sounding using OYO Model 170 suspension P-S wave logging system which provided important
information on weathering conditions of rock. Also, down-hole pressure-meter tests were conducted
in one of the boreholes to measure Young’s modulus of the rock. Upon compietion of drilling, the
boreholes were photographed continuously by a down-hole digital video camera. The digital video
imaging provided important features on bedding and joint orientation, and joint aperture. A
specialized geophysical testing technique called SASW (spectral analysis of surface waves) was also
performed in this project is to obtain shear wave velocity of the rock behind the tunnel liner along
the length of the tunnel wall without drilling through the tunnel liner.
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3 ORIENTATIONS OF JOINTS

Durning the field mapping, several hundred discontinuities (including beds, faults, joints, fractures)
were recorded using a scan-line mapping technique. This approach was used because it is not
practical to map every single joint in the extensive exposures at the portals which consist of steep
cliff faces comprising areas more than 30 m long and 15 m high. As results, both vertical and
horizontal scan lines were established on the slope and each geologic feature that intercepts the scan
lines is recorded. Statistical studies have shown that fractures can be adequately characterized if
more than 60 joints are recorded along the scan line, and adding more joints may increase the
confidence level but does not necessarily increase the accuracy of the results.

The poles of these discontinuous planes were piotted on a polar net and were analyzed for

pole concentrations. Based on the study of pole population, the following most dominant joint sets
were found at the two portal slopes.

Table 1. Joint Orientations at West and East Portal

West Portal Slope East Portal Slope
Joint Set Strike Dip Joint Set Strike Dip
Set A NISE 73°SE Set A NI10OE 85°SE - 30NW
SetB Niow 58NE SetH N59'W 72’NE
Set C NS1I'W 70°SW SetI N62°E 63°SE
SetD N45"W 32°8W

4 CI;ARACTERIZATION OF JOINTS AND BEDDING PLANES

Joints exposed at the surface in the portal areas are generally tight with little aperture. Most joints
have an oxide coating composed primarily of iron oxide (FeO,) which is yellowish brown to reddish
brown, but black manganese oxide (MnQ,) coatings are also common. Several joints are filled with
a bard silica filling while other joints, typically at the shallow subsurface, have clay films, Thirteen
samples from the boreholes with typical joints were subjected to direct shear tests. As expected, the
sandstones have higher friction angles than the claystones (30° to 40° vs 20°). However, some joints
in claystone have wavy irregular joints or are partly healed and calcite-lined. These have
substantially higher (20° to 40°) friction angles than other claystone joints and have friction angles
more similar to sandstone joints. The uniaxial compressive tests conducted on seven intact core
samples show that the unconfined compression strengths range from 6 to 130 MPa.

The joint continuity (persistence) in the form of joint length was recorded in the field which
ranges from discontinuous to highly continuous. Table 2 lists the percentages of joints that have
certain joint lengths. Table 3 describes the characteristics of joint roughness and the percentage that
falls in each roughness category. For rock slope stability evaluation, it is important to examine all
these data and to make rational judgements in selecting reasonable sets of input data. It would be
inappropriate to solely rely on a particular type of test data (e.g., direct shear test data) as the
potential failure plane is likely to go through the existing discontinuities and to shear the intact rock
that bridges the joint planes. As results, the shear strength parameters assigned to the potential
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failure plane in a limit equilibrium analysis should include some portion of the intact strength.
Furthermore, 1aboratory direct shear tests are usually conducted on small rock specimens, and thus
dilation due to waviness (undulatory nature) of the joint that has a wave length of 0.5 m or longer
1s not captured in the test. These considerations would increase the gross shear strength properties
of the joint planes that compose a reasonable size failure wedge. The equation of the following
form may be used to assign shear strength (t ) on a potential failure plane:

T=T+c+0 tan(¢p+0) 1)

where ;= portion of intact rock strength, ¢ = shear intercept of the existing rock joint, 6,= normal
stress on the failure plane, ¢= friction angle of existing rock joint, & = added friction angle due to
dilation. The contribution of T; and 6 becomes rather important as the size of potential failure
block increases because shearing of intact rock by the failure plane 1s likely to occur as well as the
failure plane tends to weave. On the other hand for a small size failure block, t; and 6 become
negligible and thus should not be accounted for.

Table 2. Joint Continuity (Persistence)

West Portal Slope ¢ East Portal Slope
Joint Set | Joint Length, meter | Percentage | Joint Set | Joint Length, meter | Percentage
Set A 15 or more 5 Set A 15 or more 4
10-15 7 10-15 5
7-10 10 7-10 17
37 20 3-7 10
1.5-3 23 1.5-3 20
0-1.5 35 0-1.5 39
SetC 6-7 15 Setl 6-7 0
3-6 20 36 5
1.5-3 30 1.5-3 15
0-1.5 35 0-1.5 80
SetD 6-7 15 SetH 15 or more 50
36 20 9-15 30
1.5-3 30 3-9 20
0-1.5 35 <3 <1

ote: v/ Lata for Jomt set B at the west portal slope was not compiled since it does not affect stabality

Table 3. Joint Roughness

West Portal Slope Data @ East Portal Slope
Joint Joint Length % | Joint Joint Length %
Set Set
Set A ISVIn'lgu:)thtaJlldRPla.uart Rough Z(O) Set A l%dm?lom allldrlzlanar Rough gg
oderate oL 0 Rou, oderate (e} to Rou
Discontimfous “gh 10 Discontim%us H’gh 10
Sei C IS\}/Imglothta?d If{’lanart Rough gg Set] l%/{mtéothtaildlililanart Rough %8
oderately Ro o Rou, oderately Ro o Rou,
Discontim?ous }’lgh 10 Discontim?ous th 60
SetD | Smooth and Planar 35 SetH | Smooth and Planar 35
Smooth & Undulatory (Wavy) | 35 Smooth & Undulatory (Wavy) | 43
Moderately Rough to Rough 20 Moderately Rough to Rough 20
Discontinious ¢ 10

ote: '
) Terminated by or is offset by a major step at another joint within lengths of less than 1.3 m long.
@ Data for Joinf set B at the west portal slope was not compiled since it does not affect stability
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5 WEST PORTAL SLOPE

Figure 2 shows the stereo-graphic projections of joint sets A, B, C and D, and the orientation of the
rock slope. Markland’s test of kinematic stability was conducted at the west portal slope; it seemed
that the wedge formed by joint sets A, B and D has a potential for instability. As a lower bound
scenario, a friction angle of 33 degrees was assigned to joint sets A and D, and that of 25 degrees
was assigned 1o joint sets B and C to evaluate static stability without considerations for dilation and
" contribution of the intact rock strength. A static factor of safety of 1.61 was estimated under gravity
loading, and from the key block analysis the maximum volume for this removable wedge formed
by joint sets A, B and D was calculated to be 77 cubic meters. For evaluation of seismic stability,
a method similar to P. Londe solution was used. The P. Londe stereo-graphic projection solution
is well known for dam foundation and dam abutment stability analysis, and is also suitable for
earthquake loading. The three-component acceleration time histories developed for the Yerba
Buena Island Tunnel seismic retrofit program were used as input loads to the potential failure
wedge. The trajectories of the inertia force as exerted by seismic loading are graphically presented

N

A:NISE, TASE

B: N70W, S8NE
C:NSIW, TOSW
D N45W, 325w

Joint Set A J'éliut SetD

Figure 2. Orientations of Dominant Joint Sets at the West Portal Slope
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in Figure 3. The region closed by the friction circles of the poles A and D is shown on the figure.
When the resultant force falls within this region, no movement of the wedge will take place;
otherwise sliding will occur. To compute the amount of wedge displacement, the Newmark type
analysis was extended for sliding on two planes under three-dimensional loading. The vector of
body force acting onto each joint plane due to the three-component acceleration was checked against
the joint’s yield acceleration. Sliding can take place on the either plane or along the interception
of the two planes depending on the direction of load at any given instance of time. The permanent
displacement of the wedge as obtained from the Newmark integration is compared with the input
accelerations in Figure 4. The maximum permanent displacement is 1.3 meters and the all-time
maximum sliding velocity is 0.7 meter per second. :

From the discussion of assigning shear strengths on a potential failure plane in the previous L
section, it would be justifiable to include additional components. In addition to ¢ =33 degrees, it : ‘
was elected to use t; of 300 kPa and & of 7 degrees as the upper bound strength scenario. This
additional shear strength (t; ) of 300 kPa corresponds to 5% of the smallest shear strength measured
on the intact core samples (assuming that 5% of failure plane intercepts the intact rock), and  of

resultant
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Figure 3. Trajectories of Seismic Loads
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Figure 4. Time Histories of Permanent Deformation and Input Accelerations

7 degrees is based on the field measurements. The Newmark sliding analysis with the upper bound
shear strength indicates no permanent movement under the same earthquake loading. The additional
analyses showed that all it needs to maintain a stable condition under the given earthquake is to use
T; of 28 kPa even without dilation contribution (& =0). This clearly shows that the intact rock
strength is a very important factor controlling stability.

6 EAST PORTAL SLOPE

From the stereo-graphic projections of joint sets A, H, and J at the east portal slope as shown in
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Figure 5. Orientations of Dominant Joint Sets at the East Portal Slope

Figure 5, no key block was found to be kinematically unstable. However, due to the large dip angle
of the slope which is parallel to the joints, a rotational mode of failure was considered. A two-
dimensional Discontinuous Deformation Analysis (DDA) with a seismic capability was used to
compute multi-block toppling and buckling. Based on the natural contact phenomena, the algorithm
for “open-close” iteration implemented in the DDA ensures no tension and no penetration for all
blocks, and yet the computation offers deformations, stresses and strains for each block. A graphical
presentation of DDA results under seismic loading can be seen in Figure 6 for a few snap-shots.
Based on the DDA computation, toppling of rock is confined to the surficial rock of no more than
2 m from the east portal slope face, and no block bounces over the retaining wall located about 7
m away from the toe. In fact this counter-fort retaining wall was built to prevent rockfalls onto the
highway at the tunnel portal. The crown of the tunnel is located about 10 m below the top of the
retaining wall. The area between the toe of the slope and the retaining wall has massive lean
concrete fills, as much as 5 meter thick, and provides as a good buffer zone for a potential impact.
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Figure 6. Snap-shot Deformations for Toppling at East Portal Slope

7 CONCLUSIONS

The field data and analysis results presented in this paper are a part of the larger investigation to
develop a retrofit strategy to keep the tunnel opened to traffic in event of future earthquakes. A
system of rock bolts has been recommended to stabilize the potential failure wedge at the west portal
slope. At the east portal slope, only a few spots need rock bolts.
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MANIFOLD METHOD WITH COMPLETE FIRST ORDER DISPLACEMENT
FUNCTION ON PHYSICAL COVER

Wang Shuilin, GeXiuwrun & Zhang Guang
Institute of rock and Soil Mechanics, Chinese Academy of Sciences
Wuhan 430071, PRC

ABSTRACT: Complete first order displacement function is used on physical covers of manifold
element. The analyzing formulas for numerical implementation are presented for the first time in
this paper. A continuous stress distribution is obtained through projection techniques proposed by
Zienkiewicz et al so that results can be compared with those published. Two examples are
investigated and the numerical results show that a high accuracy can be achieved by the adoption
of the function on physical covers.

1 INTRODUCTION

Manifold method, proposed by Genhua Shi(1991), is a recently developed numerical technique. It
is studied by some scholars (Lin et al.1996, Qiu 1996, Shi 1996a,b, Wang et al.1997, Wang 1998,
Wang et al. 1998), and the published results show that the new method is effective in
discontinuous deformation analysis, large deformation analysis, simulation of crack propagation
and seepage problem with free surface, etc. Compared with finite element method, this one isa
general one and has its own advantages. The manifold element is composed of the overlapped
physical covers, and the displacement function on elements is the average of the weighted cover
function (displacement function) on physical covers. Therefore, there is flexibility in composing
displacement function in the elements by means of choosing displacement functions on physical
covers. In addition, the displacement compatibility between elements can be guaranteed for
continuous region.

In this paper, the complete first order cover functions on physical covers are used, the
analyzing formulas for numerical implementation are presented for the first time. In order to
compare the results with those published, projection techniques suggested by Zienkiewicz and
Zhu(1987) are used to get a continuous stress distribution. Two numerical examples are studied
and their results illustrate that the adoption of complete first order approximation on physical
covers is efficient and can achieve a high accuracy.
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2 MANIFOLD ELEMENTS WITH COMPLETE FIRST ORDER APPROXIMATION ON
PHYSICAL COVERS

2.1 Displacement function on manifold element
For finite covers of manifold method, finite element mesh is usually adopted to cover the
problem geometry. In this paper, triangular elements are used to define mathematical covers of

manifold method for 2-D problems. Figure 1 shows that a triangular element covers a triangular
domain. They are overlapped each other. The mathematical cover, physical cover and manifold

P’

o] —
Figure 1. A triangular mesh covers a triangular

-~y

element are defined according to Shi (1996a). In Figure 1, there are 3 mathematical covers
denoted by 1,2 and 3, and 3 physical covers denoted by 1,, 2,, and 3,, and 1 manifold element.
The manifold element takes the shape of the triangular domain and it is expressed by 1,2,3,. If
complete first order approximation function is used on the ith physical cover of the manifold
element in Figure 1, the function on that cover can be written as

t=lankD,}  (=123) (1)

(x, 10 0
Where {uj}:{u,(xJ’)}’ Uw’]:[ * 0 }a.nd {Dr}T:{du d, dy dy d; diﬁ}'

v,{x,) 010x0y

So the displacement function within the element is

r”;(xay)\
v, (%, )
{u(x,y)}z{Wl(an’) 0 W,y (x,y) 0 Wi(x, ) 0 }uz(x,y)> @
v(x,y) 0 Wi (x,») 0 W, (x,) 0 W50, 3) || va (%, »)

Uy (x,)

LVS(xay)J

in which W (x,y) (i=1,2 or 3 ) is the weighted function. It takes the form of the shape function of
the corresponding friangular element, ie. W (xy)=a;+bxtc,y, Wy(x,y)=a,+bx+c.y,
W,(x,y)=a,+b,x+c;y, where x;, y(i=1,2,3) are node coordinates of the corresponding triangular
element, whose area is denoted by A. a=(Xy,-Xy;)/ (24), b=(¥;y )/ (2A), ¢=(x-x)/(2A), and the
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subscript i, j and k permulate like 1,2,3.
u(x, y)}

0
lWl =W, (x,y) e LW, =W, (x, ) ¢ LW, =Wy(x,y) ¢ I,and {M}Z{V(x 7)

|

Thus, equation (2) can be rewritten as

1
Denote [ ={
0

D]
Ly=[w, o fun W, e fun W,e fun]y D, (2a)
D3
Di
in which <D, pis unknown variable vector.
D3

2.2 Element stiff matrix and force vector

From equation (2a), the strains within the manifold element are

X Di
¢, =B, B, B;}D, (3)
€y D,
where
§ 0 g+2x+cy 0 by 0
B0 ¢ 0 cx 0 g+hr+dey| (=123

G & cx  a+2hx+cy a+bx+ky by

Relationship between stress and strain can be written as {o}=[DJle}, in which {o}and{s} are

stress and strain vector respectively, and [D] is relationship matrix. Accordingly, the strain

energy done by the elastic stresses in the element is

e

7= [ &Y ety =—{aY [k Ja) @

B/
in which {@} ={p7 DI DI} [K]=[[|B] [DIB, B, B;ldxdy,ands, is the area of
| 5
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the manifold element. Numerical integration in element stiff matrix [X,] can be done by simplex

integration (Shi 1996b).
In equation (4), [K,] is an 18 by 18 matrix and | [B7 DB, |dxdy (1,j=1,2,3) is a 6 by 6 sub-

matrix.

1 » O
If plane stress condition is :a.smm‘led,[D]:1 b =y 1 0 |. Denote dy=d,= £ —,
_J/_ -, —_ -
0 o =7
2
d,=d =2 4 ~—L _(E will be substituted by iz and y by —Z— if plane strain
1-y° 2(1+7) l—y -y

condition is assumed.), and [SK]= H [BfDB j]:ixdy. Each element of matrix [SK] is in
analytical formulation and is given in the Appendix.
Suppose that a point load ;;(léz 7. i+ o, }'), in which p, and p, are projection of ann

Cartesian coordinates and i and ; are the corresponding unit vector, acts on point (X,,Y,) of the

element. The potential energy due to the point load is

fun' oW,
px px
7, =—{u v}{p } =—{pl DI DI|fun" ew, { } (5)
¥ (xn.¥n) funT Y W3 p_y
(Xn.¥0)
Potential energy produced by surface loading is
fun® oW,
w,=—{DI D} DI}[ fun” oW, {q" }dl (52)
ﬁlnT * W3 ¥y

q, and q, are projection of surface load acting on the element in X and y direction respectively. If
a unit thickness is considered, / will be the area on which the load acts.

Assuming {g"} is the body force. The potential energy due to the force is

¥

fun® oW,

7, ==—{D! DI DI}[[|fun" oW, {gx}dxdy (5b)
‘ ﬁmTOW3 8y
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By minimizing the total potential energy of the system, the governing equation can be obtained in
the same way as in finite element method. According to equation (4), an 18 by 18 sub-matrix is
added to globe stiff matrix for each of the manifold elements, and an 18 by I vector to force
vector by point load, surface load and body force respectively.

3 NUMERICAL EXAMPLES

The behavior of the adoption of complete first order approximation on physical cover is studied
in the following two problems. In order to compare numerical results with those published,
projection technique is used, in which constant stresses on physical cover is assumed. For
simplicity, the generated triangular meshes in the interested domain constitute the finite cover
system.

3.1 Cantilever Beam

A cantilever beam in two loading cases is showed in Figure 2a. The problem was solved for plane
stress case. Figures 2b and 2c are two cover systems, and they correspond to regular 4-node
quadrilateral (Fig. 2d) and irregular ones (Fig. 2¢). The results are compared with the analytical
ones in table 1 and table 2. Moreover, finite element solutions were also obtained using regular
and irregular quadrilateral Q4 and QA4 (Chen et al.1993).
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Figure 2. Cantilever beam
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Table 1. Comparison of results of the beam subjected to bending

Element Type regular mesh irregular mesh

Va O xp Vi O
Q4 67.41 -2222.2 38.92 -2111.1
QA4 100.0 -3000.0 97.38 -2891.6
This paper 99.97 -3000.0 100.0 -3000.0
Analytical solution 100.0 -3000.0 100.0 -3000.0

Table 2. Comparison of results of the beam subjected to shear

Element Type regular mesh irregular mesh

Va O 5 Va O
Q4 70.00 -2945.5 45.11 -2939.4
QA4 101.51 ~4049.9 98.90 -4077.8
This paper 101.7 -4009.0 101.2 -3841.0
Analytical solution 103.0 -4050.0 103.0 -4050.0

3.2 Cook problem

Figure 3a shows the cook problem. Two kinds of finite cover system are used as showed in
Figure 3b and 3c, and they also correspond to regular 4-node quadrilateral (Fig. 3d} and irregular

ones (Fig. 3¢). Table 3 presented the comparison of the results.

£

©)

(a)

Figure 3. Cook problem

Table 3. Comparison of results of Cook problem

Element Type 4 x 4 mesh 8x 8 mesh

VC O Amax O 5 min VC T 4max O 8imin
Q4 11.85  0.1078  -0.0763 18.30 0.1814 -0.1429
QA4 2329  0.1883 -0.1849 23.78 0.2226 -0.1888
This paper 2279 02193 -0.2194 23.64 0.2339 -0.2017
Analytical solution 23.9  0.2360 -0.2010 23.9 0.2360 -0.2010
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4 CONCLUSION

Numerical manifold method with complete first order approximation function on physical cover
is presented in this study. Surprising accuracy is achieved. It is promising that the method can get
a balance between accuracy and efficiency. In fact, application of the method to p-adaptivity,
which is being carried out by the author, has been observed for the reason that cover function on
physical cover can be defined as one's wish. Some results will be available soon.
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APPENDIX"
For the completeness of the study, each element of the sub-matrix [SK] is presented here in

analytical formulation. They are needed when integrals are computed in general manifold
elements.

SK,, = U(b,doobj +c,dpyc, Yxdy
SK,, = j [(B,doc, +e,dyyb,)axdy
SK,, = fj[bjdﬂo(a 42 x+c,y)+cdye x)ddy
SK,, = .H[b,.dmcjx +c,dy(a; +2bx+c,y)dxdy
SK,, = [ [(bidont,y +e,dsn(a, +b,x +2c¢,y))dxdy
SK,, = J:J‘[bdeI (@, +b,x +2¢,y)+c,d b, y1dxdy
SK,, = jj(cidlob_, +b,dyc; )dxdy
SK,, = H (cdy¢; +bdy,b, )dxdy
SK,, = j:f[c,.dm(aj +2b % +¢,y)+bdc x)dxdy
SK,, = | j fledie,x+bdya, +2bx+c,y)dxdy
SK,; = f[[c,dwb_,. y+bdy(a, +bx+2c,y)ldedy
SK = j (lcidi (@, +b;x+2¢,y)+b,d,b,yidedy
SK, = j [((a, +2b,x+ ¢,y)dub, + ¢, xdyc, dxdy

SK,,

”[(aj +2bx +e,y)dgc; + ¢ xd, b, Ydxdy

\.r

SKyy = {[[(a, +28,x + ¢, y)dog (@, +2b,x +¢,y) + ¢, xddomc X]dxdy

I

k3

SK,, = ﬂ[(ai +2bx+¢, )y x tCxdy(a, +2b,x + ¢, y)]dxdy

SK s

H[(af +2b,x +¢,y)dob, y+exdy(a; + b x +2¢,y)dxdy

N
.

”[(a, +2bx+c,y)dg(a; +b;x+2c,y)+c;xd b, y)dxdy

X

SK,,
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SK,, = ”[c xd\oh, +(a, + 2b,x +¢,y)dyc  Jdxndy

SK,, = ”[c xdyic, +(a, +2bx +¢,y)d,b, Jdxdy

SK,, = H[c xd,g(a, +2bx+c,y)+(a, +2bx +c,y)d e x|dxdy
SK,, = H[c,xd“c x+(a, +2bx+c,y)dy(a, +2b,x+c,y)dxdy
SK,; = H[c xd\ob,y+(a, +2bx+c,y)dy(a, +b,x+2c,y)]dxdy
SK ¢ = jj[c,xd,,(a b x+20,y) +(a, +2b,x+¢,y)dy,b, y]dxdy
SK,, = H[Zb ydob, +(a, +bx +2¢,y)d ¢, dxdy

SK,, = j ((Bydue, +(a, +b,x+2¢,y)d b, dxdy

SK., = jj[b ydw(a, +2b,x+c,y)+(a, +bx+2¢,y)dye x\dxdy
SK,, = H[b ydye,x+(a, +bx+2¢,y)d,(a, +2b,x +c,y))dxdy
SK,, = j ((bydob,y+ (@, +bx+2¢,y)dy(a, +b,x +2c,y))dxdy
SK; = ff[bf.ydm(aj +b,x+2¢,y)+(a; +bx +2¢,y)d b, yldxdy
SKy = ﬁ[(ai +b,x+2¢,Y)d b, +b,yd ¢ ldxdy

SK,, = j [((a, + b+ 2¢, 7)), + b, yd b, Yxdy

SK,, = jj (a, +bx +2¢,y)d\o(a, +2b,x+¢,y) +b,yd ¢ x]dxdy
SK,, = H(a +b,x+2¢,9)d, ¢ x + b ydy(a, +2b x+c,y)ldxdy
SK,, = H[(a, +b,x+2¢,y)d,ob,y +b,ydy(a, +b,x +2c,y)|dxdy

SKe = [[l(a, +bx+2¢,9)d\ (a, + byx+2¢,y)+ b,yd b, y)dxdy
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MANIFOLD METHOD WITH FOUR PHYSICAL COVERS FORMING AN
ELEMENT AND ITS APPLICATION

Wang Shuilin = &  Ge Xiurun
Institute of rock and Soil Mechanics, Chinese Academy of Sciences
Wuhan 430071, PRC

ABSTRACT: Based on the theories of numerical manifold method proposed by Dr. Genhua Shi,
this paper presents an extension of it, which improves manifold elements from three physical
covers to four. Constant displacement function on physical cover is used and the weight functions
take the form of the shape functions of the corresponding finite element. The manifold elements
are transformed into squares so that numerical integration can be conducted by Gauss quadrature
formula. With the extension, crack propagation is simulated and the results show that manifold
thethod is effective in solving this class of problems.

I INTRODUCTION

The manifold method, a new member of the families of numerical methods, is increasingly
capturing attentions of researchers (Lin et al.1996, Qiu 1996, Shi 1996a,b, Wang et al.1997,
Wang 1998, Wang et al. 1998), and more and more applications were found from recently
published papers. One of the applications is the simulation of crack propagation.

in this paper, we present an extension of the method for 2-D problem, The manifold element is
extended from three physical covers to four. Displacement function and numerical integration on
manifold element are discussed, and crack propagation is modeled by the extension at last.

2 ELEMENT FORMED BY 4 PHYSICAL COVERS

2.1 Manifold elements and displacement functions on them

Figure 1 shows that 3 quadrilateral meshes cover a region, in which a crack exists. By the
definition of mathematical cover, physical cover and manifold element of Shi, there are 8
mathematical covers, denoted by 1, 2, 3, 4, 5, 6, 7 and 8, 10 physical covers, by 1,, 1,, 2,. 3,, 4,,

51, 55 6,, 7, and §,. The relationship between the finite meshes and the manifold elements is
given in table 1.
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Figure 1. Mathematical covers, physical covers and manifold elements

Table 1. Manifold elements and its corresponding finite meshes
_Finite mesh 1265 2376 3487
Manifold element 1,2,6,5, 1,2,6,5, 2.3,7,6, 3,4,8,7,

In this study, displacement functions on manifold element, say 1,2,6,5, ,is in the following
form.

{W}H%CW) 0 Woyky) 0 Hek) 0 Fyk) 0 }u )
M%)

0 W) 0 oty 0 Hkxy) 0 Wx))

where u; and v, are cover functions on the physical covers in xy-plane, W ,(x,y)is weight
function and subscript i represents physical covers 1,, 2,, 6, and 5,. The weight function takes the

form of the shape functions of the corresponding finite e¢lement. W ,(x.y) 20 and
ZWC(E)(x,y)=1 on element 1,2,6,5, are obvious. A detail explanation can be found in Wang
(1998).

2.2 Numerical integration on manifold element

After manifold elements and displacements function on them are defined, numerical integration
on the elements is carried out to obtain element matrix. Usually, there are two kinds of elements

in this paper while crack propagation is simulated. One is that the elements share the same
domain with the finite meshes and the other is that the corresponding finite meshes, which are
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divided by cracks or fractures, produce the manifold elements. For the former one, numerical
integration can be done in the same way as in finite element method; whereas for the latter, the
shape of the element may be triangle, quadrilateral, pentagon and other ones. Integration on them
is dealt with as follows.

If a crack crosses an element from one corner of it as showed in Figure 2a-c, Three cases will
appear; and while a crack crosses an element from one side of it as showed in Figure 3a-e five
cases are possible. In Figures 2, 3, dash lines represent crack paths. Transform the elements in xy-
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Figure 2. A crack crossing an element and its transformation.
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Figure 3. A crack crossing an element and its transformation.
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plane into the square Q=[-1, I]x [-1, 1]in &z -plane. Their images are shown in Figure 2a’-

¢' and Figure 3a-e'. In &n-plane, further transformation is needed to conduct numerical

integration for these elements

For example, two typical elements in Figure 1 are 1,2,6,5, and 1,2,6,5,. They correspond to the
finite mesh 1265 (Fig.1), and they are formed by a crack propagating from one point of side 12
and ending at a point of side 26 of the mesh 1265. The 2 manifold elements and their shapes in

plane &o,n are shown in Figure 4. Pentagon abdfe, corresponding to element 1,2,6,5,, 1s divided

into 2 quadrilateral abdc and cdfe. Each of them is transformed into a square in plane ro,s so that
Gauss qudrature can be conducted. Numerical integration on the pentagon is the sum of
integration on quadrilateral abde and cdfe. As for triangle ghi (corresponding to element 1,2,6,5,),
it is considered as a degenerated quadrilateral and is also transformed into a square on plane ro,s,
therefore, integration can be conducted easily.

(a} (®)
i T o T
e f
o] S j d (e)
o - & 0 , g
a b .__l__
© @

Figure 4. A transformation from &7 -plane to rs-plane

Note that if the finite mesh used as mathematical cover is parallelogram, the crack path,

assumed as a line, is also a line after it is transformed from xy-plane into &7 -plane. If it is not,

the crack path, even though considered as a line in plane xoy, will not be a line in plane £o,77.

Hence, there is a little error in the above treatment of integration, but it will be negligible.

However, if we think that the image of the crack path in &r -plane is a line and the crack path is

mapped from the dash line in &7 -plane, the above treatment will be all right.
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2.3 Crack propagation simulation

The maximum principal stress criterion (Erdogan et al 1963), which states that the crack will
propagate in the direction perpendicular to the maximum principal stress, is used while crack
propagation is simulated. It can be written as

K,.=K,= cos-g—(cosz g - K, sin#) (2)

Where @&, the propagation angle relative to the current crack segment, can be determined by

solving K,sinf+ K,(3cosd—-1)=0; K, and K, are stress intensity factor, and they are

calculated by a contour integration method (Yang 1996), whose accuracy has been verified by
Yang (1996) and Wang (1998).

Once a crack has started to propagate at a given level, stable and unstable propagation will
appear. Ingraffea( 1985) and Scavia (1995) explained how stable and unstable conditions were
judged during simulation. In the processes of crack extension, mathematical covers are kept
changeless and physical covers and manifold elements are added. Computer code based on the
proposed method was developed, and a flow chart of the program is shown in Figure 5.

3 EXAMPLES OF CRACK PROPAGATION
3.1 A half-disk with a crack

In this example, a half-disk with a crack subjected to a point load is modeled. The setup is
showed in Figure 6a. Lim(1993) carried out an experiment on a similar structure. Crack
propagation is simulated with plane stress case assumed. The material properties here are

E=10Gpa and y=0.3. The supporting distance of the setup is 2s=0.14m and the half-disk has an

initial crack length a=0.028m and radius r=0.1m. The progression of crack propagation at two
different stages is shown in Figures 6b,c (The deformation in Figures 6 and 7 is scaled up a little
0 that crack paths can be seen clearly).

'F
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Figure 6. (a) A half-disk with an initial crack subjected to point load, (b)
and (c) the progression of crack propagation at two different stages.
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Figure 5. Proposed method
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3.2 Three-point-bend specimen with a crack

This example presents a rack growth in a three-point-bend beam as showed in Figure 7a. A plane

stress condition is assumed with elastic modules E=24.8Gpa, Poisson ration y=0.18 and

material toughness K;C=1.5MPa«./E . The geometric parameters are a=80mm, b=50mm, c=30mm,

=300mm, L=900mm. Figure 7b shows the evolution of the crack paths. Obviously, the
propagating crack goes toward the load point. A diagram of vertical load against loading point
displacement is given in Figure 7c. Meanwhile, crack path progression for b=230mm is shown in
Figure 7d. It is reasonable that the farther the loading point is away from the centerline, the more
the crack path diverges.

In the above examples, crack growth displays an unstable propagation.

Figure 7. (a) 3-point-bend-beam; (b) Crack path for b=50mm; (c) A diagram of
load against load point displacement; (d) Crack path for b=230mm.

During the progression of crack propagation, the calculations are completely automatic in the
proposed method. Compared with finite element method, it eliminates the burden associated with
remeshing throughout the evolution of the problem; compared with boundary element method, it
can apply to complex media. In our opinion, the manifold method has the advantages of both
FEM and BEM in modeling crack propagation. In addition, The meshless method (Belytschko,
1996), another recently developed numerical method, also has the great promise in dealing with
evolving crack problem, but considerable improvement is required at present.
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ABSTRACT: Manifold Method (MM) is a newly developed numerical tool in analyzing both
continuous and discontinuous problems. By employing the concept of cover and two sets of
meshes, MM can simulate the small and large-scale deformation of materials as well as the
failure and movement of block system. In the present paper the original MM is extended by
adding the consideration of crack propagation in failure process into the numerical procedure.
The extended version of MM is then applied to simulate the initiation and propagation of cracks
in dam foundation with weak zone such as faults and joints. The failure process and
corresponding bearing capacity are predicted, and the computed results are compared with those
of the experiment. It is convinced that the extended version of MM can reproduce the initiation of
cracks and the failure process reasonably well.

1. INTRODUCTION

Several numerical methods are used in simulating the failure and response of structure and rock
foundation with discontinuities. These methods include the Finite Element Method (FEM), the
Boundary Element Method (BEM), the Discrete Element Method (DEM) and the Discontinuous
Displacement Analysis (DDA). Although discontinuities in structure and rock mass can be
modeled in a discrete manner with FEM and BEM by using special joint elements (such as
Goodman Element), it is difficult to describe the discontinuities numerically, and small
deformation restriction is usually needed. And also the number of discontinuities that can be
handled is limited. Therefore, problems of many discontinuities or large-scale deformation can
not be analyzed by such kind of methods. DEM and DDA can be utilized to model the behavior
of structure with many discontinuities or block system, but the stress distribution inside the
blocks can not be calculated properly, and, therefore, the propagation of cracks through blocks
can not be well modeled.

Manifold Method (MM) proposed by Shi in 1991 is 2 new numerical method. It provides a
unified framework for solving problems with both continuous and discontinuous media. The
concept and potential application of this method have drawn a great attention from international
researchers in engineering fields {(Chang et al. 1996, MacLaughlin 1996, Zhang et al. 1997, Chiou
et al. 1997, Zhang et al. 1998).
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By employing the concept of cover and two sets of meshes, manifold method combined the
advantages of FEM and DDA. It can not only deal with discontinuities, contact, large scale
deformation and block movement as DDA dose, but also provide the stress distribution inside
each block as accurately as FEM can.

In rock foundation or concrete structure, cracks occur usually from weak zone like faults, joints
and interfaces of different materials. With the propagation, the cracks break the mass material and
lead to the final failure. Modeling the failure must simulate both the opening of existing joints
and the fracturing of mass materials. In the present paper, the original manifold method is
extended to simulate the failure of existing joints and the propagation of cracks inside blocks.
The newly developed code is used to simulate the failure of two dam foundations and the results
are compared with those of the experiments.

2. MODELING THE EXISTING JOINT

For an existing joint, there are two possibilities: 1) unfailed, namely the joint can be treated as
continuous, and it can transfer both normal and shear stresses, and the displacement is continuous
along the joint. 2) failed, that means the joint can only transfer normal compression stress or
limited shear stress if the friction angle ¢ is not zero, discontinuity can occurs on two sides of
joint.

Modeling of the existing joint considers these two possibilities. Figure 1 shows schematically
the treatment of the joint by adding normal and shear springs at the joint. For the former case, if
the thickness of joint layer is idealized as zero, there must be no relative normal displacement
between two surfaces of the joint since they keep moving together under load. A very bard spring
p (penalty) is therefore added in the normal direction to the joint to hold the possible relative
normal displacement between two surfaces back to zero. In the tangent direction, however, a
small relative shear displacement is usually permitted, :
especially when a soft layer is included in the joint. This
condition is satisfied by adding a comparatively soften shear

spring K, in the tangent direction. For the later case in which Ks BLockz Ks
joint failed, normal penalty and shear springs are added at the {}w%\ %{%
joint when the joint is loaded by compression and the shear Z

stress is less than the friction between two surfaces. If the shear }ﬂ'ormalpc 4

stress is larger than the friction, shear spring is removed and

only normal spring is needed. If the joint opens, both normal BLOCK 1

and shear springs are removed from the joint.

The failure of existing joints follows Mohr-Coulomb’s law

with three parameters. Taking o’, as the normal stress and 7’,, as Figure 1. The normal and
: shear springs of contact

the shearing stress on a joint, the failure criterion is defined as blocks
bellow:
Tensile  failure : o =T;.
g =4,
Shearing failure : (—é-3)=c if go_%gi*ko and 0<0, <T;, (1)
g -,
e 3)=ccos¢-(GL;3)sin¢ if ©4%) o gna 0<0; <T;.

where T, represents the tension strength of joint, C represents cohesion, ¢ is the friction angle.
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3. CRACK PROPAGATION IN SOLID BLOCK

When a new crack occurs or an old crack propagates the physical meshes and the mathematical
meshes that contain this crack should be regenerated. If no physical cover is broken by the new
crack, only the physical meshes need to be reformed, the mathematical meshes keep unchanged.
But if the new crack breaks a physical cover into two parts, then a new physical cover is
produced, hence both the physical and
mathematical meshes must be regenerated.

Figure 2 is given here to illustrate the crack
propagation and corresponding regeneration of
the physical and mathematical mesh system in
the numerical simulation. In Figure 2(a) a new .4
crack ab occurs. Since it does not break the
physical cover that contains it into two parts,
only physical meshes need to be regenerated by
adding ab into the physical meshes. The
mathematical meshes keep unchanged. Whereas
in Figure 2(b), new occurred crack bc together
with the existing crack ab break the cover that
covers the area 4-5-8-10-9-6 into two parts as showed by shadow, therefore a new cover 7' must
be added to the previous physical cover system, and both the physical and mathematical meshes
need to be reformed.

In simulating the failure of solid block, formula (1) is also taken as the failure criterion. But in
the present study, it is supposed that cracks can only propagate along the mathematical meshes.

Figure 2. The relationship between new
crack and covers

4. FATLURE SIMULATION OF ROCK FOUNDATIONS

The safety of an arch dam depends mainly on the
stability of the arch abutments. The stability and
bearing capacity of the dam foundation are
usually studied by experiment (Iida 1992). In this
section the newly extended version of manifold
method is applied to analyze the stability and
bearing capacity of dam foundation and to
simulate their failure process. The numerical
~ results are compared with the experimental ones
(Nakamura et al. 1964, Takano 1962).

4.1 Failure Simulation of an Arch Dam Abutment
with Faults

Figure 5 shows the model of the abutment of an
arch dam in Japan. The location of existing faults
is denoted in this figure as . 1, F. 7 etc. The
stability and bearing capacity of this abutment
before and after strengthened by concrete wall
were studied by experiment in Public Works
Research Institute Ministry of Construction, Figure3. Model of an arch dam abutment
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Japan (Nakamura et al. 1964). Here, by using the same model, the failure process and bearing

capacity are simulated by manifold method.

Table 1. Fault width and parameters
Fault Width (m) | E (kg/cm?®) | T, (kg/cm®) | C (kg/em?®) | ¢
F-30 5.0 3320 0.52 1.7 30
F-1 3.0 16530 2.87 9.0 30
B-7 2.0 22440 3.89 13.0 30
F-8 3.0 22440 3.89 13.0 30
F-9 0.5 16530 2.87 9.0 30
Good rock 68240 12.9 40.0 30
Concrete wall 267000 29.0 70.0 30

The width of faults and the controlling parameters used in the calculation are listed in Table 1
(Nakamura et al. 1964, Takano 1962). The arch thrust force along the direction of arch axis was
taken as P=5200 ton/m, calculated according to water pressure and temperature change. The
mathematical and physical meshes used in MM simulation are shown in Figure 4, with thin lines
referring to the mathematical meshes and thick lines referring to the physical meshes.

Three cases are calculated in the numerical simulation: (1) no foundation treatment, (2)
foundatjon strengthened by 2m thick concrete wall, (3) foundation strengthened by 3.5m thick
concrete wall.

Figure 5 shows the experimental result of failing process and bearing capacity of the abutment
with no foundation treatment. Numbers in this figure denote the order of crack occurrence, and
the corresponding bearing capacity is listed in Table 2.
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Table 2. Bearing capacity in case 1 of experiment

Number Bearing capacity Number Bearing capacity
(XP) (XP)
1 0.5 6 1.1
2 0.6 7 1.0
3 0.6 8 1.15
4 0.7 9 1.20
5 0.9 10 1.20
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Figure 6 shows the calculating result of the abutment failure in case 1. Cracks start occurring at
the fault of F-30, as depicted in Figure 6(a) by thick line, because the material strength here is
much smaller than that in the other areas. With the increase of load from 1.0P in Figure 6(b) to
1.3P in Figure 6(d), the abutment fails progressively at the fault location of F-7, F-8 and F-9. The
computed failure process and the corresponding bearing capacity agree reasonably well with the
experiment.

(a) Load=0.8P (b) Load=1.0P

(c) Load=1.2P (d) Load=13P
Figure 6. Computed failure process of abutment in case 1

Figure 7 gives the experimental result of the abutment failure process after strengthened by 2m
thick concrete wall. Bearing capacity of the abutment obtained by experiment is listed in Table 3.
From the results it can be seen that the bearing capacity of the foundation increases from 1.2P in
case 1 to 2.8P after foundation treatment.

Table 3. Bearing capacity in case 2 of experiment

Number Bearing capacity Number Bearing capacity
(XP) (XP)
1~5 1.0 10 1.65
7 1.0 12~13 2.65
8 1.25 14~15 2.70
9 1.40 16 2.80
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Figure 8 shows the calculated result
of failure process for case 2. In this
case cracks start occurring at the fault
F-30 when load reaches 0.6P, as
shown in Figure 8(a). In Figure 8(b)
when load reaches 2.0P, almost all the
area of F-30 fails, and faults of F-8
and F-9 start opening. When load
further increase to 2.6F, shown in
Figure 8(c), the concrete wall begins
to fail leading to the failure of the
foundation along F-30 to F-1.
Following the failure of foundation,
blocks lose their stability and begin to
move. Figure 8(d) shows the
movement of blocks after the Figure 7. Experimental result of the abutment
foundation failure. failure in case 2

(a) Load=0.6P (b) Load=2.0P

(¢) Load=2.6P (d) The Movement of Blocks
Figure 8. Computed failure process of the abutment in case 2
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Experimental result of the abutment failure for case 3 is given in Figure 9 and the
corresponding bearing capacity is listed in Table 4. The bearing capacity increases to 4.0P due to
the treatment of foundation by 3.5m thick concrete wall. The simulation result for the same case
is shown in Figure 10. The prediction of bearing capacity is slightly larger than the experimental
one. The failure process is similar to the experiment.

Table 4. Bearing capacity in case 3

Number | Bearing | Number | Bearing

capacity capacity
(XP) (X P)
1 1.3 7~10 2.5
2 1.5 11 3.25
3 1.75 12~13 3.5

4~5 1.8~1.9 14 3.5~4.0
6 2.25 15~18 4.0

Figure 9. Experimental result after the
foundation treatment by 3.5m concrete
wall

(a) Load=1.2P (b) Load=2.0P

(©) Load=3.0P (d) Load=4.2P
Figure 10. The failure of abutment after strengthened by 3.5m concrete wall
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4.2 Failure of a Dam Abutment with a Set of Joints

Second application of the extended MM is made in simulating the failure of an arch dam
foundation with a set of joints. The experiment was carried out by Takano (1962). Figure 11
shows the diagram of the arch dam foundation. A set of joints exists paralleling to the direction of
thrust force. Water pressure acts at the upper surface of the arch. The controlling parameters in
the experiment are listed in Table 5. The experimental result showed that the abutment failed as
shown in Figure 12 when the water pressure g=9.3kg/cm’.

Table 5. Calculation parameters

E v Compression Ty C ¢
(kg/em?) Strength (kg/em®) | (kgjem®) | (kgfem®)
Arch 200000 0.2 250 T e
Left Abutment 20000 0.2 60 6 20 30
Right Abutment 20000 0.2 30 3 10 30
Joint e I ——— 0.6 1.2 18

Figure 11. Abutment with one set of joints

Figul";:.12. | -iixperimental result

Figure 13 gives the simulating result by MM. Because the strength of joint is less than that of
the mass material, some joints firstly open because of the tension and shear failure {Fig. 13 (2)}.
The blocks contacting with the arch mainly support the load conducted by arch, and the principal
stress is parallel to the thrust direction {Fig. 13 (a)}. This point is same with the experimental
conclusion. When the pressure on arch increases to 7.0 kg/cm®, some cracks occur in mass blocks
{Fig.13 (b)}, and when the load reaches to 7.5 kg/cn’, the foundation fails {Fig. 13 (c), (d)}. The
bearing capacity obtained by MM is less than the experimental result and the failure pattern has
some differences. In the experiment, the failure is mainly caused by compression near the arch
abutment, but in MM analysis, the failure is mainly caused by shear.

218



900T/m?

(a) Load=2.0 kg/cm® (b) Load=7.0 kg/cm®

(¢) Load=7.5 kg/cm® (d) Failure of arch and dam

Figure 13. Computed failure of arch foundation by MM

5. CONCLUSION

Manifold method was extended by adding the consideration of crack propagation in failure process
into the numerical procedure in the present paper. The extended version of MM is capable of
dealing with the failure of structure or foundation with joints or faults. The failure of foundation
with discontinuities usually begins from weak places like joints of faults, and then breaks the mass
material to lead to the final failure. The extended MM can simulate this process very well. The
nmumerical simulation proved the effect of foundation treatment and the prediction of bearing
capacity is also in good agreement with the experiment results. From engineering practical point of
view, the numerical method developed in the present study would be a useful tool in simulating the
failure process of structure with discontinuities.

The numerical result is mainly affect by the parameters used in calculation, further studies should
be performed on characteristics of parameters.

ACKNOWLEDGMENT: The author would like to thank Dr. G. H. Shi and Professor Yuzo
OHNISHLI for suggestions.
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Abstract: In this paper a new technique was implemented in Manifold Method (MM) to solve
groundwater flow problems. MM was originally developed for analysis of solid deformation.
Here, saturated-unsaturated unsteady groundwater flow problem in porous medium was
solved by MM in the way similar to the stress-deformation analysis. Only water pressure or
potential is unknown in groundwater flow analysis which uses time-dependent continuity
equation and nonlinear Darcy’s law. The time-independent terms of the governing equation
are discretized using MM while backward finite difference scheme is used to take into
account time domain. The authors have developed an analysis code and applied it to some
example problems. The code showed a power of MM in which the mesh generation was very
easy. The results of the analysis by MM were compared with ones by the conventional FEM.

1 INTRODUCTION

When one deal with the flow of groundwater through porous media from an analytical
viewpoint, the behavior of groundwater is modeled as a boundary-value problem. The typical
methods to solve the boundary-value problem are summarized as follows: 1) Direct method 2)
Graphical method 3) Numerical method.

The first method corresponds to the methodology to obtain the solution directly by
solving the governing equation under some limited very simple boundary conditions. The
second method corresponds to the methodology to solve problems graphically by drawing
both equi-potential lines and flow lines, which is so-called flow net. However, the solution by
means of the graphical method heavily depends on individual skill and experience, and the
method is applicable only to simple problems. Therefore, at present, both methods mentioned
above are not common.

On the other hand, the third method corresponds to the methodology to obtain an
approximate solution using numerical method such as Finite Differential Method (FDM),
Finite Element Method (FEM), Boundary Element Method (BEM) and so on. At present,
these numerical methods are the most common.

In the seepage analysis, FEM is the most popular. Since the analyzed geotechnical
problems become more large-scale and complex these days, however, the finite element mesh
generation, which is related to the shape of the model boundary, becomes more and more
difficult. So making finite element model takes us a lot of time and effort. MM, which uses
the independent mathematical and physical meshes, can use a very simple mesh, which will
solve this problem.
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2 FORMULARIZATION BY MANIFOLD METHOD
2.1 Governing Equation of Saturated-unsaturated Unsteady Groundwater Flow

Akai et al. (1977) denived the governing equation of the saturated-unsaturated unsteady flow
problem. Followings are re-formulation by the authors.

Assume that the density of the water is constant, continuity equation is expressed as
follows:

—v,, =d8/ot : (1)
And the Darcy’s law in saturated-unsaturated area is expressed as follows:
v, ==K, W)K,h, )
h=y+x, 3)
From these equations, we get
K, @K, 1, 1, =36/ @

where v, is the velocity of the flow in x,-direction, € is the volumetric water content,

K, () is the relative permeability, K, is permeability tensor of saturated state, # is the

;
total head, v is the pressure head and x, is the gravitational potential. Let » the porosity of
the medium and S, the degree of saturation,

0=nS, (5)

a dn dS,|dy
at ( o= (S“) { a'w,u+n dy/}at - ®

Assume that porosity change is not caused by the pressure change in unsaturated area,
dn/dy is 0, and dS, /dy has some non-zero value. While, in the saturated area, S, 1is

Hence,

always 1, and dn/dy has some non-zero value. So we get the following equation,
substituting Eqgs.(6) and (3) into Eq.(4).

K, WK, +x,), J, = lelw)+as Joy /o )
where S. =dn/dy is the specific storage, c(y)=d8/dy is the specific capacity and « is
] in saturated area (¥ =0) and is 0 in unsaturated area (¥ <0). Eq. (7) is the governing
equation. In the unsaturated area, ¥ and 6 have a relationship. The functional relationship
between ¥ and 6 (so-called water retention curve) is shown in Figure 1. As seen from
Figure 1, @ tend to become constant which is equal to 7, and K, is | in the saturated area.

Generally, water retention curve follows the different path in the saturation and dewatering
" processes, but in this study, we assume that water retention curve follows the same path.

2.2 Discretization of Governing Equation

If there are n physical covers or nodes in the manifold, the governing eqﬁatior:
(simultaneous) equation becomes Eq. (8)
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Kn K, - K, ||H QI
K:zl K:zz K:ln H-rz - Q:z (8)
Knl KnZ K H Qn

In the deformation analysis, the matrix in the left-hand side and the vector in the right-
hand are called stiffness matrix and external force vector respectively. In case of seepage
problem, these are called permeability matrix and flux vector.

In MM, global stiffness matrix and global external force vector are derived from the
principle of minimum potential energy. Physically, energy means “the ability to do work”, but
it can be thought that it is potential of force. Extending this idea, it is possible to show
“potential” of velocities for element permeability, point flow, inflow/outflow, and to derive

global permeability matrix in seepage problem. In this case, potential does not necessarily
mean energy in terms of physics, which causes no mathematical problem.

2.3 Approximation functions

Approximation function is independent from the material boundary in MM. Even if the
material occupies only a part of the element, approximation function is still the same.
For a triangular element (cover, or mathematical mesh), let the coordinate i,(x,,y,) for

each nodes i=1,2,3, and corresponding nodal heads 4, (i =12, 3) are described as follows.
coordinate — hydraulic head
Iy :(xlsyl) - hy
Iy (x 2.2 ) - hy
iy (x3,y3) — L3
The hydraulic head # in the element is described as follows.
h=a+bx+cy (9)
where a,b,c are unknown coefficients. The nodal heads are
h 1 x 1. Yi||e
{Hl=\m =1 xn yjb (10)
h, 1 x; yille

2.4 Element Permeability Matrix

In FEM, the integration domain of the permeability matrix is the whole element that usually
has a boundary. In MM, the domain is physical cover, which might be only a part of the
element.

In case of isotropic medium, Darcy’s law is described as following equation, same as
FEM.
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of=fo o=t

Where k(=K (w)K) is the permeability of the element. And

h:{fl £ fs}{hl h, hs}T={f1 5 f;}{HL} (12)
{ix}=_{ah/ax} (13) '
i, oh/dy
where
M fo Jo
{fl S f3}={1 x Y} Fa Jo Sa (14)
fa fn S
o S s 1 x » B
So To Ju|=|l % ¥ (15)
Su Fn Ju 1 x s
Hence,
. h h,
{I.r}=|:af1/ax df, /ox afz/ax] I =|:f21 I fz.x] b (16)
i of,/oy 9f,/ady af /9y hz fa JTo fa hj

Now we define [BL,] as follows.

[Bc]='_|if2| fzz f23j| : (17)
f:‘ﬂ f:’%l f33
Then, we can express hydraulic gradient as follows.

i

{z‘ } =18 1{H.} , (18)

The potential IT, of the element e 1s

I, H [V, +iv, dxdy (19)

Here, the integration should be done over the whole area 4 where the material (physical
domain) occupies in the element.

a, ” 1g ;}{ }dxdy
- H-—{H Y 8.1 %18 1{H }axdy
— Sl Y[ 18 e (e Jasay {13
=Y (s eT ks ).} (20)

Where S§¢ means area of the element.
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From the principle of minimum potential energy, the permeability matrix is

91,
i " oh,oh, @h
then
f2l f3|
sBYEIEI=s 1 1 [k 0} [f 0 Iz f”] @
O kjlfs foo Ju
f 23 f 13 )
Here
s T IBI-> el rs=123 (23)
ij,{ =1, firstnode
i{l)=1{i,,! = 2,second node
i,/ =3, third node
2.5 Other Vectors
Other vectors can be given using the principle of minimum potential energy as well.
* Point flow vector
o,=-0h=—HY1{, f £}0 (24)
0, =9I, [3h, (25)
- Inflow/outflow vector
nm, =[] neasay=-{HY|[[ 1 £ £Y exadlg (26)
Q, =9Il [oh, 7)

2.6 Treatment of Time-independent Terms and Unsaturated Area

In this study, it is assumed that element values K and §; are constant in each elements and

K¢ (y) and c*(w) are the mean of the 3 nodal values respectively as follows.

K "(w)—{(K (w)) &, @), + (&, ), }/3 (28)

(clw ={clw)+as,), +(cly)+0s,), +(c(w +as.,), }/3 (29)
A%S"(cﬂxsx )[(‘) ﬂ_> K] rs=123 (30)

-ﬁS" (c+0S, )Y h—=10,,} rs=123 31)

In this study, the backward finite difference method is used for discretization of time. The
governing equation becomes Eq. (32) using the backward finite difference for time.
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1 1 ‘ 1 1 1
kA— k+— .23 ] k+— k+—y k
[Amn 2+ Elm 2 }L’m = Qn 24— F, anr ?'hm (32)

Atk =g* gt _ (33)

3 TREATMENT OF FIXED HEAD BOUNDARY

In MM, there are two ways to fix the hydraulic head on certain boundaries. One is penalty
method, the other is node shift method.
The heads at some points in the element are fixed to certain value #,. In MM,

mathematical mesh is independent from physical mesh, so nodes are not always on the
material boundary. Then, the hydraulic head is not fixed to certain value, and freedom degree
of the system does not decrease, which is different from FEM. So we arrange the fixed head
point inside the element, give the penalty for the head change at fixed head point, and
consequently control the head change. We call this way penalty method.

Displacement in the deformation problems is equal to hydraulic head in the seepage
problem. So, we apply penalty method to the head change. The potential II, due to the head

change is expressed as follows.

, , hy —hy, ' A by —hy
H.f :E(h"ho)z =E hy —hy fs {fi f fx} hy ~ hy (34)
hy = by s )

where pis penalty. The larger the penalty is, the smaller the head change 1s. From the
principle of minimum potential energy, the permeability matrix 1s
0’11 g
K= oh,oh,

However, penalty method has some problems. Firstly, there is no definite basis how large
the penalty for the head change should be. Secondly, in the seepage problems, unknown value
(hydraulic head) varies in a wide range, differently from the deformation problems. So the
analysis results may have non-negligible difference in cases that fixed head points are inside
the element and on the material boundary. Figure 2 shows this problem.

Then we modified the mathematical mesh so that we can give the boundary conditions on
the material boundary as it is done in FEM. Firstly, regular mathematical mesh was made
which is independent on the physical mesh. Secondly, some nodes of the mathematical mesh
were selected which were near the material boundary where the fixed head boundary
conditions were given. Thirdly, these nodes were moved on the boundaries as shown in Figure
3. We call this method node shift method. In this method, the value of the hydraulic head can
be given at the nodes that are on the material boundary. Consequently, the freedom degree of
the global system decreases. Node shift method has an advantage that the total dimension of
the governing equation is reduced. On the contrary, it may be a disadvantage that the shape of
the mathematical mesh near the material boundary becomes complex. This problem will be an
obstacle, when we develop 3-dimensional MM.

(33)
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4. EXAMPLES

To verify the formulation and the analysis code developed by the authors, some simple
example problems were analyzed.

4.1 I-dimensional Saturated Steady Seepage Analysis

Firstly, the authors analyzed 1-dimensional saturated steady seepage problem shown in Figure
4. The length of the analyzed model is d;. Hydraulic heads were fixed to %, and 0 at

upstream and downstream boundaries respectively. The theoretical solution of this problem is
as follows.

Wx)hy =—x/d, +1 (36)
Figures 5 and 6 show the comparison of the calculated results and the theoretical solution,
where Figure 5 shows the analysis result by penalty method and Figure 6 shows the one by
node- shift method. In this problem, calculated results correspond to the theoretical solution
very well in both methods.

4.2 1-dimensional Saturated Unsteady Seepage Analysis

Next, the authors analyzed 1-dimensional saturated unsteady seepage to verify that this code
can analyze unsteady problem. The problem is shown in Figure 7. The length of the model is
d,. Initially, hydraulic head is 0 in the whole area, and it is fixed to /%, on the left end and 0

on the right at ¢ = 0. The theoretical solution of this problem is shown as follows.

___h(x,t)=1_i_£ lsinf—ygexp _k|nzm t 37
h d, m=n d, S

2] &

Figures 8 and 9 show the comparison of the calculated results and theoretical solution, where
Figure 8 shows the analysis result by penalty method and Figure 9 shows the one by node
shift method. From Figure 8, we can see the difference between the calculated results and the
theoretical solution. Especially, this difference is large when the normalized time is small. We
can find that this difference is smaller in Figure 9 than in Figure 8 .

This large difference shown in Figure 8 is caused by the fact that the fixed head points are
inside the element.

4.3 2-dimensional Saturated-unsaturated Unsteady Seepage Analysis

The authors analyzed the model of groundwater flow in earth dam. This problem is 2-
dimensional saturated-unsaturated unsteady seepage problem (see Figure 10). The analyzed
water table at several times are shown Figures 11 and 12, where Figure 11 shows the analysis
result by MM, and Figure 12 shows the one by FEM. Table 1 shows the comparison of the
input data used in MM and FEM respectively. From Table 1, we can see that MM can save the
task for preparing input data for the analysis. This fact proves the advantage of MM to FEM.
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5 CONCLUSIONS

The MM could formulate the governing equation of the saturated-unsaturated unsteady
groundwater flow problem. Simple examples to demonstrate the validity of the method were
given. In this study, the authors get following conclusions.

- In saturated steady and unsteady analysis, calculated results by MM showed very good
correspondences to the theoretical solutions.

- In MM, there are two methods to fix the hydraulic head, which are penalty method and
node shift method. The former is superior to the latter in convergence of solution, but may
have disadvantage that shape of mathematical mesh near the material boundary becomes
cornplex.

- MM is superior to FEM in that we can save the task for preparing input data for the
analysis.
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Table 1. Comparison of input data between MM and FEM.

Manifold Method (node shift method)

Finite Element Method

Total number of

nodes

143 points
{Fixed head points: 22 points)
Freedom degree of the system: 121

143 points
(Fixed head points: 22 points)
Freedom degree of the system: 121

Total number of
elements

240 elements (iriangular mesh)

240 elements (triangular mesh)

Data of nodes

The number of nodes (143)
X -coordinate of nodes (143)
Y -coordinate of nodes (143)

Designation sign of fixed head point (143)
Fixed head value {22)

Dividing number of mathematical mesh (1)
X -coordinate of fixed head points (22)
¥ -coordinate of fixed head points (22}

Number of fixed head points (22)
Fixed head value (22)

Data of elements

Element number {240)
Node numbers of each element {720)

Data of material

Permeability in saturated area

Specific storage (same as FEM)
Water retention curve
Other Data of time step etc. (same as FEM)
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Figure 6. Result by node shift method.
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Manifold Method Analysis of Rock Masses
Containing Joints of Two Different Scales
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ABSTRACT: A manifold method formulation is presented here for analyzing rock masses that
contain joints of two different geometric scales. When joint scales become very wide apart, it
would not be feasible to model them with equal details. Reasonable simplification requires that at
least the dominant kinematic constrains be preserved. This can be achieved through the
combination of discrete and continuum methodologies. In this respect, manifold method comes in
handy. This study models the primary set of joints as discontinuities that divide a rock mass into
individual blocks. Within each block the secondary joint set is handled using an equivalent
continuum constitutive model. Numerical experiments were conducted and implications
discussed.

INTRODUCTION

Rock masses often contain more than one set of joints. In all likelihood, these joints may
also have very different geometric scales. When the joint scales become wide apart, it would not
be feasible to model them with equal details. The immediate question in dealing with such a rock
mass is, “How much simplification can one make without jeopardize an analysis?” It is essential
that good reasonable estimates of the displacement field be obtained even after simplification, as
it is the base for evaluating failure modes and the stresses. To achieve this goal, an acceptable
simplification should at least preserve the gross kinematics of a rock mass.

In the following discussion, only two sets of joints are considered: one dominant or primary
and the other secondary. The primary joint set is the one that has a wider spacing, and that it
governs the overall kinematics of a rock mass. To preserve the rock mass kinematics, it may be
essential to model this joint set explicitly. This can be achieved in a discrete approach by
modeling the joints as physical discontinuities. These discontinuities cut a rock mass into
individual discrete blocks.

The secondary joint set is also the source of some relative movements. But being confined
by the primary joint set, this movement per se is not important. It, however, has significant
impact on the stress that a rock can withstand. The net effect of the secondary joint set may,
therefore, be modeled satisfactorily using an equivalent continuum constitutive model.

In view of these, the present study will employ a mixed continuum-discrete method, the
manifold method (Shi, 1997; Lin, 1995), in the analysis. The primary joint set is modeled as
discontinuities, while the secondary set though an equivalent continuum. Numerical experiments
and an application example are also presented.
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MANIFOLD METHOD

In manifold method, a problem description is defined by a two-layer description. The first
layer of the description is called a physical mesh. Within the present context, a physical mesh
includes the problem boundaries and the discontinuities posed by the primary joint set. The
second layer of description is called a mathematical mesh. A mathematical mesh can be a mesh
of some regular pattern, or a2 combination of some of arbitrary figures. The mesh or shape size
may be chosen according to the problem geometry, solution accuracy requirements, and the
physical property zoning. In this study a regular triangular grid is employed as a mathematical
mesh. The mathematical mesh is used for building covers and has to be large enough to cover
every point of the physical mesh.

Figure 1(a) depicts a jointed rock sample which is placed between two caps ready for
uniaxial test. This problem layout shows the physical boundaries and discontinuities encountered.
Thus, this layout is served as a physical mesh in a manifold formulation. As for the rock itself, a
discretization using a triangular mesh is selected. A mathematical mesh reflecting this
consideration is depicted in Figure 1(b). In the manifold method, the two layers of meshes do not
have to conform to each other. Putting these two meshes together gives a manifold description of
a problem as illustrated in Figure 1(c).
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(a) physical mesh (b) mathematical mesh (c) manifold description

Figure 1. A manifold description of a rock sample under uniaxial test setup

Each discontinuity encountered can have distinct properties. Surface of discontinuities may
be separated or come to contact with each other. When they are in contact, the normal force is
obtained from no penetration requirement, while the shear force is determine from relative sliding
movement together with Mohr-Coulomb failure criteria.

EQUIVALENT CONTINUUM MODELS

There are many equivalent continuum models for representing jointed rock masses.
Analytical solution considering compliance and anisotropy induced by joints represent one
approach (e.g., Gerrard, 1982; Amadei, 1982). Another approach requires numerical
implementation but is much more versatile. Multi-laminated model is perhaps one of the most
comprehensive model in this category. It was proposed by Zienkiewics and Pande (1977) to
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model the “pronounced” anisotropy of rock due to the presence of two or three sets of weak
planes. The normal and shear stresses on a typical weak plane can be found by Cauchy’s law, i.e.,

{O’n:|=,ro_ (1)
T L

Each weak plane is associated with a yield function that is defined in terms of the stress state and
stress history as follows,

F, =F/(0,7,e") (2

The surface may exhibit work-hardening or work-softening characteristics. A hardening
parameter that is tied to a plastic strain measure can be used to model this effect, When there are
many sets of weak planes, Zienkiewics and Pande suggested the intersection of the individual
yield functions be used in representing the gross yield function of a rock element, i.e.,

F=FNF..NF, =0 (3)
One may also adopt an associated or a non-associated flow rule to model the plastic sliding and
dilatancy of weak planes.

Ubiquitous joint model (Flac, 1993) can be viewed as a simplified version of the multi-
laminated model: the weak planes are considered perfectly smooth. As a result, no dilatancy
takes place at yielding. This simple version is adopted for the present study. Whenever the yield
function of a weak plane is reached, the stress exceeds the yield strength is relaxed.

Only one set of weak plane within each continuum element is considered in this study. Each
weak plane is also assigned a residual strength once the yielding strain is exceeded.

TESTS ON SAMPLES CONTAINING ONE SET OF JOINTS

Plane stress numerical tests were conducted for rock samples that contain one single set of
joint. First of all, each rock sample is modeled as a uniform continuum by adopting UBI model.
Each sample is covered by 100 to 1000 triangular elements. Within each element, the
displacement field is linear. All elements use the same set of parameters. Mathematical and
physical meshes similar to Figure 1 are employed except that there is no physical discontinuity.
Initially, the rock is elastic until its yielding strength is reached, then UBI model is triggered.
Several joint orientations, defined by an angle, are considered. They are 30, 50 and 60 degrees
from horizontal, respectively. Two sets of strength parameters are used for each case. For@ =60
degree, the first case considers ¢,=¢,=30 deg and c,=c=30 kN/m* the second case considers

¢,=0,=30 deg, c;=400 kN/m”and ¢,=30 kN/m”.

Parallel sets of tests using discrete elements were also carried out. Each rock sample in this
case consists of two discrete blocks. They are separated by one single joint that has the same
orientation as its counter part in the continuum model. In the discrete model, the rock is elastic.
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The displacement field within each block is linear.

Results from both sets of tests using same peak and residual strengths are shown in Figure
2(a) and (b). Both results show similar gross elasto-plastic stress-strain curve. The yielding
strengths from both tests are about the same values. The main differences lie in the displacement.
Since the two models employ vast different degrees of freedom, it is not unexpected to find
significant differences in the elastic limit strain. In the discrete model, the failure is instantaneous.
In the continuum model, the failure progresses also very fast, and the sample failed within a few
time steps.

However, if rock joint strength is substantially reduced after first yield, resuits from the two
sets of tests diverge. Their gross stress-strain curves are depicted in Figure 3. In the discrete
model, once the peak strength is reached, it immediately drops to a residual level. In contrast, the
continuum model gives a higher post-yield strength, which is also sensitive to the number of
elements used. Figure 4 shows that the yielding zone within a continuum sample expands
gradually. Failure starts from both ends and propagates toward the center. Even after a failure
band is formed, some loading is still carried by elements outside the band. The residual strength
from discrete model thus can be regarded as an asymptotic value.

Figure 5(a) depicts the deformation of a continuum sample after a large deformation. A
significant sliding like deformation can be observed. It is clear that sliding takes place along
many weak planes. This sliding pattern is also affected significantly by the evolution of failure
zones within a sample. Moreover, presence of weak planes affects the principal stress orientation
within a sample. UBI model is capable of achieving that. This can be observed from end-of-test
results shown in Figure 5(b). In it, the failure band can also clearly be identified from the rotated
principal stress.

The preceding results demonstrate that a continoum model, when incorporate a' proper
constitutive law for joints, can provide a reasonable basis for estimating the mechanical behavior
of a jointed rock.

TESTS ON SAMPLES CONTAINING TWO SET OF JOINTS

Tests were also conducted on a sample contains two sets of joints of different scales. This
mainly serves as an illustration of the present approach. Only one single sample was used in this
case, and the meshes used are depicted in Figure 1. The physical discontinuities used in this case
do not undergo much relative movement under the applied load. Therefore, the load deformation
curves is expected to be close to that contains only secondary joint set. Three cases were
analyzed: (1) both primary and secondary joint sets are considered, (2) only secondary joint set is
considered, and (3) only primary joint set is considered. The displacement vectors and principal
stresses are depicted in Fig. 6. The stress-strain curves obtained are presented in Fig. 7. These
results demonstrate that a wide range of complex behavior can be modeled with various
combination of discrete and equivalent continuurm modeling techniques.
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(c) With both primary and secondary joint sets
Fig. 6 Deformation vectors and principle stress distribution at the end of tests.




30.0

Legend
—&@— Two discontinuities and UBI model
— —al— Two discontinuities and elastic medel
—4&@— Oaly UBI model without discontinuity
200 —
2 il
n
10.0 —
0.0
| ' | ' | ! | ! | !
0.0E+0 1.0E-5 2.0E-5 3.0E-5 4.0E-5 3.0E-5
Strain
Fig. 7 Stress-strain curves with various combinations of joint sets.
CONCLUSIONS

This study shows the advance of discrete contintum interaction formulation, such as that
based in manifold method, may provide a framework for enhancing the level of analysis that can
be achieved. Moreover, it also shows even simple model, such as UBI, couple with explicit
discrete model has the potential for describing a very complex behavior. Work is currently
underway in further exploring the effects of various combinations and their implications. The
present work can readily be employed in assessing large-scale rock mass strength and stability.
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DYNAMIC BEHAVIORS IN DISCONTINUOQUS
ELASTIC MEDIA USING DDA

Kuokai Shyu
Manifold Engineering, 18645 East Gale Avenue, Suite 200
Industry CA 91748-1345, USA

Xinhua Wang
Manifold Engineering, 18645 East Gale Avenue, Suite 200
Industry CA 91748-1345, USA

Chiao-Tung Chang
Manifold Engineering, 18645 East Gale Avenue, Suite 200
Industry CA 91748-1345, USA

ABSTRACT: In the study of wave propagation and dynamic contact analysis for discontinuous
elastic media, few results have been reported by use of current numerical models, such as the Finite
Element Method (FEM) and Discontinuous Deformation Analysis (DDA). An improved numerical
model, DDA+FEM is presented to analyze these types of problems. This model, an enhancement
of original DDA, can simulate the propagation of dynamic waves more accurately in discontinuous
elastic media. In this paper the basic concept of DDA+FEM is presented, and applications of wave
propagation in finite dimensions is demonstrated. Verification examples of the proposed model
include the dynamic impact of two elastic bars and two spheres. Given the velocity structure and
geological information, the proposed model can simulate dynamic wave propagation in tectonic
media; while with known seismogram data, the geological information and velocity structure of
tectonic media can be investigated.

1 INTRODUCTION

In the field of geophysics, the geological survey of the crust-mantle structure has been an important
issue to explore. Better knowing the fundamental nature of the geological structure underneath
can help mankind to understand and to be cautious about unexpected movements or other unsolved
mysteries of the earth. For example, an earthquake pre-warning system can be established after
understanding of the geological information of the faults and tectonic plates; energy exploration
can be improved by knowing the distribution of the geological structure; the phenomenon of
orogenic movements may be explained by geologists due to the unfolding information of the
velocity structure; to locate the discontinuous interfaces or weak zones and to obtain the geological
properties of the bedrock by reference to the velocity structure is an important issue for dam
engineering.

To investigate the geological velocity structure, the classical theory of the wave (ray theory)
has been intensively used to interpret the reflection and refraction of the dynamic waves generated
through a wave source. The refraction depends on the material properties of the geological structures
and the discontinuous media interfaces. The geological velocity properties are often characterized.
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Figure 1. P wave velocity structure of the ultrahigh-pressure Dabie Shan orogenic belt.
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Figure 2. S wave velocity structure of the ultrahigh-pressure Dabie Shan orogenic belt.
as the P wave (pressure wave) and S wave (shear wave) velocities of the structure Figures 1 and 2

illustrate the typical P and S wave velocity structures. These velocities properties are related to the
material properties of Young’s modulus, Poisson’s ratio, and mass density as follows:

V. = E 1—v 1

PN T 0 -29) (0
E 1

ey @

where V, and V; are the P and S wave velocities; E, v, and p are Young’s modulus, Poisson’s ratio,
and mass density respectively. The wave source often is generated by seismic sounding, namely,
borehole explosion or pile hitting. The response data, which are the superposition of various ray
of waves, are captured by observation stations at certain locations. Thanks to digital computer
technology, now these massive data and numerical modeling can be analyzed effectively.
Incorporated with dynamic wave propagation equations, Finite Difference Method (FDM) and
Finite Element Method (FEM) are extensively used in geophysics studies. However, there are
limitations. These two methods can only be effective in homogeneous and layered media, and can
not well describe the reflection and refraction responses of the waves through discontinuous media.
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Wave traveling through discontinuous interface involves complicated energy transfer, reflection,
refraction of the wave, and contact of the discontinuous interface.

To better describe the dynamic wave propagation equation, the element size of a finite element
mesh must be small enough to capture the traveling wave shape. A seismic sounding source is
usually an impulse or shock wave for numerical simulation. An impulse-in-time-domain can be
represented as the amplitude spectra in frequency domain by Fourier transformation that contains
numerous trigonometric terms of different frequencies:

1 +o0 iﬂ‘d
F(”“E/_w y() e dr 3)

where F(f) is the amplitude spectra, y() is the impulse, ¢ and f are the time and frequency
respectively. Each frequency by itself represents a wave of a certain length. To capture a short,
high-frequency wave, a smaller element size is required; otherwise, the wave cannot be adequately
represented, and the element will work as a wave filter that simply filters out the high-frequency
portion. This makes dynamic wave propagation problems difficult to simulate.

As for the simulation of discrete media, Shi (1988) introduced Discontinuous Deformation Anal-
ysis (DDA), which includes complete block system kinematics to describe the contact mechanism
of a discrete multi-body system. The block system kinematics basically contains three parts:
contact scheme, contact transfer, and open-closed iteration to correctly find the contact position,
contact status, and contact forces. DDA also incorporates a time marching scheme to simulate the
characteristics of the true dynamics and to control the convergence of the open-closed iteration.

Since DDA’s debut, many improvements have been developed to enhance a block’s deformation
ability. For example, Shyu (1993) and Chang (1994) have incorporated finite meshes into DDA
blocks (DDA+FEM); Ke (1993) and Amadei ef al. (1996) have introduced unique concepts to
make fracture mechanics available; Lin and Lee (1996), Koo and Chern (1996), and Ma et al.
(1996) have developed high order DDA blocks.

In geophysics studies, an investigation on finding the refraction profile possibly resulting from
an orogenic movement has been processed in China (Wang et al. in press). Their report indicated
that, by coupling the seismic sounding technique and FDM to analyze the time traveling curve and
to trace the refiection and refraction formation of the waves, some velocity structures in the crust
can be derived from the ultrahigh-pressure Dabie Shan orogenic belt in the mantle. Therefore, the
geophysics field can be an important direction for DDA. For example, combining seismic sounding
and DDA, the geological formation of underground structures can be found to help the exploration
of oil and mining procedures; tectonic movements can be studied to understand the mechanism of
the earthquake phenomenon, etc.

Due to the nature of DDA, dynamics and contact mechanisms can be easily overcome. However,
few applications in geophysics studies including dynamic wave propagation problem through
discontinuous media have been found by use of DDA modeling. The most recent one was
demonstrated by Liu (1996), in that aseismic fault slips and block formation in Northern China
has been modeled. To demonstrate the wave propagation behavior by use of DDA, two classical
numerical examples will be illustrated to show the capacity of DDA+FEM. The dynamic wave
propagation behavior induced from a shock wave through discontinuous media containing various
velocity structures will be investigated using DDA+FEM to demonstrate the possible application
for geophysics. Response signals captured from observation stations that characterize the reflection
and refraction of the P waves and S waves through different velocity structures have been analyzed.
In the last section, the conclusions are addressed.
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2 VERIFICATION

The following examples were first performed by Hughes ef al. (1976) by use of contact finite
element methods. The classical contact problems did involve energy transfer, dynamic wave
propagation, and step function that are difficult for numerical models to simnulate. Ma et al. (1996)
have also been using high order DDA to verify their models, and the results were encouraging.
Here, the proposed model considers the same configuration to validate the theory.

2.1 Impact of two identical elastic bars

As seen in Figure 3, two identical elastic bars are contacting at ¢ = (. Each bar is discretized with
20 elements. Figures 46 illustrate the results of displacement, velocity at contact point, and stress
at mid point of bar 2 versus time. Compared with the results of Hughes et al., the curves fit well.
Using dynamic procedure, the contact-impact results and the phenomenon of reflecting waves can
be easily observed after the impact waves reach the end of each bar. As a comparison, each bar
is further discretized by 40 elements. The curve of stress at mid point of bar 2 versus time is also
plotted in Figure 6.

246



Sphese 2, V;=-20

;=001 p;=002
E,= 1000, E;=2000
v =04, wvp=02
R;=5, Ry=5
At=0.001

Sphere 1.V, =+4.0

Figure 7. Input data and mesh of impact of
two dissimilar elastic spheres.

0.4

y
Spherc ] ——
Spheng 2 ——
0.35 |- Bghocal o
0w |
E 0.02s |
i
=
g oozt
E aels |-
aa |
| /
o == H L L L )
o at 02 03 [ o3 L] a7 (3]
Cootact Radine

Figure 9. Impact of two dissimilar elastic
spheres. Curve of normalized displacements
of conatct point vs. time.

2.2 Impact of two elastic spheres

003

T
Sphers 1 rm DO ——
Shhere 1t 03—

008
oo J

oox|

Cootact Pt Displacement
o
P

wal ..
D04

006

s L z X
002 004 Q.06 0.08 L5] a2
Tame

Figure 8. Impact of two dissimilar elastic
spheres. Displacements of conatct point vs.
time.

005
Spherc 2 reld ——
Sphitt 2 rw{lg ==
004 |

omp \/
&
B 7
om| . ]

£.06 |-

Clantact Polnt Displacement
o

08 L L s
[} Q.06 008 ol
Tite

0.;?2 n.:u 12
Figure 10. Impact of two identical elastic
spheres. Displacements of conatct point vs.

time.

As shown in Figure 7, two spheres are traveling at opposite directions and contacting at t = 0. The
contact region is discretized with elements at radius 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, and 1.0. Figure
8 shows the displacements of selected contact points versus time. The flat plateau represents the
full contact of corresponding element edge at each contact radius. Figure 9 displays the curve of
normalized displacement of contact point versus contact radius. The results are able to be compared
with those of Hughes ez al. As a complementary analysis to this example, two identical spheres are
investigated. The input data of sphere 1 are used for sphere 2. The result is demonstrated in Figure
10, where the onset and completion of contact points can be clearly observed. This also proves the

accuracy of DDA’s block system kinematics.
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Figure 11. The discontinuous elastic media profile of seismic sounding simulation.

3 SEISMIC SOUNDING SIMULATION

The profiles of the geological structure in the mantle-crust region are of great concern to geophysics
scientists and engineers. Knowing geological information can help explain the existing geological
phenomenon, €.g., orogenic movements; analyze the response data received at observation sta-
tions due to earthquake excitation, e.g., seismograms; design or maintain a dam according to the
geological properties of the weak zones underneath; explore for the energy or mining reservation
and deposition, etc. The applications of geophysics are closely relied on the information of the
geological structures (P and S wave velocities).

P and S waves traveling through the transmitting media can reflect and refract when dissimilar
media or discontinuous interface is encountered. All the direct-phased and induced waves will
superpose depending on the structures of the media and propagate in a complex manner. To
identify the profiles of the velocity structure, seismic sounding techniques are often used. Dynamic
waves generated from a shock impulse travel through media and the response data (usually, velocity
records) is captured at observation stations. To analyze the captured data is difficult and complicated,
in that, according to the specific profiles of the velocity structure, the arrival time of each wave can
be one of the direct-phased or the combination of P and S waves.

To simulate the dynamic wave propagation problem, the configuration and profiles of velocity
structure in Figures 1 and 2 are used as the numerical example. This specific example consists of
discontinuous interfaces and different velocity structures identified as P and S wave velocities, and
associated Poisson’s ratio. The mass density of each elastic media is expressed from the following
experimental formulations (Wang et al. in press):

p=278+056x (V,—60), 60>V,
=3.07+029x (V,-70), 75>V,>60 4)
=322+020x (V,—75), 85>V,>75

The proposed DDA+FEM model is applied to handle the dynamic wave propagation and dis-
continuous behaviors. The dimension of the example is large (in km) that, for FEM discretization
to capture the high-frequency wave generated from seismic sounding, the element size will be
small to make the computation almost impossible. Therefore, a scale-down configuration (in m) is
presented to simulate the dynamic behaviors of the P and S waves. Figure 11 shows the configuration
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for the numerical simulation, with the profiles of the velocity structure remaining the same. X- and
y-direction shock impulse are applied separately at the location ErL and the observation stations are
set at distances 20 m, 40 m, 60 m, 80 m, and 100 m from ErL (see Fig. 1). X-direction velocities
at observation stations are recorded due to x-direction impulse; while y-direction velocities are
recorded due to y-direction impulse.

After gravity settlement (overburden pressure build-up), dynamic calculations were performed.
Figures 12 and 13 illustrate the velocity response at stations 20 m and 40 m away due to x-direction
impulse. From the figures, several peaks, which represent the arrival of different waves that are
either direct-phased or combined P and S waves, can be observed. For example, in Figure 12, the
direct-phased ground level P wave should arrive around ¢ = 0.005 s, and direct-phased ground level
S wave should arrive around ¢ = 0.00866 s. While other peaks can be identified as the arrival of
the other direct-phased waves, P-S, or S-P (transformation from P to S or S to P) reflection and
refraction waves. All the identifications are based on the information on the velocity structures.
For Figure 13, the direct-phased ground level P wave and S wave should arrive around r = 0.01 s,
and r = 0.0173 s respectively. Other peaks may be identified as the reflection and refraction waves
from other velocity structures. Because the velocities of the P wave are higher at deeper media,
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wave.

there are peaks in between direct-phased ground level arrivals.

Similarly, Figures 14 and 15 show the velocity response at stations 20 m and 40 m away due to
y-direction impulse. In Figure 14, the direct-phased ground level S wave should arrive around f =
0.00866 s. The peak at £ = 0.006 s should be identified as the arrival of P-S wave from reflection.
For Figure 15, the direct-phased ground level S wave should arrive around ¢ = 0.017 s. The arrival
of P-S wave from reflection should be at # = 0.01 s.

These results demonstrate that the dynamic nature and contact mechanism of discontinuous
media of DDA+FEM is well capable of describing the high-frequency dynamic wave propagation
problem in a discrete multi-body system. Figures 16 and 17 also illustrate the captured data from
other stations. From the figures, the delay of arrivals for each station can be clearly identified.
Across the whole time span of wave travel, the reflection and refraction phenomenon are quite
apparent during later stage of propagation.
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4 CONCLUSIONS

The objective of this paper is to demonstrate the capability of coupling Discontinuous Deformation
Analysis and Finite Element Method (DDA-+FEM) in the fields of geophysics. Geological knowl-
edge is important to mankind, especially relating to energy exploration, earthquake pre-warning
systems, dam engineering, nuclear waste storage, etc. One way to identify the geological infor-
mation is to find the associated velocity structures in the crust-mantle region. Seismic sounding
is one of the methods to utilize. Numerical simulations confirm the accuracy of DDA algorithms
through classical validations, and illustrate the high-frequency wave propagation capturing by use
of dynamic modeling from DDA+FEM. Most importantly, the proposed model indicates that, when
the computing power is permitted, the seismic sounding technique for geophysics can be possibly
simulated by comparing the response data with those from the field observation station. Therefore,
the geological information survey can be more reliable and easier.
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ABSTRACT: During the last decade, we attempted to develop a finite element based
algorithm to study a system of multiple continuous media of distinctly different stiffness. The
algorithm is capable of predicting progressive failure according to computed strsses and
failure criteria. In this paper, we report our recent work and some applications in predicting
behaviors and failures of soil and rock media.

With the advancement in personalized computing power, engineers are now given the tools to
approach design and analysis beyond the traditional confinement. One of the developments
that may have a far-reaching impact on the engineering practice is an efficient and flexible
design procedure based on a realistic assessment of the failure process. Such a procedure
requires an accurate algorithm to evaluate the component reliability and to predict the
progressive failure and total collapse of the component due to the changing service
environment and the service load.

Finite element techniques combined with the developments in material modeling have
provided a solid basis to study the stress and strain distributions in a component before it
begins to fail. Because of the high redundancy built in a structure, the initial failure of the
component often occurs at merely a small fraction of the ultimate component capacity. To
assess the true load carrying capacity, one needs to consider the continuous changes in
material property, for example the yielding and hardening of metals and microcracking of
brittle and inhomogeneous materials. Part of the component may fracture and separate into
multiple pieces. Due to the overall ductility, the component may be subjected to very large
geometrical changes before collapse. Thus, one of the primary concerns is to find new
concepts and techniques to treat large displacements, fracture, and multiple continuous
bodies.
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1. COMPUTATIONAL MECHANICS OF MULTIPLE CONTINUQUS BODIES

Direct numerical approaches that do not follow the traditional empirical or analytical concepts
seem to show the greatest promise in the development of a viable technique to simulate
component failure. Most of the advancements have been reported within the last decade.
Although a satisfactory algorithm is yet to be available, significant progresses have been made
in various areas. In general, such an algorithm should have the capability to handle the
following basic behaviors common to most failure processes:
a. Stress Analysis of the Continuum: Numerical analysis should be convenient to handle the
study of stress and strain prior to failure in the context of continuum mechanics.
b. Irreversible and Inelastic Materials and Failure Criteria.: Permanent deformation and
irreversible stress-strain relationship are critical behaviors to a quantitative prediction of
ultimate loading capacity. The algorithm should be able to handle these properties without
the need for extensive computational effort. _
c. Post-fracture Material Properties: Material models should be implemented to describe the
degenerated material properties according to the nature of failure and how fracture occurs.
d. Mixture of Stiff and Soft Media: Due to local failures in a continuous body, a structural
member may become significantly weaker in stiffness compared to other members. Current
finite element and stiffness methods have difficult handling such diversities in stiffness.
e. Large Deformations and Very Large Geometrical Changes: Before fractures to start, the
local deformations near the fracture zone can be extremely large for ductile materials.
Layered structures may be subject to very large inter-layer slides. Large deformation may
occur in the soft layers, while the motions of stiff layers are essentially in rigid-body motions.
Large geometrical changes also lead to complicated interaction effects. These interactions
should be integrated into the algorithm as natural conclusions of the geometrical changes.
J- Impact and Dynamic Responses: Critical loading environments often involve forces applied
within a very short period known as impacts and shocks. Sudden changes of the constraint
and loading condition of a fragmented member may induce rapid re-distributions of the stress
and strain in a manner similar to impact and shock.
& Rigid Body Motions: Rigid body motions due to inter-layer sliding or due to fragmented
components separated from the original body should be integrated into the stress analysis
procedure.
h. Multiple Deformable and Free Bodies: To handle phenomena such as the break-off of a
structural component, sliding between layered media and the penetration of a projectile into a
structure, the algorithm should have the capability of computing stresses and motions of
several interacting continuous bodies.

2. OUR EFFORT

As an initial attempt in the direction of developing a comprehensive procedure for failure
prediction, an algorithm is proposed which seems to have the capability of handling a stable
transition from a continuous medium to become multiple deformable bodies and free bodies.
The algorithm has been implemented to study frame structures and two-dimensional solid
media. We briefly summarize the essential ingredients of the algorithm.
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a. A Vector Formulation of Finite Element: In the traditional finite element analysis, the
stiffness and force matrices are calculated based on structural discretization. These matrices
are assembled to form a system of simultaneous linear equations for the solution of nodal i
displacements. For dynamic problems, a similar procedure to find the mass matrix and a
system of differential equations are obtained. |

Instead of using the matrix formulation, we propose to adopt a transient formulation
developed earlier by Key, Belytschko and Hallquist. In the formulation, the continuous
medium is approximated by discrete mass particles. Using the standard finite element analysis,
energy equivalent internal and external forces are found. They are the forces applied on the
mass particles. Newton's law of motion and time integration complete the formulation to
determine the acceleration, velocity and the displacement of each particle for a particular time
increment.

b. Explicit Computation: To avoid the complexity of iteration, a simple explicit time
integration formulation is suggested to find velocity and displacement for each time
increment. This simplifies the implementation for complicated material models, changing
constraint conditions and loading conditions. Fracture, particle collision, and penetration
conditions become much simpler to incorporate. However, small time and force increments
are required for numerical stability. This leads to a longer computational time in general.

c. A Convected Material Frame Formulation for Large Deformation: During the fragmental
process, it is required that the large rigid body motion and the large displacement should be
tracked accurately. Approximated techniques such as co-rotational formulation do not
provide enough accuracy for these large geometrical changes. Errors can accumulate rap1d1y
and cause numerical instability.

To develop a more accurate approach to handle very large deformation and yet simple in
computation, a convected material frame formulation of the deformation is proposed. Instead
of using the undeformed geometry as the material reference frame to calculate the
deformation gradient and Lagrangian strain, we propose to use the current configuration as
the:material frame and adopt an incremental procedure for the deformation process. For each
time or force increment, the geometry of the structural element is updated. A new material
frame is defined based on the current geometry. A set of geometry shape functions can be
defined to describe element geometry in terms of nodal geometry parameters such as
positions and slopes.

d. Mixture of Rigid and Deformable Motions: A master node-slave node approach is
proposed to monitor the motion of each rigid body imbedded in a continuous medium. The
rigid bodies may be subjected to very large motions and at the same time the continuous body
undergoes large deformations. A slip and frictional behavior can be introduced between
different bodies.

e. Fragmentation Algorithms: Several basic algorithms are needed for the purpose of
monitoring the recreation of new surfaces or new bodies. Most of them can be choices of the
programmer according to how the computer codes are developed. We list a few essential
choices in our programming process.

* Surface Creation or Adding Bodies: When the element stresses or the nodal displacement
values satisfy a failure criterion, new nodes are added and new free surfaces are formed. The
algorithm is required to check whether a new surface is permitted to exist at that location and
to determine the types of constraint conditions, which should be imposed on the new nodes.
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For the new nodes, dynamic allocations and parameter storage should be adjusted
accordingly.

* Internal Force Calculations: After an element is found to be fractured, all the internal
forces should be recalculated to examine whether more fracture should occur in the elements,
including those already fractured.

* Time Increment Adjustment: To ensure numerical stability, the size of time and load
increment should be re-examined according to the dimension and the stiffness of the new
structure.

* Inter-element Collision: Fragmented components are allowed to move freely according to
the force conditions. Thus, fragments may penetrate through other elements numerically. An
algorithm should be adopted to control the motions of fragmented bodies.

* Contact and Sliding Surfaces: The master node-slave node approach can be used to handle
contact and sliding surfaces commonly encountered in the study of projectile penetrations.

* Penetration of Projectiles: Discretized models and material properties of the projectiles
can be treated as separated inputs. Their motions can be calculated in the program as part of
the multiple bodies.

. 3. NUMERICAL EXAMPLES

Without going through the details, we show the results of two test problems that illustrate the
two major aspects in the development of the algorithm, namely a patch test for handling the
extremely large deformation and a numerical verification of the algorithm with the
experimental results. i

Figure 1a shows the schematic mode] of an inclined rock layer. Between two rigid blocks,
an elastic-plastic soft layer is subjected to sliding shear. Figure 1b shows the sliding
mechanism as a function of time. :

Figures 2 through 5 depict the comparison between the predicted results and the test data
for a block of dry sand induced by the pullout of a rigid anchor. The geometry, the initial
finite element mesh, and the material data of the pull-out test are taken from Dickin (1994).
They are summarized in Figure 2. Figure 3 plots the comparison between the numerical
results obtained by the Code STONEZ2D and the test data. The force-displacement curves
obtained by the numerical predictions are similar to an elastic-ideally plastic behavior. -
Including both the fragmentation and contact behaviors, the ultimate uplift force per unit
length is F = 1.21 KN/M. To include fragmentation only, the medium is expected to be
softer. We find F = 1.02 KN/M. The averaged pull-out force obtained from the-tests is F =
1.07 KN/M. In Figure 3, we also show the initial fracture and the corresponding stress
distribution in the sand medium. Figure 4 shows the progressive failure and the stress
distributions at different stages of the failure, as the anchor being pulled out. Figure 5 plots
the progressive failure pattern of the sand medium predicted by the numerical analysis.
Contacts between fragments are neglected in this particular series of calculations.
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Figure la. The schematic model of an inclined rock layer
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ABSTRACT: The stability of the high and steep slopes formed during the excavation of the
double ship-locks of the Three Gorges Hydro-Power Compiex is one of the major technical
concerns of the project, and many numerical analyses were performed over the years with
different modelling techniques. In this contribution, three-dimensional simulations of the
excavation processes of the double ship-locks were performed with both a Finite Element
Method and a Distinct Element Method. Based on a constitutive model of elasto-plastic damage
evolution and consideration of effects of bolt reinforcement on the fractured rocks, the FEM
model tried to-study the failure mechanism and deformation process of the fractured granite
rocks of the slope, considering mainly the effects of several sets of secondary fractures. The
DEM model using code 3DEC was applied to predict the possibility of large scale instabilities of
rock movements along some large scale major fault surfaces. The two codes were applied in
parallel to compare the different results by two conceptual models and the predictions indicate
that large-scale instability induced by the excavations of the double ship-lock is very small. The
long-term effects of rock/fault creeping were not considered in the analysis.

1 INTRODUCTION AND SITE GEOLOGY

The Three Gorges Project, the largest project of hydraulic engineering in the world today, is
under construction. On the left bank a five-stage double ship-lock with a total length of 1.6 km is
under construction. The widths of the two lock chambers are  m each, with a central rock
column separating them. On the two sides of the double ship-locks high and steep slopes are
formed due to excavation of a large volume of rock, with the highest point reaching 170m. The
lower parts of the slopes are the vertical walls of the lock chambers, of 50m in height. The rock
is mainly granite, containing 4 to 5 sets of secondary fractures. Superimposed on the fracture sets
are a number of large-scale major faults and veins in the region, which causes a major concern
on their effects on the overall stability of the high and steep slope. Therefore the study of the
effects of both large-scale faults/veins and secondary scale fractures sets on the slope stability is
of great importance. Figure 1 shows the distribution of the major faults and veins in the ship-lock
area and table 1 lists the geometrical properties of the secondary scale fractures sets. There is
significant weathering at the shallow depth of 0 — 25 m, moderate weathering at depth of 25 — 40
m and slight weathering at depth of 40 — 50 m. The rocks are also heavily fractured by four sets
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of non-persistent fractures and a large number of major faults and veins. All these cause complex
hydro-mechanical property variations.

The in situ stress field of the region has been extensively measured over the years and
analyzed, with different interpretations. The in situ stress field adopted for this study is given as

c,=44+001168H,0, =1.66+ 0.3039H,7,, =0.047 +0.00008 5 (D

for the horizontal stress components and the vertical components corresponds to the overburden.
Symbol H stands for the depth (m) and the unit of stress is MPa.

17 <
N
N
Y i
\WE, 17-17’ cross section
N
_\
- ]
3 1] AN
— AL AN/

|
[~
P11

(a}f

(b)
17 - b

Figure 1 Major faults and veins in the ship-lock area. The dashed lines indicate the ship-
lock boundaries. a) Plane view; b) Cross section at 17-17.

Table 1. Geometrical properties of the secondary scale fractures sets

Fracture Dip direction (%) Dip angle (°) Trace length (i)

Set Mean | Standard Mean | Standard Mean Standard
Value | deviation value | deviation value deviation

1. NEE 337 11.0 76 6.7 3.82 0.52

2. NNE 286 - 62 - 4,04 1.11

3.NNW | 258 8.4 68 i1.6 3.63 0.92

4 NWW |15 11.8 75 7.3 2.94 1.11

This paper presents prediction results from two numerical models applied to analyze the
stability of the ship-lock slopes. The first model, the 3D FEM model, considered the influence of
the 5 sets of non-penetrating fractures by means of an equivalent (smear-out) elasto-plastic
damage constitutive model, with consideration of the reinforcement effects of bolt support in the
equivalent properties. This 3D FEM computer code used was not optimal for including large
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number of major faults or veins, and their effect on the overall stability of the slopes was
investigated by analysis using a 3D DEM code 3DEC. An assumption was made that the rock
mass was a simple elasto-plastic material following a Mohr-Coulomb yield criterion. .

2 THE ELASTOPLASTIC DAMAGE CONSTITUTIVE MODEL

Assuming that the fractures in a rock mass are penny-shaped and aplying the concept by Fanella
et al. (1988), the 3-D propagation crack can be simplified to a 2-D propagation crack problem
(Fig. 2). Based on these concepts, Zhang et al. (1998) proposed the following constitutive model
for fractured rocks by the theory of elasto-plastic damage, given by

e~d __ rve—d _ od ad

Eop T “opkd Gki’ - (C:pkl + Copk! + Cop!d bkx‘ (2)
where
Ciu z—_1+v0 (640 1 +5'k5kr)_‘via"5ﬂ (3)
i Lad! i if
2E, E,
Cﬂd — 1 & k) (x)? 2G- (1 C(k) 2_ (k) (k) (k) (k) + 1 G.(1 C(k) 2 6 (kY (k)
opkl __Z{pv a [ 1( Ty ) n‘a np Ry n‘l 5 2( T s ) ( kpno n!
E, 5 (4)
+8,098® +8,0On® 4.8, nOn® _ 4P P n®p® ]}
ad 1 3 { k) _ (k)? [ (k) ., (k) _ (k) _ (k) _ (k) (k) (&)
Cou =-—2 p,a B "n, n,'n.n + By (ng +
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where Ey, vp are the elastic modulus and Poison's ratio of non-damaged rock mass respectively;
M is the number of prevailing fracture sets in a unit volume of fractured rock mass; a® is the
average radius of the kth fracture set in statistics; p® is average volume density of the kth

fracture set; ¢ and ¢ are the pressure-transmitting and shearing-transmitting coefficients of
the kth fracture set, respectively; n{* is the unit normal vector of the k-th set of fractures; .z

are the projections of the applied stress tensor along the normal and tangential directions of a
fracture plane respectively; and Gy, G are the coefficients given by Yang (1990). See Zhang et
al. (1998) for the evaluations of functions B® and B,

From the second thermodynamic principle of irreversible process, the constitutive relation of
an elastoplastic damage of the fractured rockmass, can be written, in the form of global variables,

g=Ced:G+gr )]
By derivation of the two sides of eq. (6) with respect to the virtual time, one obtains

s _ e~d e—d 2P . At sd Y
& = Ch Oyt Cp' Oy +Ef =€, +£ +€] (7N
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Figure 2 Simplification of a 3-D propagating crack to a 2-D propagating crack.

where €; is the elastic strain rate, €7 is the plastic strain rate and £¢ is the coupled damage strain

rate caused by the weakening of the rockmass in its elastic properties due to damage evolution.
By adopting a generalized orthogonal flow rule,

. emdrets 4 O
Ou Z(Cijkfd) I(Sfj_ﬂ'af ) (8)
i
the 3-D constitutive relationship of elastoplastic damage for multi-crack rockmass can be finally
written (Zhang et al., 1998)
S, = K wfy : )

where Kurs 1S the modulus tensor of elasto-plastic damage for multi-fractures rockmass, and
whose numerical evaluation cab be found in Zhang et al. (1998).

3 FORMULATION OF THE BOLT MODEL

The bolts are represented by a cylindrical damage rock-bolt element (CDRB element) to simulate
reinforcement effect of bolting. Suppose that the bolt and fractured rock within a certain range
comprise 2 CDRB element (see Fig.3a). A CDRB element is buried in a fractured rock to form a
composite element of fractured rock with bolts, referred to as the BDR element in Fig.3b.

The CDRB e¢lement is assumed as orthogonal anisotropic damage medium. The contribution
of CDRB element to the overall stiffness matrix of the system, i.e., the additional stiffness matrix
[K.Jua » can be derived according to the interpolation theory of FEM and the theorem of virtual
work, given by Zhang et al. (1998)

(K, L =INJTIK,][N] (10)
where [N] is the matrix of shape function, [K,] is the stiffness matrix of CDRB element in the

global coordinate system of x-y-z, having value of
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Figure 3 a) Cylindrical damage model of rock bolt element — the CDRM model; b} The
damage model of bolted rock element - the BDR model.

[K,]=[T){[[BY D, ][BIdv}[T] (1)

in which [7] is the stiffness conversion matrix, [B] is a geometry matrix and [D,] is the elastic
damage matrix of orthogonal anisotropy for CDRB element. They are all evaluated numerically,
see Zhang et al. (1998) for details.

4 THE 3D FEM MODEL OF THE SHIP-LOCK SLOPE

The 3-D FEM mesh of the problem is shown in Fig. 4a (Zhang et al. 1998). The top of the model
represents the original ground surface before excavation. The boundary conditions of the model
are that: i) the top surface is free; ii) the four vertical boundaries are specified with in situ
stresses according to equation (1), the bottom boundary is fixed by zero displacement in normal
directions. The model consists of 944 FEM element and 1972 nodes. The size of the model is
1200 m (length) x 200 m (width) x 462 m (height). The orientation of the model is parallel with
the flow direction of the Yangtse River (West-East). The model contains the Gate Chamber III
section of the ship-lock. Five stages of stepwise excavation procedures have been simulated, see
Fig. 4b. The level which each excavation steps reached in the simulations are 170 m (Step 1),
155 m (Step 2), 140 m (Step 3), 125 m (Step 4) and 92.5 m (Step 5), respectively.

The efects of the four non-persistent fracture sets, NEE, NNE, NNW, NWW, were considered
by the FEM model in the constitutive parameters for the fractured rocks. The effect of bolting
was considered in the FEM model for two design options: i) 5~8m in length for the inclined
slope with a spacing of 3 m x 3 m, and ii) 10~16m in length for vertical walls or middle bulk pier
with a spacing of 2.5m x 2 m. Tables 2 and 3 list all mechanical properties of rocks, fractures and
bolts used by the FEM model.
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Figure 4 The 3D view of the FEM model (a) and the 5 excavation steps (b).

Table 2a. Mechanical properties of different materials

Type E (GPa) \ Tan(¢) C (MPa)

) Strongly weathered 0.1 0.35 0.7 0.1
Rock Moderately weathered 1.0 0.3 1.0 0.35

Slightly weathered 15 . 024 1.3 1.0
No weathering 40 0.22 1.8 1.8
Bolt (Steel) 210 0.2 - -
Table 2b. Mechanical properties of rock fractures

Fracture Kn (MPa/m) Ks (MPa/m) C (MPa) Tan (¢)

Set 1 25 10 0.12 0.5

Set 2 25 10 0.12 0.5

Set 3 75 30 0.2 0.6

Set 4 75 30 0.2 0.6

5 THE 3D DEM MODEL

The size of the DEM model is 1000x350x200m in three orthogonal directions x, y and z,
respectively, with the positive y-axis pointing upward, and z-axis along the downstream of the
Yangtse River, and x-axis across the Yangtse River, thus forming a left-hand co-ordinate system.
The model incorporates the following structures: 1) five veins: Ex, Buioo1, Buicoss Butoos Buioos; 2)
five faults: Fg, Fage, Foo3, Fa29, Fiooo.

The mean widths of veins were considered in the model (varying between 10 ~ 20m); but the
widths of faults were ignored. These structural features, together with artificial discontinuities
necessary for defining the stope and ship lock geometry, cut the whole problem domain into 609
blocks, which was further discretized by 18322 tetrahedral finite difference elements.

The gradual decreasing topographic heights of the ground surface was approximated by a
dipping plane, starting from the exposure of the Ex vein and downstream. The slope steps and
ship lock were created according to the design figures, see Fig. 5.

The boundary conditions of the DEM model are the same as that of the FEM model. The
initial stress field according to equation (1) was first assigned into every elements of the model
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(a) a 3D View of the DEM model. b) Simulated excavation steps

Figure 5 Geometry and excavation steps of the DEM model (excavated volume hidden).

directly according to their depth, and the model was relaxed under the boundary stresses until an
equilibrium state was reached. Excavation is simulated by removing the blocks occupying the
rock volumes for the designated excavation steps in the model. This will then create an
unbalanced net force which was then relaxed again by a large number of small time steps until a
new equilibrium state was reached (i.e. the net unbalanced forces created by removing the
concerned blocks in the model becomes negligible). In the DEM model the excavation were
‘performed by ten steps (Fig. 5b): 1) 250 - 230 m; 2) 230 m - 215 m; 3) 215 m - 200 m; 4) 200 m
-185m; 5) 185 m- 170 m; 6) 170 m - 155m; 7) 155 m - 140m; 8) 140 m - 125m; 9) 125 m -
112.9m; 10) 112.9 m - 92.5m. The mechanical parameters used in the DEM model are the same
as that in the FEM model, with the exception that no bolt and damage evolution were considered
in the DEM analysis.

6 RESULTS AND DISCUSSIONS
6.1 Displacement

Figure 6 compares the total displacement magnitudes at four monitoring points (1969, 1785,
1751 and 1707, as shown in Fig. 6a), after the excavation reached the depth of 80 m (at the end
of Step 1 in the FEM model and Step 5 in the DEM model). It seems that the predicted and
measured data have reasonably acceptable agreements.

After the validating of the numerical models by the above measured data, the simulations were
further performed to predict the maximum accumulated total displacements in the model to see if
any large scale rock movement may occur along one of the major faults or veins. Figure 7 shows
the accumulated maximum displacement magnitudes at the end of the excavation by both DEM
and FEM models. The DEM results show that although the maximum displacement may increase
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Figure 6 Measured and computed total displacement at four monitoring points. (a)
The locations of the 4 points in the 20-20" cross-section. (b) FEM and DEM
results, compared with measured data.
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Figure 7 Maximum total displacement versus excavation depth.

with increase of the excavation depth its increases is steady and proportional to the excavated
rock volume. The maximum displacement decreases after the 150 m of excavation depth, when
starting excavating the ship-lock chambers, because the excavated volume becomes much
smaller. The DEM model generates consistently larger displacement than its FEM counterpart,
due perhaps to its accumulated large deformation algorithms.

In the DEM model, the maximum displacement appears basically at the center of the
excavation, roughly along the central line of the model, and generally at the floor of the
excavated area, as a floor heaving. The downwards displacements of the slopes are generally
much smaller than that of the floor heaving, usually only 50-60% of the maximum total
displacement. No excessive shear displacement along any of the major fault or vein was found in
the DEM results. The calculated maximum horizontal shear displacement is about 10.5mm at the
end of excavation of Step 8 at 125m, along the Ex and Buioos veins. The shear displacement
magnitude is much less than that of the total displacement and will not be significant enough to
cause failure. In the vertical direction, the calculated shear displacement along major faults or
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veins of the slopes is also not significant. Only on the-central column dividing the two ship locks,
a block appears to have a shear displacement of 18.5mm along vein Brioos, passing through the

centra] column (Fig.8). This shear displacement is at the same order of magnitude as the total
displacement of the block.
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Figure 8 Shear displacements along a major fault on a vertical cross section along 17—17
line.

6.2 Stresses and failure zones

The stress tensors are dominated by the horizontal stress relive near the excavated slope surfaces
and ship lock boundaries. The stress distribution is, however, affected by the non-uniform
distribution of the element sizes. Figure 9 shows the plasticity zone distribution calculated by the
FEM model, before and after the reinforcement by bolts, with the latter much smaller than the
former, showing significant improvement of the rock mass integrity due to bolting.

(a) {b)

Figure 9 Plasticity zone (Black area) distribution before and after the bolting by FEM
mdoel. a) Before bolting; b) after bolting.
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7 CONCLUSIONS

The computed results by FEM and DEM lead to the following conclusions:

(1) The displacements from numerical computation are, in general, in reasonably acceptable
agreements compared with measured data at early excavation stage.

(2) The numerical predictions to the complete excavation of the ship-lock slope and chambers
show no large scale sliding failures of rock along any one of the major faults or veins. This
may, however, change in practice due to the models’ limits on the number of the faults and
veins which can be included in the model due to limit in computing resources, and the limit
in understanding the mechanical behaviour of the large scale faults or veins. The scale effect
may also play a significant role that cannot be considered in the current FEM or DEM
models.

(3) The FEM results show that the rock-bolt supporting can increase the integraty and bearing
capacity of the surrounding rock mass and decrease the damage evolution zone
significantly.

(4) From the DEM computation, although there is no indication that a large scale instability
may occur in the high and steep slopes of double ship-lock area, there are possibilities of
smaller scale failures of wedge sliding type on the central column, or even at some local
slope surfaces. Therefore proper local reinforcement measures should be considered.
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ABSTRACT: A second-order manifold method has been developed and is described. By means
of the manifold method and a singular boundary clement method proposed by the author, the
failure process of a structure can be numerically analyzed. Mohr-Coulomb’s law is employed as a
criterion for new crack initiation, and maximum circumferential stress theory is used as criterion
for the first and mixed mode (opening-shearing and closing-shearing) propagation of existing
cracks. Comparison of the computed stress intensity factor with results obtained via the
collocation method demonstrates the high predictive accuracy of the present method. Examples
of our present method are presented.

1. INTRODUCTION

Several numerical methods are available for simulating crack propagation and the failure of
structures with discontinuities. These methods include the Finite Element Method (FEM), the
Boundary Element Method (BEM), the Discrete Element Method (DEM) and the Discontinuous
Displacement Analysis (DDA). Although the FEM and the BEM using fine meshes with special
elements can model crack propagation and the failure of structures, it is difficult to describe the
discontinuities after cracks begin propagating, and small deformation restrictions are usually
needed. Also the number of cracks that can be handled is limited. Therefore the behavior of
failed structures and problems involving many discontinuities cannot be readily analyzed. The
DEM and DDA can be utilized to model the behavior of discontinuities or block systems, but the
stress distribution inside the blocks cannot be calculated properly, hence the propagation of
cracks through the blocks cannot be well modeled.

Proposed by Shi (1991), the Manifold Method (MM) is a new numerical tool for solving
problems involving both continuous and discontinuous media. By introducing the concept of a
cover and two sets of meshes, the manifold method combines the advantages of the FEM and
DDA. It can deal with not only discontinuities, contact, large scale deformation and block
movement as does the DDA, but also the stress distribution within each block as accurately as
does the FEM.

To simulate crack initiation and propagation by the manifold method, Zhang et al
(1997,1998) have extended the original MM by using the Mohr-Coulomb’s law to determine the
fracture criterion. But a misevaluation may occur on account of the stress concentration near the
crack tip. Because the stress at the crack tip is always infinite even for a small load (in the brittle
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fracture problem), the crack may continue propagating indefinitely when the meshes are fine
enough if the Mohr-Coulomb’s criterion is utilized.

In this paper we propose a method that combines the second order MM and the singular BEM
to simulate crack initiation and subsequent propagation. The stress and displacement fields are
calculated via the second order MM; the Stress Intensity Factor (SIF) at the crack tip is computed
using the singular BEM. The Mohr-Coulomb’s fracture criterion is only used to locate the initial
crack; for analyzing its subsequent propagation the SIF is the criterion used. Numerical examples
are given to illustrate application of this method.

The numerical procedure for simulating crack propagation is as follows: Firstly, calculate the
displacement and stresses of a structure {Fig. 1 (a)} with discontinuities using the second order
manifold method. Secondly, specify a sub-region including at least one crack tip as a specific
problem, solve this problem using the singular BEM. In doing this, the displacements obtained by
manifold method along the
boundary of sub-region is taken
as the restraint conditions, and
the traction free condition at the
crack surface is considered {Fig.
1 (b)}. Finally, calculate the SIF
at the crack tip, judge the crack
to be propagating or not, reform
the mathematical and physical
meshes as needed and recalculate, (a) Structure with discontinuities. (b) Sub-region containing a crack.

and then move to the next region. Figure 1. Structure containing cracks and an enlarged
sub-region.

2. STRUCTURE ANALYSIS BY MANIFOLD METHOD

2.1 Basic concepts of MM

The manifold method uses the concept of cover and two sets of meshes. Cover is used to define
the local function that will be described in the next section. Every cover overlays a fixed area,
the size and shape of this area can be chosen arbitrarily depending on the problem to be solved.
The covers overlap one another and overlay the entire physical domain.

The two sets of meshes are the physical meshes and mathematical meshes. The physical
meshes describe the physical domain (including boundaries, joints and the interfaces between
blocks) and define the integration arcas. The mathematical meshes, on the other hand, are
enclosed lines more or less arbitrarily selected for the problem. The areas enclosed by the
mathematical meshes are called the mathematical covers, on which the space function is buiit.

For each cover, a local function can be defined, and these local functions can be combined
using a weighting function to form a global function that defines the displacement and stress in
the whole region. If the local cover function x;(x,y) is defined for a physical cover U, , the global
function u(x,y) for the whole physical cover system can be expressed as:

u(x,y)=§;wi(x,y)u,-(x,y) u®y) (%)Y, 1)

where w, (x, y) is weight function defined as:

w,(x,y)=20 (x,y)EU,, w,(x,)=0 (x,yU,, with Za,w,.=1.
(xy )&
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The simultaneous equilibrium equation takes the form:

Ll Zichixdlian)-Z o} lar], i u,-cx,y)={jf}={n,.} @

i

2
At

where Atis a time step, [M] is the inertia matrix, [C] is the viscosity matrix, [K] is the global
stiffness matrix (including element stiffness, penetration of the contact point and the stiffness of
the fixed point), {fAD} is the increment of displacement, {5} is the velocity vector, {AF} is the
load increment including initial stress, body force, point load, bonding force and penetration

force of contact. A detailed discussion of Equation (2) can be found in papers reported by Shi(Shi
1991).

With the cover concept and the definitions of local and global functions, the MM can model a
wide variety of continuous and discontinuous structures. The FEM and DDA can be regarded as
special cases of it.

2.2 Second-order MM

The original first-order MM uses the constant cover displacement u,(x,y) and the linear weight
function w(x,y) to construct the global displacement function. Use of a linear global function
reduces the accuracy of the MM in simulating crack propagation. To increase the predictive
accuracy a second-order MM is introduced here by constructing a second-order global function.

A second-order displacement function can be built in either of two ways: (a) the linear weight
function w(x,y) and the linear cover function #,(x,y)(Chen et al 1997), (b) the second-order
weight function wy(x,y) and the constant cover function y(x,y). We follow the latter one here
and consider the six node finite clements forming the mathematical meshes. The second-order
weight function is:

(=12-6). ®)

The global function of second-order is Equation (3) together with Equation (1) for the constant
local function u(x,y).

A computational example is given here to compare the predictive performance of the original
MM and our second-order MM. Figure 2(a) shows a 2mx0.5m cantilever loaded by P = 980 kN.
The Young’s modulus and Poisson’s ratio for the cantilever are 98 MPa and 0.24, respectively.
Computed displacements at points A, B and C are compared with the analytical solutions in Table
1. The calculation meshes and the deformations of the cantilever by the first-order MM and the
second-order MM are shown in Figure 2{(b)-(d)}. The results confirm a drastic improvement in
predictive accuracy with the second order MM.

w(6y)=fq+ izx'*'ﬁ's)""f:":xz +f,-5xy+f,-5y"

Table 1. Comparison of computed displacements with analytical solutions.

Method Amalytical First Order MM | Second Order MM
Point (mm) {mm) (mm)

A 0 0 0

B 84 23 844

C 264 85 266.8
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Figure 2. Deformation of cantilever by the Manifold Method.

3. SUB-REGION ANALYSIS USING SINGULAR BEM

The sub-region with a crack {Fig. 1(b)} and the known boundary displacement E(r_.'), ;(n) can

be regarded as a boundary value problem and can be solved by an indirect boundary element
method. In order to form the integral equations, necessary for solving the problem, two kinds of
fundamental solutions are required.

3.1 Static mechanical fundamental solution for an infinite continuous region

When a complex point force . f=*%, is applied at point z=s on ry
2r(l+x)
a complex plane (Fig. 3), the stresses and displacements in the x,~y, ) Xg
coordinate system which makes an angle o with the x direction at 0(2)
point z can be obtained from the Kelvin solution (Zhang et al 1992): s _AF,
% g .
_ (e 0 0 ]

o0 _ir'® —Q{ 1 e _1 ] D _1 e .(_Z )zl | (s.0)

z=s z=s Z=s E-9) Figure 3. Infinite plane
o'(l)xl +0'®, =20 1 0 1 @) with point load at (s, 0).

zZ—5 Z—-5

RO ) _f_ _ _ _ HES
WAy = 2#{ xQ[ln(z s)+Inz S)+1]+Q2-s}

where u is the shear modulus, x = 3-4v for the plane strain and x = (3-v)/(1+v) for the plane
stress.
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3.2 Fundamental solution of a point force on crack surface

y
In order to fix the singularity at the crack tip, a singular
fundamental solution should be used. For an infinite region n
with a crack of length 2a subjected to a paired point force P =
F,iF, at z=s, as shown in Figure 4, thc stresses and 4_5__,ng__§
displacements in the x,—y, coordinate system can be obtained O—FT
by solving the Cauchy problem (Zhang et al 1996): L 2  E
0"y, it Mgy, = PC(2,4,5,a) + PD(2,4,5,Q) Figure 4. Infinite plane with crack,
T3 P and the point load P = F-iF,
a.(z)x’ bo'® o p¥E S e } (5)
T (z-sWz* - a?

PRI CN P[fl(z a,s) - kf,(z,a S)]
i % +P(z—z)\fa -5 G(za 5)

where:

(za.5) = (z—s)m
fl(z,a,s)=i[ln(\/zz‘“2 +iva® - s° s ]—1n(1+—~—£—-—”
| z— 8 2 _ g2 52 2

a’- -a
C(z,a,5,a) = —i\/az — 5 [G’(z,a,s) +e™ G(z,a,a)]
D(z,a,s,0) = ——'\/

G(z a,s)(1 - e %)

+e (2~ DG (z,a a)

3.3 Boundary integral equations

Returning to the sub-region problem shown in Figure 1(b), we assume a distributed fictitious
force Q(s) is applied to the boundary I" and the fictitious force P(s) acts on the crack surface.
The stresses and displacements at point z in the sub-region can be defined by integrating

Equations (4) and (5):
1(50) +i4(5,0) = .rf (Ol 2.0 +iy [0, zalfis+ j'{'ﬁ"’)[P(S):z,a]+iti"z’[P(S),z,a]}15
0, (z0)+0, (50)= [{ax,"‘)lo(sxz,a] +0, o) zalfis }h.'“‘”[P(sxa o+, ®P(s)zllts
%, @0 -7, (50)= I{o,, lo)sd-iz,,, Olots)zals+ }lo,l"z’ [P0z, PPzl

Suppose the displacement on boundary I' calculated by the MM is #%(n) +iv(n), where
u(n) and V(z) denote the normal and tangential displacements at point n on I'. Let point z in
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the first formula of Equation (6) approach the point 7% on the boundary T, ie.,
u(z) +iv(z)) ..., =u(n)+iv(n), an integral equation that satisfies the known displacement
condition on I" can be obtained:

[ lown 8,1+ ko) 8, ]}is+} b @lPE)n 8, ]+ iv OB, 8, Ms i) + ). (72)

Another integral equation can be reached by using the crack surface condition. It is different
from the mode of fracture problem.

For first and opening-shearing mode fracture problem, the traction free condition on the crack
surface both in normal and tangential direction should be satisfied. The equation can be obtained
by letting point z in the third formula of Equation (6) approach the point & on the crack surface in
a similar way with formula (7a) and let the normal and shear stress on crack surface to be zero as:

P&+ [, 0658 ]-i7,,, P15 8, b5+ [, I8 8,]-ir,, P68, 50 +i0 (D)

For the closing-shearing problem, the normal displacement of upper and lower crack surface
should be the same, the traction free condition should be satisfied only in tangential direction as:

F.&+ Re{ f T, ey [Fx ()&, 8 gs]‘i—‘ + j‘rxlh "2 [Fx (s).&, Bs, ]ds} =0 (7c)

where B, -a, —a,.

Solving Equation (7) by the boundary element method yields solutions for O(s) and P(s). The
stress intensity factors K; and K}, at the crack tip can then be calculated from Equation (8) (Zhang

et al. 1992):
) 1 4 a+s
KI—LKII=—JJI_afP(s)1/a_sds. (8)

In calculating the SIF using a traditional numerical method like the FEM, fine meshes near
the crack tip are usually necessary in order to capture the stress concentration there. But actually
the singular area is restrained to a small region near the crack tip, and its influences on the stress
and displacement in the far area are not significant. In the present method, the stress and
displacement are firstly calculated by the second-order manifold method and their precision far
from the crack tip can be ensured. The SIF is computed by the singular BEM based on the stress
and displacement obtained. Therefore higher accuracy in the calculation of the SIF can be
ensured even when relatively coarse meshes are used near the crack tip.

In order to examine the accuracy of the method, we compute the SIF of the edge and central
cracks in a rectangular plate here. The results are compared with the collocation method
(Marukami 1987). Figure 5 shows the meshes used in the calculation. The results are given in
Figure 6. It can be seen that the SIF calculated by the present method agrees quite well with that
obtained via the collocation method. For the central crack with a/w = 0.25 the error is less than
5.5% although only two elements are set on the crack. Further calculation shows that the error
reduces to less than 0.5% if four elements are used for the crack.
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Figure 5. Meshes used
in the analysis. (a) SIF of an edge crack. (b) SIF of a central crack.
Figure 6. SIF of cracks in rectangular plate.

4. CRACK MODELING

Manifold method provides an easier way to simulate crack propagation. Crack can propagates in
any direction independent of the meshes. When a crack growths, the work needed to be done is
only add a new cover to cover system and refresh the physical mesh by adding the new crack to
boundary lines.

Different criteria are used in the new crack initiation and the growth of existing cracks.
Fracture criteria using the SIF can only be used for existing cracks. For the initiation of new
cracks, a stress-based criterion should be considered. In this paper, Mohr-Coulomb’s law with
three parameters is taken as the failure criterion for new cracks. It is assumed that new cracks
start appearing if: (a) the first principle stress is larger than the tensile strength of the material, or
(b) the maximum shear stress is larger than the shear strength of the material. Take o; and o, to
indicate the first and third principal stresses, the failure criterion can then be expressed as:

Tensile failore: o =1.
Shearing failure : ——@=C if (05_-120;’.,)>0 and0<g <71, ®)

(‘7‘ ‘03)

=ccos¢-@sin¢ if %—@<o and0<a <I,,

where T}, is the tension strength of the material, C is the cohesion and ¢ is the friction angle.

For existing cracks, the fracture toughness K. of material is taken as the fracture criterion,
and the maximum circumferential stress theory (Erdogan et al 1963)is adopted to determine the
direction of crack growth measured from the current crack line 8 :

K,sin@+ K, (3cosf -1)=0. (10)
The fracture criterion for mix mode problem takes the form as:
6, 6, 3 .
cos;i’- (K, cos’ ?" -5 Knsing) =K . (11)
The present research assumes no energy loss in the fracture process, that is, the total energy of
the cover before fracture has to equal to the energy of the two covers after the fracture. In order to

ensure energy conservation during fracture, new-formed covers are forced to have the same
velocity, stresses and coordinate as the original ones.
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5. APPLICATION EXAMPLES Table 2. Material properties and
calculation conditions.

5.1 Failure of point-loaded block with edge crack Elastic Modulus 19600 MPa
Poisson’s _ Ratio 0.24

This example simulates crack propagation in a 2mx2m Fracture Toughness | 490 N/em®?

block with a 1m long crack. A load of H = 980 kN acts | Unit Mass 23.52kN/m’

horizontally. Figure 7(a) shows a diagram of the block | Tension Strength T, | 0.98 MPa

and load. The material properties and calculation Cohesion C 2.94 MPa

conditions are listed in Table 2. Friction Angle ¢ 30 depree

Figure 7 depicts the principal stress field and the Calculation Mode | Static

crack propagation process in the block. In the Penalty (kKN/m) 4900000000

calculation, the load H is divided into 10 sequential

steps. With each step, an additional 98 kN load is added. For the first and second (loading) steps,

the stresses in the block and the SIF at the crack tip are not large enough to initiate new cracks

or propagate existing cracks. At the third step, the SIF at the crack tip reaches the fracture

criterion {Equation (11)}. The crack starts propagating {Fig. 7(b)} in a direction that is about 70

degrees with the horizontal. The crack continues propagating and changes its propagation
. direction and finally penetrates the whole block {Fig. 7{(c) and (d)]}.
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(2) shape and load. (b) beginning of propagation. (c) crack growth (d) crack penetration.
Figure 7. Crack propagation in block.

5.2 Failure of bending beam

le—t2m PO tam

A beam of 3mx1m with two vertical loads P = 490 VAYAYAVAVAVAVAVAVAYAVAVAV, ).r\' KA,
kN at points 0.3m far from the central line of its (>(,>< SOOI
upper surface. A crack of 0.125m long is pre-made at )’\,‘(1\') GOK X\}{}(’){ XHAAA g
the central of the lower surface (Sece Fig. 8). The 4},!<y\ YAVA%a / /\A x,\,\/< -
Young’s modulus and Poisson’s ratio of the beam are XAt ’\}‘\)’\If O ’\}’\}’\/
19600 MPa and 0.2 respectively. The unit weight of 4 20m 5
material is 19.6 kN/m’. Other parameters and [ >

computational conditions are the same as those used Figure 8. Four-point bending beam.

in the previous example. The static mode is also used

in this example. The load P is subdivided into four loading steps. The principal stress distribution,

the crack propagation and the displacement of the beam at loading step 2 are shown in Figure 9.
Figure 9 shows that the stress is concentrated near the two restraint points, the loading points

and the crack tip. At the second (loading) step, the SIF reaches the failure criterion and the crack

starts to growth {Fig. 9 (a)}. The crack propagates until the beam ruptures {Fig. 9(0)} The

direction of crack propagation is nearly along the vertical before the length of crack is less than

two third of the depth of beam. Cataclastic faﬂure occurs on the middle of upper surface after the

crack penctrates the beam {Fig. 9(d)}.
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(¢} Crack penetration. (d) Beam deformation.
Figure 9. Principal stress distribution and crack propagation three point bending beam.

3.3 Failure of structure and the movement of blocks

Figure 10 shows another computational example of the failure of a
structure and the movement of blocks. The structure is loaded by a
horizontal point load P = 196 kN. The load P is subdivided into
four loading steps for the calculation. At the third loading step, the
crack begins to form at the left corner {Fig. 11(a)} and propagates .
into the block until the structure is broken into two [Fig. 11{(b)- Figure 10. Mesh and
(d)}]. The upper block starts to move with a continued application load

of the load {Fig. 11(¢)}.
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Figure 11. Failure of structure and movement of block

3.4 Example of closing-shearing problem

Figure 12 gives an example to show the application to closing-shearing problem. A rectangle
sample with a crack, which lays 45° with horizontal, is shown in Figure 12 (a). The bottom is
fixed and the top is forced to displace downward. The material properties are also listed in Table
2. Because the two surface of original crack is closed together and can transfer normal
compression stress, the first mode SIF K is zero, the crack begins to propagate as shown in
Figure 12(b). The crack gradually growths until it penetrates the whole sample {Fig. 12 (c), (d)},
and new cracks occur at other place. At last the sample is broken by cracks almost parallel to the
direction of loading. This kind of failure pattern agrees with compression test of rock or concrete
(Charles Jaeger 1972).
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Figure 12. Compression failure of cample with crack.

6. CONCLUSION

The second-order manifold method can be used to calculate the displacement and stresses of
structure with discontinuities accurately. Together with singular BEM and fracture theory, the SIF
at crack tips can be predicted precisely and the crack propagation can be well simulated.
Manifold method is less mesh-dependant than the FEM, the simulated crack growth is
independent of mesh. Given examples have demonstrated the versatility of this method for
simulating first and mixed mode fracture problem, and can also be used in closing-shearing
fracture problem.
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ABSTRACT: In rock concrete like materials, generally there appear fractures and fissures of
different sizes, and their failures under stress undergo initiations, propagation, nucleation and
fracture. To trace crack behaviors in rock mass, manifold and element free methods are coupled
and used. Afore the crack tips, a process zone is presented, and the cracks propagate under the
fracture criterion. In the paper, MM coupled with EFM crack propagation analysis is presented.

1 INTRODUCTION

Crack propagation problems are vital to the structure analysis such as in arch dams, slopes, etc.
Rock cracks, generally cause failure in the abutments of dams. So fare, no valid measures can be
adopted for analyzing crack propagation.

FEM has the difficulties in mesh regeneration. It is far more time consuming and expensive
task than assembly and solution of finite element equation. To simulate crack propagation, mesh
regeneration is required for preparation of data. The authors have studied diffused element
method, to calculate the crack propagation. The interpolation functions are polynomials which
are fitted to the nodal values by moving least-square approximations, :

The method could be used to simulate the crack tip stress field and incorporate an interface
prior to the crack tips. To couple with diffused element ,the manifold method is mtroduced to
modify the discontinuous interfaces and coalescence of fissures.

Manifold method coupled with diffused element method may be effectively used to analyze
progressive failure during rock failure involving discontinuous and continuous media. It may be
widely used in solving geotechnique problems.

In this paper, crack propagation in rock-like material is described and novel technique is
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presented.

2 MANIFOLD AND DIFFUSED ELEMENT METHOD COUPLED IN APPLICATION

In the domain £2 , deformation function u(x) is assumed, where point
coordinate : x = (x,y)"

u(x) has n nodal values in the field:
_ ulx)=u, i=12-- /7] : (1)
An approximate function of u(x) is denoted as

Gulx)= LB (2, = P () (2 @

Where afx) isa m dimension coefficient ,P(x), m dimension basic vectors
By moving least squares method formula (2) may be written as

Gu(x)= gn,. (x) 3
w()= 250 4708,

A(x) = Zw,. (x)P(x,.)PT(x,.) (‘?)
B(x) = [w,. (x)P(x,),-w,(x)P(x, )]

Where wi(x) are weighted functions at point (x y) .
From (4) , differentiation of shape functions are given as:

My = Z{lek[A"’B]ﬁ + Pl 4B+ 47B.,] } (5)

Ji

A7 =—-A7"4,, 47" (6)

3 WEIGHTED FUNCTIONS

In the domain ,manifold covers overlape together and weighted coefficients of cover functions,
are given below

k
2 2
r2 [ 7
—= | ]-= J rEr.
WAF )= 2 2.2 2 P="mi 7
x(r) ¥+ EF, g )
0 r: > rml'
Where r,= |x — x,| define the influence domain of the cover function .

From variational principle,
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or =0
Where T=R, +7, +%;+7,

Z, = L%era de

7o, = | 870, d02 ®

—jd Fdo- Id”tdr Zaﬂ‘( T(x:)

w-fu(x),E( ). (x) are denoted with volume force, surface force and concentrated forces
respectively.

Finally k,=f is established. The coupled MM, and diffused element methods are
implemented as: .

(1) To establish M,M mesh

(2) Any crack is traced by diffused element method and discriminated by fracture criterion
(3) Coalescence of cracks form an interface of MM.

4 SIMULATION OF DISCONTINOUS INTERFACE.

The fundamental theory about diffuse element method has been given in the paper[1]. Here
elucidate the mathematics formation of discontinuous interface.

Figl Discontinuous interface
As shown in Fig(1), in domain (2 , the two discontinuous interfaces denoted with facel and
face2. Assuming local axis s and global axis x-y, k,, , are given to the point as shear stiffness
and normal stiffness, which make contributions to the global stiffness of the structure.
Shear stress and normal stress are shown as following equations
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| [k 04 -] [au, 9

o, 10 & uf)_uﬁu_‘f’ Ju 9)
On assuming (x, v)" as deformation at joint point ,then

du, | | cos@ sin@ Au] . Au '

fu, | |-sind cosf| Av| " | av (10)

Au u(-?) u(U

= — - f2) _ aytl) .
L“J L”’ ] L“) (W -N)d (11)

Where d denotes deformation tensor, N shape function. The potential energy from the

joint is
k. 0| Au
— il 5 £
T, = _[_,[Aus Au, {0 kn][dujds
=4 [a" (N - NV TTPTT (N N d.d
Let A=T'PT  then

(12)

or,=5d" [N AN + N AN — NOT AN - N AN )ds - d
The stiffness contribution made by %,, k, are given as below.
N0 an(Pas = K,
[V anPas = K,
—LN{”T AN s = K,
- [NV aN(Vds = K,

For discontinuous interface or cracks, whether they are driven to propagate by fracture forces,
Mothr-Coulomb criterion is used to make investigation:
Tensile failure ¢ > 0 k,=0k =0

(13)
Shear failure 7, >0 k. =0

5 FRACTURE DISCRIMINATION AND CRACK

Here the criterion for fracture: is implemented as maximum peripheral tensile stress criterion. It
includes:

(D)Initiation of fracture
K, =§cos%[K, (I +cos6)~ 3Ky sin@]z K. (14)
(2)Fracture Orientation
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K, sin.9+KH(3cos.9—])=0

15
K, cos§(3cos0— 1) - Ky sin&(9cosf+5)>0 (13)

6 CASE STUDY

As shown in Fig(2), in square plate with side length L =10 m a crack emerged in its center ; its
lengthis 0.5 m. H=0.5m # = 1.0,

Fig 2. Crack in plate

As in Fig3(a),3(b),3(c)there are three samples:

3(a) with coarse mathematics covers and 403 nodes

3(b) with dense mathematics covers and 1605 nodes
3(c) with radial mathematics covers and 1655 nodes

Here basic functions of one order are adopted. These sample are applied by both tensile and
compressive stresses,
For tensile condition , at the crack tip

K, = Fsin20~nma
Ky = Fsin6 cos ONrna

For compressive stress condition
K, =0

0
K. =
m {Fsincosﬁ - (Fsz‘nz AN

287



Fig 3. Crack propagation

After computation the data for fracture intensity factors are present in Tab 1.

Table 1
Unit: N/ m*?
Loading condition Tensile stress  F=1000 Pa
Node distribution Fig3(a) Fig3(b) Fig3(c)
Element free method K, Ky K Ky K, K;
calculation value 1143 613 1115 556 1115 542
Relative error 77% | 157% | 52% | 49% | 52% | 23%
Loading condition Shear stress F= —1000 Pa
Node distribution Fig3(a) Fig3(b) Fig3(c)
Element free method K, Ky K Ky K, Ky
calculation value —208 | —359 —96 —307 —27 —286
Relative error — 35.5% — 15.8% — 7.9%

In Tab 1, the accuracy from Fig(3), is presented. The mesh should be regenerate at the fracture
tip, in order to trace the crack propagate

The crack propagations are shown as in Fig(4). As shown in 4(a), tensile load F = 1000 Pa, P
=0,in 4(b) Varies with crack length.
For Fig 4(c), 4(d), 4(¢) F= —1000Pa,P=100Pa. 0. —100Pa. And K, varies with Len

and could be seen in Fig(4£).
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F=1000Pa, P=0 ' : ' F=— 1000Pa, P=100Pa

(c)

~EEBSEEFERES

F=- 1000P2, P=0

(d) (e)

ﬁlgh 4, Crack propagation
7 CONCLUSIONS

The MM coupled with diffused element method (Element Free method) to trace crack
propagation were verified effectively. They are much simpler in mesh generation, and have high
accuracy. The authors introduce several samples in the paper to verify their correctness. The
method may be used in a popular way in Engineering.
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