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Preface

The theme of this 7" International Conference on Analysis of Discontinuous Deformation, Stability
Analyses using Discontinuous Methods, goes to the heart of the class of problems that provide some of
the greatest challenges in the analysis of rock masses, namely the kinematics of deformations along
discontinuities. These problems arise in the analyses of cuts and excavations, tunnels and underground
openings, and natural slopes and require the ability to analyze and identify both the potential for failure
and the failure mechanism.

In this context the introduction of the Discontinuous Deformation Analysis in Dr. Shi’s dissertation in
1988 opened new possibilities for rapid and cost-effective visualization and analysis of the
deformation of discontinuous media. It was a pleasure and privilege for me to have been a witness to
this beginning. Since its introduction, DDA has evolved from the original 2-D formulation to a
sophisticated 3-D analysis technique and, as the papers in these proceedings attest, it has been adapted
for use in a wide range of very challenging applications. More importantly, the method has proved
useful both as an advanced research tool as well as a practical engineering analysis tool, and its use has
spread throughout the international rock mechanics community.

This conference would not have been possible without the efforts of Dr. Mary MacLaughlin, Dr. John
Tinucci and Dr. Gen-hua Shi, who worked tirelessly on planning and organizing of the conference in
this beautiful venue. We are also very grateful to the sponsors: Geolabs, Inc., The University of
Hawaii, and the American Rock Mechanics Association. Finally, we would like to thank the authors
of the papers for their contributions and participation.

Nicholas Sitar

Conference and Technical Program Co-Chair
UC Berkeley

November 2005
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Producing Joint Polygons, Cutting Rock Blocks and Finding
Removable Blocks for General Free Surfaces Using 3-D DDA

Gen-hua Shi
DDA Company, Belmont, California, USA

ABSTRACT: This paper contributes to the field of knowledge on joint rock mass behavior by
demonstrating the relationship between joint spacing and length in forming blocks. Based on the
joint length and joint spacing, this paper describes a process of statistically generating finite joint
polygons in 3-d space. The joint polygons then cut different types of rock block systems. If the
ratio of joint length divided by joint spacing is less than 10, the rock mass is likely connected and
stable. If this joint length ratio is greater than 10, the rock is likely to be blocky and removable
blocks should be found.

The paper also presents an algorithm for finding all removable blocks along any given moving
direction. The rock mass boundary can be any excavated and natural free surfaces. The algorithm
works for both joint sets and for any joint system where each joint has its own direction. This is
an application of polygon cutting code DC of 3-d DDA.

1. THREE DIMENSIONAL JOINTS

The geometric information of joints is represented by geological map or joint map. Joint maps
are joint trace maps. The joint trace maps are the cross-section of the three dimensional joint
polygons or joint discs. In order to form three dimensional block systems, three dimensional joint
systems are needed.

1.1. Joint Polygons

In order to simulate the joint polygons for each joint set, the average joint polygon ‘length’ is
needed. In most cases, however, the average joint length can be represented by the joint trace
length since there is very little information which can be offered about the extension of the joints
beyond the rock surface back into the rock mass. The mathematical relation of the joint trace
length and joint polygon length is studied here in this paper.

The real shapes of three dimensional joints are complex polygons. Mathematically speaking any
complex shape can be represented by polygons. The joint polygons may be complex and
variable. However, very limited information can be given about the joint polygon shapes from
joint trace maps. The joint polygons are often to be simplified as discs with different diameters,
different locations and different directions. This is a popular choice.

1.2.  Representation of Joint Polygons

Assume the horizontal tectonic force is the main factor of forming the rock fractures. In this
paper, the joint polygons are simplified as squares where the edges are parallel to joint dip
direction and joint strike direction respectively.

However, using the joint squares to compute blocks, the joint squares are divided to triangles.
The actual input joint shapes of this block computation code DC of 3-d DDA are triangle
combinations or general polygons. Therefore the joint squares can be change to general joint
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polygons if more joint shape information can be obtain in the future. The block computation
code still works without any modification.

1.3. Joint Trace Length and Joint Disc Diameter
The simplest representation of a joint in 3-d space is a disc. Denote the average joint trace length
of a joint set as L, . Denote the joint disc diameter as D . The edge length of the circumscribed

square of joint disc is D . The average length L _ of joint traces is equal to the area of the joint
disc divided by edge length of circumscribed square D . (See Figure 1)
L,=z(D/2)’/D=(z/4)D

D=(4/z)L,=12732L,

Joint disc Joint Square

Cross section line

Cross section line

Fig. 1. Joint disc and cross section line Fig. 2. Joint square and cross section line

1.4.  Joint Trace Length and Square Edge Length of Joints
Another simplest representation of a joint in 3-d space is a square. Denote the average joint trace
length of a joint set as L, . Denote the edge length of joint squares as £. Denote the angle of

section line and the square edge as @ .

The circumscribed square of the joint square with edge £ will contain the joint square. All of
four nodes of the joint square are in the four edges of the circumscribed square. The
circumscribed square with two edges parallel to the section line has edge length C: (See Figure

2)

C=(sina+cosa)E

The average length _of joint traces equal to the joint square area divided by the edge length of
the circumscribed square C :

L, =E*/C=F’ /((sina+cosa)E)

L, =E/(sina+cosa)

E =(sina+cosa)L,

Compute average square edge length E  over the angle a



Proceedings of ICADD-7, edited by M. MacLaughlin and N. Sitar, Honolulu, Hawaii, December, 2005 3

0

E, :(J.”/zEda)/(zzQ)

E = (J-Oﬂ/z(sin a +cos a)L,,,da)/(ﬂ/2)

av

E,=(4/7)L, =12732L,
It is seems a wonderful coincident that the formulae for disc diameter D and square edge E, are
exactly the same. Theoretically, the edge length E_ of joint squares is 1.2732 times of the

average joint trace length. Again, the joint trace is the intersection line segment of a joint square
with the section plane. Therefore, the three dimensional joint polygon is longer than its joint
traces.

1.5. Joint Trace Spacing and Joint Plane Spacing

Joint plane spacing is measured along the joint plane normal direction. Joint plane spacing is the
distance of two parallel joint planes. In any section plane, the joint trace spacing is generally
larger than the joint plane spacing. The joint trace spacing is different in different section plane
directions. The joint spacing should be the joint plane spacing in the direction perpendicular to
the joint plane. Therefore, the joint spacing is independent of the directions of the section plane.
Denote the joint plane spacing as S,

Denote the joint trace spacing as S,
Denote the angle between the upward normal vectors of joint plane and section plane as £

The mathematical relation of S,, and S, is:

Sy =S, sinff

2. PRODUCING JOINT SQUARES BY PERTURBATION

2.1.  Define the Boundary of the Space where Joint Squares Are Produced

In this paper, square shape joint polygons are produced based upon the average joint spacing and
average edge length of joint ‘squares’. Using a simple statistical approach, the joint squares are
produced for each joint set. The joint squares become the joint polygons after the trimming by
the boundary faces. Figure 5 shows an example of simulated 3-d joint polygons representing a
single set of joints.

Several boundary planes are chosen to delimit the space where the joint squares are produced.
The boundary planes form a three dimensional convex target block. This convex target block is
the space filled by joint squares. Actually, the space where the joint squares are produced is
larger than the target block defined by the boundary planes. Therefore some joint squares which
are only partly inside of the target block can still be produced.

2.2.  Parallel Joint Plane Groups with Distance Equal to the Joint Spacing

The first step of statistically producing joint squares is to produce an equally distanced parallel
plane group for each joint set as shown in Figure 3. The planes are confined in the boundary of
the target block. Each plane in the same group has the same dip angle and dip direction angle of
the corresponding joint set. The distance between the planes of the same group is exactly the
joint spacing of the corresponding joint set. The meaning of forming parallel plane groups is to
divide the space as zones based on joint set direction and joint spacing of the joint set.
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“

joint spacing Fig. 4. Perturbation of joint squares in each joint plane

Fig. 3. Parallel joint planes with distance equal to the

2.3. Dividing Each Joint Plane to Squares

Each joint plane is divided into equally sized squares. The edges of the squares are parallel to the
strike direction and the dip direction of their joint set. The strike direction of a joint set is the
direction of the intersection line between the joint plane and horizontal plane. The dip direction
is on the joint plane and perpendicular to the strike direction.

The edge length of joint squares is the joint length £, which is 1.2732 times of the joint trace

length in according to the theory. This procedure is to produce one layer joint squares in each
zone. The boundary to boundary distance of the joint squares in the joint plane is equal to the
joint bridge. Here the joint bridge can be both positive and negative. For negative bridge, the
joint squares are overlapped.

2.4.  Perturbation of Joint Squares in Each Joint Plane

Firstly the joint square edge is perturbed statistically. After the perturbation, the joint squares are
still plane squares and the edge directions are remain the same. Only the edge length is changed
in some degree.

Secondly, the joint squares in a joint plane are moved randomly in the normal direction of the
joint plane. This is the perturbation of the joint square spacing. This procedure is the perturbation
of joint sizes, joint bridges and joint spacing. This is the simulation of the three dimensional
joints by joint squares. (See Figure 4)

2.5. Trimming Joint Squares by Boundary Planes to Fit in the Target Block

The joint squares which are inside the target block are kept. If a joint square is in the target block
side of all boundary planes, this joint square is inside the target block. If a joint square is in the
other side of the target block from any one boundary plane, this joint square is completely in the
outside of the target block.

If a joint square is partly inside of the target block and partly outside of the target block, this joint
square is a boundary joint square. For a boundary square, there are one or more boundary planes
which intersect the boundary joint square. The boundary joint squares have to be trimmed by






6 Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

those boundary planes which intersect this joint square. Therefore, after the trimming by
boundary planes, a joint square is not a square any more, it is a generally shaped convex
polygon. This three-dimensional joint producing code is used to produce general convex joint
polygons which can have any number of edges. Figure 5 shows the statistically produced joint
polygons of a joint set.

3. CUTTING 3-D BLOCKS FROM JOINT POLYGONS

3.1.  What Kind of Three-Dimensional Blocks the Joint Polygons Can Possibly to Produce

To determine the joint blocks, all joint sets must be simulated or the individual joint polygons
must be input. The produced joint polygons of all joint sets, all input joint polygon and all
boundary faces are the input data for the three dimensional DDA cutting program DC. The
cutting program DC computes 3-d blocks. Figure 9 and Figure 11 show a portion of the three
dimensional blocks.

If the individual joints are all much longer compare with the dimension of the target block, all
intersected blocks are convex block. In this case, the blocks are simple and the computation, the
algorithm and the related theory are all simple.

However, if the joint polygons are shorter than the diameter of the target block, the joint
polygons are terminated in the middle of the target block. In the later case, the computation, the
algorithm and the related theory could be substantially complex. Also, the produced blocks could
be complex in the following ways:

The blocks can be concave

The polygon faces of the blocks can be concave

The number of polygon faces of one block can be unusually large

Inside a block there can have other smaller blocks which are sub-blocks

Inside a block, the sub-block can contain its own sub-block

The blocks can have through holes such as a ring

Inside a block, the sub-blocks and holes can be connected in points or edges

As block faces, a polygon can contain another polygons which are sub-polygons
Inside a polygon, a sub-polygons can contain its own sub-polygons

3.2.  The Theory and Algorithms of the polygon Cutting Code

Since the blocks can be as complex as mentioned in the previous section, the theory and the
algorithm have to consider and to cover all of these complicated cases. Furthermore, the
polygons can be statistically produced and can be in high degree of randomness. Therefore, the
computer code has to be general.

It seems that the task of forming blocks from polygons is a purely geometric task. This task
completely belongs to the category of computational geometry. However, in order for this
computer code to solve every possible case, the algorithms and the theory of this program have
to be based strictly on Algebraic Topology. Many topological principles are adapted in this
program DC: orientation, finite covers, convex body, close chain, boundary chain and relation
matrices. The main structure of DC is the following:
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() Build 0-2 relation matrix in 3-d space to find nodes: 0-d are the intersection points, 2-d are
the cutting polygons

(i) Build 0-2 relation matrix in each plane to find nodes in this plane: 0-d are the intersection
points, 2-d are the cutting polygons

i) Build 1-0 relation matrix in each intersection line to find divided edges: 1-d are the
intersection line of cutting polygons, 0-d are the intersection points of cutting polygons on
the intersection line

(iv) Build 0-1 relation matrix in each plane to find its formed polygon: 0-d are the intersection
points, 1-d are the formed edges on the given plane

(vy Build 1-2 relation matrix to find the maximum close chain (boundary chain in this case): 1-
d are the formed edges, 2-d are the formed polygons in 3-d space

(viy Build 1-2 relation matrix of the maximum 3-d blocks to find the formed blocks: 1-d are the
formed edges, 2-d are the formed polygons in 3-d space

The code DC performs the numerical computation. The code DC operates under the limited
accuracy the computer can offer. Especially, in some ill-conditioned combinations, more
difficulties occur.

It is not necessary to involve advanced mathematics here. After practice of the code DC, it would
be much easier to understand the mathematics behind.

3.3.  The Differences from the Other Three-Dimensional Block Producing Methods

Generally speaking, there are two ways to form three-dimensional blocks: block integration and
block differentiation. The method of block integration is to put simple blocks together to
construct the desired shape. The simple blocks are basically made by given nodes. The short

coming of the block integration method is the possibility of having gap or penetrations between
blocks.

The block differentiation method is a block cutting method. Most block cutting codes produce

convex blocks. It is assumed that the joint polygons are long enough to cut through the target
block.

DC in itself is a block cutting code. DC uses polygons to cut blocks. These polygons can be of
any length. The input polygons of DC can terminate in the middle of the target block. The
produced blocks can be of any shape: convex, concave or blocks with bubble and holes.

DC can also perform block integration. With all faces of simple blocks as input, DC can compute
the integrated block. Also DC can find the penetration or gap and sub-blocks of the input simple
blocks. Therefore DC code is also a trouble-free block integration code.

3.4. The Self-Checking of the Three-Dimensional Block Cutting Code

Self-checking of the block cutting code DC is important for both programmer and user. Also the
three-dimensional graphic can directly see the polygons and the produced blocks. If there are
only few polygons, the results of DC code can be checked intuitively. The major checks of DC
code are:

Two-dimensional topological check: for any formed polygon P double boundary operation is
Zero.

0P =0
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Three-dimensional topological check: for any formed block B, double boundary operation is
zero and the sum of all block boundaries are the boundary of the target block 7.

00B, =0
D08 =0oT

Bock volume summation check: the summation of the block volumes V' (B;) should equal to the
volume V' (T) of the target block.

2.V (B)=V(T)

The volume checking is a convincing examination. For example, if the target block is simply a
cube and the six square faces of the cube are also the cutting polygons, the summation of the
block volumes should equal to the cube volume.

3.5. Restrictions of the Three-Dimensional Block Cutting Code on the Input Polygons
Actually, the DC code input three-dimensional generally shaped triangles. Triangles in the same
plane can be overlapped. Therefore the entered objects of code DC are the overlapped triangles
which can be more complex than any convex or concave polygons. There is one restriction for
the current version DC. The union set of overlapped triangles can not have inner holes.
Hopefully this restriction will be removed from the later version soon.

4. JOINTED LENGTH RATIO

4.1. Definition of Joint Length Ratio
Denote the average joint plane spacing of all joint sets as S, , . Denote the average joint trace

length of all joint sets as L, . Given S,,, as the average joint trace length L, is longer, more

blocks are formed. The joint length ratio R, is defined as:
R, =L, /S,
The joint length ratio R, will be the most important factor for forming blocks. The total volume

and the number of the joint blocks will be the most important factor of the rock global stability.

4.2.  Joint Sets Information
The following are examples of joint set data for producing joint polygons by statistics.

Table 1. Joint set angle data

Joint set Dip angle Dip direction
1 84° 221°

2 83° 299°

3 9° 59°

Table 2. Joint spacing and joint trace length data

Joint set Spacing S, Length L, Bridge
1 0.60 m 2.54m 0.10m
2 1.92m 2.71m 0.10m
3 0.59m 3.23m 0.10m
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4.3. Joint Length Ratio and Global Rock Stability
In the next two sections, four cases with different edge lengths of joint squares are studied. Here
E  is the edge length of the produced joint square. Table 3 shows the results of the computation

of the following two sections.

Table 3. Joint set angle data

Case Square Edge Length Length Ratio R, Volume of inner blocks
1 E =13L, 4.82 2.54%
2 E, =20L, 7.84 12.24%
3 E =3.0L, 11.11 44.54%
4 E, =40L, 14.83 65.06%

When R, <10, the majority of the rock mass is connected, only local stability or key block need
to be examined.

When R, >10, the majority of the rock mass is blocky. The global stability of rock masses must
be examined.

These results provide valuable guidelines for the type of analysis required for excavations.
5. JOINTED AND CONNECTED ROCK MASSES

5.1. Jointed Rock Masses with Less Than 5% Volume of Inner Blocks

In case the joint length is small and the joint spacing is large, few inner blocks are produced.
This means the whole rock mass is basically block-free. In a case where the volume of all inner
blocks is less than 5%, more than 95% of the rock volume is connected. Therefore, global
stability of the rock mass is ensured.

Since the few individual blocks are surrounded by the connected rock mass, the blocks are
unlikely to make any movement. Therefore, the rock mass stability is about the same as the cases
without inner blocks.

In this section, polygon producing and block volume statistics of the joint system with 1.3 times
joint trace length are examined. Here, the joint spacing is still the original value.

The space for producing joint polygons and computing blocks is the target block. Here the target
block is a three-dimensional cube with dimensions:

20m x 20m x 20m

As the checking sum, the volume summation of all blocks is 8,000.0000000000 cubic meters. It indicates
that the whole computation is accurate.

The average joint length ratio in this simulation is R, =4.82

The total inner block volume is 2.54 % of the total rock volume.

Figure 6 shows the connected main boundary block with 4354 and 4098 polygons respectively.
The surfaces of the main block are mainly the cubic boundary surfaces.

Figure 7 shows one fifth of the individual blocks excluding the connected boundary main block
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Fig. 6. The single connected main boundary block with 4354 and 4098 polygons
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Fig. 7. One fifth of the individual blocks exclude the boundary main block

11
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5.2, Jointed Rock Masses with Less Than 20% Volume of Inner Blocks: Connected Rock
In this section, a joint system with 2.0 times the joint trace length is examined. The joint
polygons are produced and blocks are formed. Here, the joint spacing is still the original.

In this case the joint length is relatively small and the joint spacing is relatively large, some very
complex concave blocks can be formed. Since more than 80% of the rock volume is connected,
the rock blocks are basically confined by the surrounding rock masses. The rock is still stable.

The target block for producing joint polygons and computing blocks is a cube of dimension:

20m x 20m x 20m
As the checking sum, the volume summation of all blocks is 8,000.0000000000 cubic meters. It indicates
the whole computation is accurate.

The average joint length ratio in this simulation is R, =7.84
Total inner block volume is 12.24 % of the total rock volume.

Figure 8 shows the connected main boundary block with 7655 and 7671 polygons respectively.

Figure 9 shows one fifth of the individual blocks excluding the connected boundary main block.
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Fig. 8. The single connected main boundary block with 7655 and 7671 polygons

6. BLOCKY OR DISCONNECTED ROCK MASSES

6.1. Jointed Rock Masses with More Than 40% Volume of Inner Blocks: Blocky Rock

Here, the joint spacing is still the original. For the case of 3.0 times joint trace length, joint
polygons are produced. Due to the relative long joints, the blocks are relatively simple. There are
no very complex major blocks like in the previous case.

Here the target block is a three-dimensional cube with the dimension:

20m x 20m x 20m

As the checking sum, the volume summation of all blocks is as accurate as 8,000.0000000000 cubic
meters. This summation kept 14 correct digits. The numbers with double precisions have only 16 digits.



14

Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

Fig. 9. One fifth of the individual blocks exclude the boundary main block
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The average joint length ratio R, =11.11

The total inner block volume is 44.54 % of the total rock volume.
Figure 10 shows the connected main boundary block with 601 and 561 polygons respectively.

Figure 11 shows one fifth of the individual blocks excluding the connected boundary main block.

Fig. 10. The single connected main boundary block delimited by 601 and 561
polygons
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il >
Fig. 11. One fifth of the individual blocks excluding the boundary main block

6.2. Jointed Rock Masses with More Than 60% Volume of Inner Blocks: Blocky Rock
For the case of 4.0 times joint trace length, the average joint length ratio R, =14.83. Total inner

block volume is 65.06 % of the total rock volume. The graphic results are similar with previous
Figure 10 and 11.

The volume summation of all blocks is still as accurate as 8,000.0000000000 cubic meters.

7. MINIMUM CONVEX TARGET BLOCK OF FREE SURFACES

7.1. Target Block Is Convex Block

The joint polygons are produced in a space lager than the target block. Target blocks are defined
as convex blocks. Convex blocks are simple. It is convenient to compute the part of polygon
which is inside of the convex target block. The equations of target block boundary faces are
plane equations:

Ax+By+Cz+D, =0 i=12,3,...,n
The equation of target block is
Ax+By+Cz+D, =0 1=1,2,3,...,n
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Each produced polygon is trimmed by all boundary face planes 4x+ B,y+C,z+ D, =0. If the

plane divides the polygon to two sub-polygons, only the sub-polygon satisfying
Ax+By+Cz+D, >0 keeps.

All boundary faces of the target block are convex polygons same as the produced and trimmed
joint polygons. The boundary polygons are also cutting polygons same as the joint polygons. All
oriented blocks of the target block form a three dimensional chain in Algebraic Topology. The
boundary of this chain is the boundary of target block ad shown by Figure 12.

Fig. 12. Different shapes of convex target blocks

7.2.  Target Blocks Are Delimited By Their Oriented Boundary Triangles

Since the boundary of the target block is formed by convex polygons. Each polygon can be
divided into oriented triangles in a natural way. The rotation directions of the triangles are
pointing inside of the target block. Each boundary triangle has three nodes:

(‘xi, yi, Zi) (xj, yj, Zj) (xk, yk, Zk)

The plane equations of point (x, v, z) are defined by three points
1 i yi Zl
1 i Vi E =0
L x » z
I x y =z
All of the boundary triangle nodes (x, V, z) satisfy the following equation. Any point
(x, v, z) of the target block also satisfies the following equation.
1 xi yi Zi
Lx, y >0
L x » z
I x y =z
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7.3. Computing The Minimum Convex Target Block For Rock Boundaries

The general rock mass boundaries are still polygons. However, real rock masses are generally
not a convex block. For example, the rock mass with a tunnel are no longer a convex block. To
generate the joint polygons and the blocks inside a target block, the minimum convex target
block containing the rock mass can be constructed. Choose any three nodes from the boundary
polygons of the rock mass with the condition:

(xi, Vi, z,) (xj, Vi, Zj) (xk, Vi, z;)
xi yi Zi

X, Y, Z|# 0

Xe Vi Z

If the following equation is satisfied by all nodes (x, v, z) of all boundary polygons of

the rock mass, the plane defined by these three points is a boundary plane of the minimum target
block of the rock mass.

L x » z
L x; vz >0
L x » z
1 x y =z

All boundary planes of the minimum convex target block can be found by choosing different
groups of three nodes.

8. EXCAVATE FREE SURFACES INSIDE A TARGET BLOCK

8.1. Free Surfaces Are Delimited by Their Oriented Boundary Triangles

The free surfaces of the rock mass are polygons in three dimensional spaces. These polygons are
not necessarily convex. However the boundary polygon can be subdivided into oriented
triangles. The rotation directions of the oriented triangles are pointing into the rock mass.

The control points of contours can be connected by oriented triangles. Surfaces of slopes, dam
foundations, tunnels, whole underground chambers, portals or tunnel intersections can be
represented as oriented triangles.

8.2.  Conditions of Free Surfaces
As mentioned in the previous paragraph, the boundaries of rock mass are a set of oriented

trianglesU?_, S,. Denote the target block as 7". Denote the set of points outside of the target
block T"as C(T') . The boundaries 07, S,of all oriented triangles of the free surfaces U, S,
consist of outer edges of the free surfaces. The boundary U7, S, is in the union of the boundary

OT of the target block 7' and the set C(7T') outside of the target block 7. Intuitively speaking, the

input free surfaces will cut through the entire target block. The free surface can not end inside of
the target block.
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oULS) = @ETUC(T)

The target block is divided by the free surfaces. Two different polygons are input into the
polygon cutting code DC:

Boundary oriented triangles of the target block
The oriented triangles of the free surfaces

Blocks are formed. The union of these blocks is the target block. These blocks are divided to two
groups: rock mass blocks and the excavated blocks. The excavated blocks are the blocks outside
the free surface and should be removed. Here the free surfaces are even not necessarily
connected.

8.3.  Joint Blocks Trimmed by Free Surfaces
To form all of the joint blocks inside of the target block, three different polygons are input:

Boundary oriented triangles of the target block
The oriented triangles of the free surfaces
Produced joint polygons

All produced joint blocks are inside of the target block. The joint blocks are subdivided blocks of
rock mass blocks or excavated blocks. There are two different kinds of joint blocks: joint blocks
which are inside a rock mass block and the joint blocks which are inside a excavated block. The
joint blocks of the excavated blocks called excavated joint blocks and should be removed.

Here the rotation direction of the oriented triangles of the free surfaces points inside the rock
mass. After the joint blocks are formed, the whole free surfaces consist of the joint block
boundaries. Based on the polygon orientation of the joint blocks and the triangle orientation of
the free surfaces, all of the excavated joint blocks are removed.

Fig. 13. Tunnel intersection as free surfaces of a cubic target block



20

Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

Fig. 14. One tunnel and two tunnels are the free surfaces of 20 face target block
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Fig. 15. Removed tunnel intersection and 1/5 of the joint blocks after the excavation of tunnel intersection
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Figure 13 shows part of the rock mass joint blocks and the excavated joint blocks. The target
block is a cube. The free surfaces are the surfaces of two intersecting tunnels.

Figure 14 shows the rock mass joint blocks. The boundaries of the target block are 20 equal-
lateral triangles. The free surfaces are one tunnel surface and two tunnel surfaces respectively.

Figure 15 shows the excavated joint blocks and part of the rock mass joint blocks. The
boundaries of the target block are 20 equal-lateral triangles. The free surfaces are the surfaces of
two intersecting tunnels.

9. FINDING ALL REMOVABLE BLOCKS OF FREE SURFACES

9.1. Removable Blocks Along a Direction
Given a moving direction vector m , the removable blocks along vector m are defined. A
removable block group along vectorm is the group of joint blocks R, . The boundaries OR. of the

group R are polygons P, . The normal vector of polygon P, is a . The normal Vectora points the
side of the joint blocks of the group. This group of joint blocks is a removable block group along
vectorm , if the following equation is satisfied for all its boundary polygons B, except the free
surface polygons.

n,-mz=0

There could be very large number of different removable block groups. The removable block
groups along the same vector m are additive.

If R and R, are removable groups along moving direction vector m , the union R.UR,is also
removable block group along vectorm .

9.2.  Maximum Removable Blocks Along a Direction

Union of all removable block groups along a vectorm is still a removable block group along the
same moving direction vector m . This union is the maximum removable block group along
vector m . Therefore for a given vectorm , there is only one unique maximum removable block
group. It is more convenient to find this unique maximum removable block group.

There may be many removable block groups of a vector. It is too hard to find all of the
removable block groups. However, if the maximum removable block group is found, the stability
of the rock mass along the vector can be estimated. The maximum removable block group may
not be connected.

9.3.  Delimiting Maximum Removable Block Group Along a direction

The method of finding the maximum removable block group of a vector m is based on the
equation:

n om0

This equation has to be satisfied for all its boundary polygons P, except the free surface
polygons.

Starting with all of the rock mass joint blocks on the rock side of the free surfaces, compute the
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boundary of all the remaining joint blocks. Using the previous equation, the joint blocks outside
of the maximum removable block group are deleted one-by-one. If there are no more joint blocks
to be deleted, the remaining joint blocks are the maximum removable block group.

Fig. 16. Maximum removable block groups of tunnel and tunnel intersections of vertically downward vector
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Figure 16 shows the maximum removable block groups together with the excavated joint blocks
of the vertical downward vector. The free surfaces are the surface of a tunnel and the surfaces of
two intersecting tunnels.

9.4.  Comparison With Original Key Block Analysis
The following table compares the traditional Key Block method with the polygon cutting
method.

Methods Key Block Polygon Cutting

Joint system Joint set Joint set or individual
joints

Free surface Simple Complex and general

Block system Small number of blocks Large number of blocks

Moving directions Few moving directions Large number of moving
directions

Finiteness Infinite Finite

Secondary removable blocks | No Yes

The results of the polygon cutting method are consistent with the results of the Key Block
method in cases where both methods apply.
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ABSTRACT: In the original 3-D DDA method, block contact constraints are enforced using the
penalty method. This approach is quite simple, but may lead to inaccuracies which may be large
for small values of the penalty number. The penalty method also creates block contact overlap
which violates the physical constraints of the problem. These two limitations are overcome by
using the Augmented Lagrangian Method which is implemented in 3-D DDA and has been
programmed in VC++. This method has been found to model block contact quite well. In this
paper 3-D DDA formulation of the three most widely used methods for modeling contacts in
numerical methods, namely, the Penalty Method, the Lagrange Multiplier Method, and the
Augmented Lagrangian Method is given for point-to-face frictionless contacts and
implementation of the Augmented Lagrangian Method into the 3-D DDA is presented by an
illustrative example.

10. INTRODUCTION

Discontinuous Deformation Analysis (DDA) method is a relatively new numerical modeling
technique that is a member of the family of DEM methods. Shi and Goodman [1] introduce
the back-ward approach of DDA to back-calculate the best-fit deformed geometry of a block
system from measured displacements and strains. Subsequently Shi [2-4] and shi and
Goodman [5] generalized the two-dimensional DDA to include the capability of analyzing
the mechanical behavior of block system in a forward approach. DDA has become a rapidly
developing numerical method for practical applications.

As DDA draws more and more attention, several modifications and improvements to the
original formulas have been proposed to overcome some of its limitations and make it more
efficient, suitable and practical to engineering computations. Surface contact kinematics
conditions can be enforced by prescribing displacement constraints in order to prevent contact
domains from overlapping. In the DDA method, contact sliding is allowed but not
interpenetration. The classical Lagrange Multiplier Method and the Penalty Method are the two
most commonly used approaches to enforce the surface contact displacement constraints [6]. The
penalty technique is used in the original DDA to prevent inter-penetration between blocks. Cai et
al. [7] adopted the Lagrange Multiplier methods to fulfill the contact constraints of no
penetration and no tension. Lin et al. [8-10] applied the Augmented Lagrangian method instead
of the Penalty Method and obtained satisfactory results.

This study presents a new approach to block contacts, namely, the Augmented
Lagrangian Method instead of the Penalty Method originally used in 3-D DDA [11-16] for point-
to-face frictionless contacts. This allows block-to-block contacts to be enforced more precisely
and block contact forces to be determined more accurately. An illustrative example is presented
for the single purpose of demonstrating this new approach.
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11. THREE-DIMENSIONAL DDA THEORY

Discontinuous Deformation Analysis calculates the equilibrium Equations by minimization of
the potential energies of single blocks and contacts between two blocks. To calculate the
simultaneous equilibrium equations, deformation functions must be defined. The deformation
function calculates the deformation of all the blocks using the displacement of each block
centroid. This function is similar to the shape function of Finite Element Method and can present
the potential energy of the blocks and the simultaneous equilibrium equations simply.

Assuming all displacements are small and each block has constant stress and constant strain
throughout, the displacement (x,v,w) of any point (x, y,z) of a block can be represented by 12

displacement variables. In the 12 variables, (,,v,,w,) 1s the rigid body translation of a specific
point(x,,y,,z,), r, 1s the rotation angle (radians) of block around z axis, r, is the rotation angle
of block around X axis, r; is the rotation angle of block around y axis, ¢,¢,,¢.,7,,.7,..7., are
the normal and shear strains in the block. The displacement of any point (x,y,z) in the block can
by represented by Eq. (1).

U

Vo

Wo

n
m {wowyo) 0 (z-2) (x-x) 0 0 (y-y)/2 0 (z-2,)/2 :
v =]010 (x—x,) —(z-2zp) 0 0 (¥y—y,) 0 (x=x)/2 (z—12z4)/2 0 g (1)
whlotr 0 g sk 0 0 @) 0 a2 e

g:

Yo

Ve

Yz
In DDA, the equilibrium equation is established by differentiation of the potential energy of the
block as with FEM. The stiffness matrix is constructed using the potential energy of a single
block and the contacts between two blocks. As DDA is a displacement method like FEM, the
equilibrium equations are established by transposition of the constant to the right side, which is
calculated by the differentiation of the total potential energy with respect to the displacement
variables. Assuming there are n blocks in the defined block system, the simultaneous
equilibrium equation has the same form as Eq. (2). In Eq. (2), K,(i=1l..,n,j=1..,n) is a

stiffness matrix which is a 12x12matrix calculated for a single block and its contact with two
other blocks; D, represents the displacement variables; £ is the loading on the blocks,

distributed to the 12 displacement variables.

_Kn K, K13 Kln D, F

K, K, K23 KZn Dz Fz

K, Ky, Ky o Ky, || Dy =] F (2)
_Knl KnZ Kn3 Knn __Dn_ _Fﬂ_
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12. THE PENALTY METHOD

The Penalty Method was probably the first approach adopted for a constraint enforcing method.
This method is discussed by Campbell [17], Felippa [18, 19]. It was originally used by shi [11,
12] in the 3-D DDA method to enforce contact constraints at block interfaces.

Assume there is a spring between point p, and entrance plane RP,. The distance 5 of two sides
should be zero after the displacement increment is applied. Therefore:

lu, y z lLx v z Lx y w
5+d5=&+ll U, Y2 2, ll Xy Va2 2y +l1 Xy Vo Wy
A Allu;y yy zy| Al x3 vy zy| All x5 y; w, 3)
lu, y, z, Lx, v, z, Lx, yy w,
that
Lx y z 5 5 )
1X2 VY, Z, and A:[y3_y2 Zy — Z, Xy — X, Z3 —2Z, Xy =Xy V3 =),
V0:1x3 Vs 4 Ya = YVy 2472, Xy =Xy Zy — 2, Xy =Xy V4= D)y
lx, y, z,
4) (5)
let
T -1
811 &1 81 8us L x y z
82 82 813 & _y 1l x, v, z,
831 83 &35 & ° X3 V3 Z3
841 842 843 8us l x, y, 2,
and (6)
u, U, Us
1 1
da:[glz 813 8l z +[g22 83 8ulV: Z"'[gn 833 g34]v3
Wi w, W3
(7
Uy
+[g4z 843 Baal Va4
Wy

[Ei]T :[g12 813 g14][Ti(xl’y1’ZI)]/A
[Gj ' :[gzz 823 g24][Tj(x2,y2,zz)]/A+[g32 833 g34][Tj(x3,y3,z3)]/A ()
+[g42 843 g44][T/(x4’y4’Z4)]/A

then
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5+d5=%+[Ei]T[Di]+[Gj]T[Dj] )
The potential energy of the normal spring is:

=22 Y016 P (24 T 2l VI )

2

e R B DA AT LY (19

20 A 2
«(p,Y[£]1+[p,Jl6 )+ PID,T [E ]G, I D)]

Denote the stiffness of the spring as P . Minimizing I1, by taking the derivatives, four 12x12

sub-matrices and two 12x1 sub-matrices are obtained:

PlE]E] —»[K,] (11)
is added to sub-matrix [K l.l.]
PlE 6, -k, ] (12)
1s added to sub-matrix [K Z.J.J
PG Y -k, ] (13)
is added to sub-matrix [K jiJ
Ple l6 ] - [k,] (14)

is added to sub-matrix [K jjJ

Ze (5] [F] (15)

1s added to sub-matrix [E]

“olo ][] (16)

1s added to sub-matrix lF I.J

The main features of this method are:
e Enforcement of constraints requires no extra equations.

e The solution is easily obtained by simply adding contact components to the stiffness
matrix.
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e The constraints are only satisfied in an approximate manner and the contact solution
depends highly on the choice of the penalty number and the optimal number can not be
explicitly found beforehand.

e If the penalty number is too low, the constraints are poorly satisfied, while if it is too
large, the simultaneous equilibrium matrix becomes difficult to solve.

13. THE LAGRANGE MULTIPLIER METHOD

The classical Lagrange Multiplier Method was one of the first methods to solve block contact
problems. In this method, contact forces are unknowns and must be explicitly calculated.

Let 4 be the unknown contact force caused by penetration to a depth, (5 + d5). In the Lagrange
Multiplier Method, the strain energy of that contact force is defined as:

I, = A(S +dJ) 17)

The penetration distance, (5 +dJ), can be expressed in the same form as in Eq. (9) and hence the
strain energy is:

= %[ Y 016 Vo)) 19

Since this expression is of first order only in the displacements, the second derivatives vanish
and hence there is no contribution to the stiffness matrix K . The contribution to the force matrix
F is obtained from the derivatives that is:

_oO) | ey
. " AE ] (19)
o) .
. Aa,] (20)

The Lagrange Multiplier (i. e. contact force),A, is not known and therefore joins the
displacement matrix [D] as an unknown in Egs. (2). The extra equation needed to solve the new

system is provided by satisfying the displacement constraints, according to Eq. (9). The
simultaneous equilibrium equations (2) are modified as follows:

&1 {[Te]] | [F]

0 A v,

K =[E].. 1G] 21)

Note that modified simultaneous equations in (21) result from a single contact force 4 existing
between two blocks. If more contact forces exist, say n, contacts, [K,] will have n, rows and
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Egs. (21) will increase by n, rows and n, columns. The unknown scalar A is then replaced by

an unknown vector with 7, entries, each of which represents a contact force.

The method allows the contact conditions to be satisfied exactly and from the physical point of
view, A directly represents a contact force and is calculated directly. However, the method has
several disadvantages. The number of governing Equations is increased so that extra
computational effort is needed to solve the system. The matrix on the left hand side of Eq. (21)
may not be positive definite but is non-singular [6]. Furthermore, the matrix contains a zero sub-
matrix along its diagonal and in order to obtain a unique solution some special numerical
procedures have to be invoked.

14. THE AUGMENTED LAGRANGIAN METHOD

The objective of this method, which was developed in the early nineties, is to minimize the
disadvantages of the Penalty and Lagrangian Multiplier Methods by combining the two methods.
The method is independent of the magnitude of penalty number and introduces no extra Eq. to
the system.

In this method an iterative method is used to calculate the Lagrange Multiplier until the distance,
(0 +dod), of penetration of one block into the other is below another minimum specified

tolerance.

When using the Augmented Lagrangian Method, the contact force at the contact point can be
accurately approximated by iteratively calculating the Lagrange MultiplierA. A first order
updated value for 4" can be written as:

A=A, =4, +P(5+dS) (22)
where the penalty number, P, can be variable and does not have to be a very large number as in

the Penalty Method. In Eq. (22), A" is the Lagrangian Multiplier at the k™ iteration and Ay 18

the updated Lagrange Multiplier. At the k™ iteration, the strain energy, I1_,, resulting from the

st

contact force becomes:
I, =1 (5+d5)+%P(5+a’5)2 (23)

This Eq. consists of two components. The first component is the strain energy resulting from the
iterative Lagrange Multiplier 4, , and the penalty constraint creates the second. The contribution

of the second component to the 121 x12n global stiffness matrix K in Eq. (2) was already
covered in section (3), so only the contribution of the first component of Eq. (23) to matrix K is
derived in the following sequence of operations.

Denoting this first component as T, :

I, =2, (5 +d5)= I}L(%+ (£ [p)+[e,} [D,-]J (24)

The relevant derivatives of IT, are equal to:
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_ oI, (0)
od

-4 [E] and _JL©
od

ri rj

>-2l6,T (25)

Which form two 12x1 matrices — A; [E,] and — 4; [G j] that are added to sub-matrices F, and

1

F;, respectively. Note that the A" values are known and calculated from the previous iteration.

They are distinct from the A4 values in Egs. (19) and (20) which are unknowns in the classical
Lagrange Multiplier Method.

For the Augmented Lagrangian Method, the combined contributions of the first and second
components of I}, to Eqgs. (2) are obtained and added to [K i ], [K UJ, [K jl.J, [K jjJ, [F,] and [F jJ
respectively:

PlEJE] - K, ], P[Ei][Gj] _)[Kz'j]’ P[GjIEi] _)[Kji]’ P[Gj][Gj] _)[ij] (26)

(5 + 2 1o 1) and (a2 o 1o ) )

A

Box (1) summarizes an iterative procedure for Augmented Lagrangian algorithm.

Box(1). Iterative procedure for Augmented Lagrangian algorithm

® 1.0 Initialize 4 =0

® 2.0 For each iteration k

® 2.1 Solve for displacements
(xIp]=[F])

® 2.2 Compute penalty forces
(fe=ar=prxd,,)

® 2.3 Check for convergence

> IF (A/I < Toll) and [[K][Dk]_[K][Dkl] < TOZZ\J THEN

1o, ]

GOTO 3.0
END IF
® 2.4 update Lagrange multipliers
(}“/m =4+ A/l)
e 25 GOTO2.0

® 3.0 END

From a physical point of view, again, the Lagrangian multiplier, 4, represents the contact force
along a point of contact between two blocks and the penalty number, P, represents the stiffness
of the contact spring. The final exact contact forces can always be obtained by the iterative
method even with small initial values of the penalty number.

The precision of the solution depends on residual forces that are produced during the iterative
calculations of the contact forces. The criterion for convergence is based on the requirements
satisfaction of contact minimum distance of interpenetration and minimum residual forces
between block contacts (Box (1)).
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In this method however, since a value of A, is known at each iteration, there is no increase in the

size of the system of equations (2). In addition, the simplicity of the Penalty Method is retained
and the disadvantages are minimized.

The main features of this method are:

e The Augmented Lagrangian approach uses a penalty stiffness but iteratively updates the
contact traction to impose the contact constraints with a specified precision.

e No additional equations are required.

e Large penalty values are not required; avoiding the ill conditioning of the stiffness
matrices. However if the initial penalty number is too small, many iterations are required.

e The constraints are satisfied within a user defined required tolerance.

e The algorithm can be used effectively for applications where the contact pressures
become very large in comparison with the material elastic parameters [6].

15. EXAMPLE

The algorithm described in the previous section has been programmed in VC++. To investigate
it, sliding along an inclined plane is examined.

This example simulates the sliding of a block along an inclined plane at an angle a to the
horizontal direction without considering frictional forces (Fig. 1).

L,

X

Fig. 1 A single block resting on a inclined plane

Under the action of gravitational force, the displacement s of the block is determined
analytically as a function of time ¢ given as:

s(t) =%at2 =%(g sina).t’ (28)

The inclination of the modeled plane is 20 degree and the density, Young’s modulus and
Poisson’s ratio for both blocks are 2.6x103 kg/m’, 5GPa and 0.25, respectively. The maximum
time increment for each time step is 0.01 s.

The accumulated displacements are calculated up to 5 sec. A comparison between the analytical
solution in Eq. (28) and DDA solution for different values of the stiffness of the normal contact
spring is shown in Fig. 2. Fig. 3 shows the displacements of sliding block in X and Z directions.

The deformation of the block system, using the Augmented Lagrangian Method to enforce the
contact interface, after 0, 300, 400 and 500 time steps of 0.01 seconds for P=S0MN/m is shown
\in Fig 4. It is clear that no block interpenetration occurs here even though the penalty number is
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low. Fig. 5 and Fig. 6 show the deformation of the block system, using the classical penalty
method, after 0, 300, 400 and 500 time steps of 0.01 seconds for P=500MN/m and P=50MN/m,
respectively. It indicates that a small penalty number is unable to enforce the interpenetration
constraint.

70

Analytical m DDA (P=50GN/m)
60 4 —— Analytical
- -A - DDA (P=500MN/m)  —@ — DDA (P=50MN/m)
m DDA (P=50GN/m
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Fig. 2 Comparison between the analytical solution and DDA results (a) the Penalty method (b) the Augmented
Lagrangian method
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Fig. 3 Sliding block displacements in X and Z directions for Penalty Method
16. CONCLUSION

In the original 3-D DDA method, the Penalty Method is used to enforce block contact
constraints. Using the Augmented Lagrangian Method to enforce contact restraints retains the
simplicity of the Penalty Method and reduces the disadvantages of the Penalty and classical
Lagrange Multiplier Methods. The disadvantages of the Penalty Method are: (1) It creates block
contact overlap which violates the physical constraints of the problem. (2) It may lead to
inaccuracies which may be large for small values of the penalty number. These two limitations
are overcome by using the Augmented Lagrangian Method which
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Fig. 4 The deformation of the block system, using the Augmented Lagrangian Method after (a) 0  (b) 300 (c) 400
and (d) 500 time steps of 0.01 seconds for P=50MN/m
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Fig. 5 The deformation of the block system, using the classical penalty method, after (a) 0 (b) 300 (c) 400 and (d)
500 time steps of 0.01 seconds for P=500MN/m
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e B

(© (d)

Fig. (6) The deformation of the block system, using the classical penalty method, after (a) 0 (b) 300 (c) 400 and (d)

500 time steps of 0.01 seconds for P=50MN/m

were implemented in the 3-D DDA program for point-to-face frictionless contacts. This method
has been found to model block contact quite well.

17. ACKNOWLEDGMENTS

The authors are thankful to the “center of excellence” in the School of Mining Engineering,
University of Tehran, which funded this ongoing research.

REFERENCES

1. Shi, G.H. and Goodman R. E. 1985. Two—dimensional discontinuous deformation analysis.
International Journal for Numerical and Analytical Methods in Geomechanics 9, 541-556.

2. Shi, G.H. 1998. Discontinuous deformation analysis: a new numerical model for the statics
and dynamics of block systems. PhD thesis, Department of Civil engineering, University of
California, Berkeley.

3. Shi, G.H. 1992. Discontinuous deformation analysis: a new numerical model for the statics
and dynamics of deformable block structures. Engineering Computations 9: 2, 157-162.

4. Shi, G.H. 1993. Block system modeling by discontinuous deformation analysis.
Southampton UK and Boston USA: Computational Mechanics Publications.

5.  Shi, G.H. and R.E. Goodman. 1989. Generalization of two-dimensional discontinuous

deformation analysis for forward modeling. International Journal for Numerical and
Analytical Methods in Geomechanics 13: 4, 359-380.



36

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

Mohammadi, S. 2003. Discontinuous mechanics using Finite and Discrete elements. WIT
Press.

Cai, Y., G.P. Liang , G.H. Shi and N.G.W. Cook. 1996. Studying on impact problem by
using LDDA method. In Proceedings of the Ist International Forum on discontinuous

Deformation Analysis (DDA) and Simulations of Discontinuous Media, Albuq-Verque, eds.
R. Salami et al, 288-294, TSI Press.

Lin, C.T., B. Amadei, J. Jung and J. Dwyer. 1996. Extensions of discontinuous
deformation analysis for jointed rock masses. International Journal of Rock Mechanics and
Mining Science 33: 7, 671-694.

Lin, C.T., B. Amadei and S. Sture. 1994. Using an Augmented Lagrangian Method and
block fracturing in the DDA method. In Proceedings of Computer Methods and Advances in
Geomechanics, eds. Siriwardane et al, 837-842.

Lin, C.T. 1995. Extensions to the discontinuous deformation analysis for jointed rock
masses and other blocky systems. PhD thesis, Department of Civil engineering, University
of California, Berkeley.

Shi, G.H. 2001. Three dimensional discontinuous deformation analysis. In Proceedings of
the 38th US Rock Mechanics Symposium, Washington D.C., eds. D. Elsworth et al, 1421-
1428.

Shi, G.H. 2001. Three Dimensional Discontinuous Deformation Analysis. In Proceedings
of the 4th Conference on Analysis of Discontinuous Deformation (ICADD-4), Abingdom, ed.
N. Bicanic, 1-21, Balkema.

Kong, X. and J. Liu. 2003. Development of three dimensional discontinuous deformation

analysis. In Proceedings of the 6th Conference on Analysis of Discontinuous Deformation
(ICADD-6), Abingdom, ed. M. Lu, 45-54, Balkema.

Jiang, Q. H. and M.R. Yeung. 2004. A model of point-to-face contact for Three-

Dimensional Discontinuous deformation Analysis. Rock Mechanics and Rock engineering
37, 95-116.

Liu, J., X. Kong and G. Lin G. 2004. Formulation of the Three-Dimensional Discontinuous
Deformation Analysis Method. Chinese Journal of Mechanics Press 20: 3.

Wu, J.H., C.H. Juang and H.M. Lin. 2005. Vertex-to-face contact searching algorithm for
three-dimensional frictionless contact problems. [International Journal for Numerical
Methods in Engineering 63: 6, 876-897.

Campbell, J. S. 1974 A penalty function approach to the minimization of quadratics
functions in finite element analysis. In Proceedings of Finite Elements in Engineering,
University of South Wales.

Felippa C.A. 1978. Iterative procedures for improving penalty function solutions of
algebraic systems. International Journal of Numerical Methods in engineering 12, 821-836.

Felippa C.A. 1986. Penalty-function iterative procedures for mixed finite element
formulations. International Journal of Numerical Methods in engineering 22,267-279.



Proceedings of ICADD-7, edited by M. MacLaughlin and N. Sitar, Honolulu, Hawaii, December, 2005 37

Dynamic Three-Dimensional Discontinuous Deformation
Analysis (3-D DDA) Validation Using Analytical Solutions

Moosavi M., Jafari A., Beyabanaki S.A.
School of Mining Engineering, University of Tehran, Tehran, Iran

This paper was prepared for presentation at ICADD-7, the Seventh International Conference on Analysis of Discontinuous Deformation, held in Honolulu, Hawaii,
December 10-12, 2005.

This paper was selected for presentation by a subset of the Conference Organizing Committee following review of information contained in an abstract submitted
earlier by the author(s). Contents of the paper, as presented, have not been reviewed by the Conference Organizing Committee and are subject to correction by the
author(s). The material, as presented, does not reflect any position of the Conference Organizing Committee. Electronic reproduction, distribution, or storage of any
part of this paper for commercial purposes without the written consent of the author is prohibited.

ABSTRACT: The Discontinuous Deformation Analysis (DDA) is a powerful numerical method
for analysis of discontinuous rock mass behavior. This method can be used to perform static and
dynamic analysis. In this paper the validity of 3-D DDA is examined by comparing its solution
for dynamic block displacement with analytical solution. Displacement of a single block on an
inclined plane subjected to a dynamic loading is studied for both simple form of analytical
solution and with respect to the frictional resistance offered by the inclined slope. 3-D DDA
predicts accurately the analytical displacements.

1. INTRODUCTION

The Discontinuous Deformation Analysis (DDA) is a numerical model for rock mass behavior
[1,2]. Using DDA, one can perform static and dynamic analysis of a block system to obtain
solution of large deformation and large displacement.

Before applying dynamic DDA to a full scale problem of a jointed rock slope it is necessary to
check whether dynamic DDA displacements are in agreement with the analytical solutions.
Hatzor and Feintuch [3] demonstrated the validity of 2-D DDA results for fully dynamic analysis
of a single block on an incline subjected to dynamic loading. Dynamic solution for a single block
on an incline subjected to gravitational load (constant acceleration), a case which was
investigated originally by Sitar & MacLaughlin [4] and Maclaughlin [5] later more developed
using the new dynamic code [6]. For a slope inclination of 22.6 degree, four dynamic
displacement tests were performed for interface friction angle values of 5, 10, 15 and 20 degrees.
The agreement between the analytical and 2-D DDA solution was within 1-2%. Hatzor and
Feintuch investigated three different sinusoidal functions of increasing complexity for the
dynamic load input function, and checked the agreement between 2-D DDA and derived simple
form of analytical solution. A very good agreement between simple form of analytical solution
and 2-D DDA was observed in all cases, with errors between 5% to 10%.

Dynamic displacement problem of a block on an incline was studied by Tsesarsky et al. [7, 8]
using 2-D DDA analytical solution and shaking table experiments. The results of the validation
study showed that DDA solution of an idealized system for which an analytical solution exists is
accurate. After these investigations, dynamic 2-D DDA was applied to stability analysis of
jointed rock slopes [9, 10].

Three Dimensional Deformation Analysis (3-D DDA) method is still at rearly stage. It has a long
development road ahead before it can become a practical analysis tool for engineering problems.
Up to now, only a limited amount of work on 3-D DDA has been published [11-26].
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In this paper, analytical results are compared with numerical solution of DDA for displacement
of a single block which rests on an inclined plane. A short hand version of the analytical
equations ignoring the frictional resistance offered by an incline slope inclination was studied for
2-D DDA [3], however but in this research the complete set of equations is studied. Clearly, the
analytical validation of the numerical method can only be performed for a single block. In order
to validate dynamic displacements, determined by 3-D DDA for a system of blocks comparison
with physical models would be necessary. However this study for a single block would be the
first necessary step for such research.

2. DDA FUNDAMENTALS

In DDA method, the formulation of blocks is very similar to the definition of a finite element
mesh. A finite element type problem is solved in which all elements physically isolated blocks
are bounded by pre-existing discontinuities. When the blocks are in contact, Coulomb’s law is
applied to the contact interfaces, and the simultaneous equilibrium equations are formed and
solved at each loading or time increment. The large displacements are the accumulation of
incremental displacements and deformation at each time step. Within each time step, the
incremental displacements of all points are small, and hence the displacements can be reasonably
represented by the first order approximation [27].

2.1.  Block Deformation and Displacement

Using complete first order polynomial as displacement function for a block, DDA method
assumes that each block has constant strains and stresses in the block. Displacements (u,v,w) of

any point (x, y,z) in the i" block can be related to twelve displacement variables as:
[D1= (g, Vo, Wos s By s Fas €4y € s Es Yoy Voo V) (1)

where u,,v, and w, are rigid body translations at a specific point (x,,y,,z,) within the block,
r.,r, and r, are rotation angles of the block with a rotation center (x,,,,z,) and
£,€,5.,Y,,Y,. and y_ are normal and shear strains in the block. The complete first order

approximation of block displacements takes the following form:

(v w)' =[T]D,] 2)

1

100-y 0 zx 00 /2 0 z/2 3)
[T]=(010 x" -z 0 03y 0 x'/2 z'/2 0
011 0 » -x00z 0 /2 x'/2

where

! ! ’
X =X=Xy » V=V"DVy » 2 =272,

2.2.  Block Deformation and Displacement

Assuming that n blocks are defined in the block system, the simultaneous equilibrium equations
can be written in the matrix form as follows:
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K, K, K, ... K,, | D, K
K, Ky Ky K,, | D, F,
Ky Ky, Ky . K, | Dy | =|F (4)

K, K, K, .k, |D,| |F

Submatrices K, depend on the material properties of block i and K, wherei # j, is defined by

the contacts between blocks i and j . Since each block i has twelve degrees of freedom defined
by the components of D, in Eq. (1), each K, in Eq. (4) 1s a 12x12 sub matrix. Also, each F; is

a 12x1 sub matrix that represents the loading on block i. The system of Eq. (4) can also be
expressed in a more compact form as KD = F where K isa 12nx12n stiffness matrix, and D
and F are 12nx1 displacement and force matrices, respectively. The total number of unknown
displacements is the sum of the degrees of freedom of all the blocks.

The total potential energy I1 is the summation over all potential energy sources; stresses and
forces. The simultaneous equations are derived by minimizing the total potential energy IT of
the block system.

2
ol , r,s=12,..,12 (5)

ijrs = 8d”.dsj
F=-TO o ©
adri

The solution to the system of equations (4) is constrained by a system of inequalities associated
with block kinematics (e. g. no penetration and no tension between blocks) and coulomb’s
friction for sliding along block interface. The system of equation (4) is solved for the
displacement variables and the final solution to this system is obtained as follow. At first, the
solution is checked to see how well the constraints are satisfied. If tension or penetration is found
along any contact, the constraints are adjusted by selecting new blocks and constraining positions
and a modified version of K and F are formed from which a new solution is obtained. This
process is repeated until no tension and no penetration are found along all of the block contacts.
Hence, the final displacement variables for a given time step are actually obtained by an iterative
process.

3. SINGLE BLOCK ON AN INCLINE - GRAVITATIONAL LOAD ONLY

This case was studied by Jiang &Yeung [18], Liu et al. [19] and Wu et al. [22], which this is a
classic example of dynamics. As shown in Fig. 1 a single block rests on an inclined plane at an
angle a to the horizontal direction. The friction angle along the contact surface is¢. Under the

action of gravitational force, displacement s and velocity v of the block are determined
analytically as functions of time ¢ and are given as:

mii = mgsina — m(g cosa tan @) (7)

u(t) =it =(gsina — g cos a tan @)t (8)
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_1 ..2_1 . 2
u(t) _Eut —E(gs1na—gcosatan¢)t )

Fig. 2 shows the results computed by 3-D DDA for different friction angles. This figure shows
that the analytical solutions agree well with the results computed by 3-D DDA.

rrrrrr Phi=5 (Analytical) B Phi=5 (DDA)
— — Phi=10 (Analytical) A Phi=10 (DDA)
——Phi=15 (Analytical) B Phi=15 (DDA)
14 -
=127 -
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a
24
0 T : : T "
0 0.5 1 1.5 2 25 3 3.5
Time (sec)
Fig. 1 a block sliding on inclined plane Fig. 2 Comparison between 3-D DDA results and

analytical solutions

4. SINGLE BLOCK ON AN INCLINE — DYNAMIC LOAD

Typically, earthquake damage is associated with finite displacement of large discrete masses.
Therefore, block performance in a slope should be evaluated in terms of permanent
displacements rather than in terms of safety factor derived from pseudo-static analysis. This
approach was firstly introduced by Goodman and Seed [28] and by Newmark [29] and is now
largely referred to as “Newmark” type analysis.

A Newmark type analysis assumes that relative slope movement is initiated when inertial forces
on the potential sliding mass overcome the shear resistance along the sliding plane, the
corresponding level of horizontal acceleration known as “yield acceleration”. The analysis
assumes that the mass will come to rest when it attains zero velocity. The permanent
displacement of the sliding mass can then be calculated by integrating the relative velocity of the
block during sliding over time. In this study the complete form of the equation is used. It should
be reminded that the solution is only valid for a single, rigid, block undergoing sliding
deformation.

No damping is assumed in this study.

4.1. The simplest form of a sinusoidal function
In this case, acceleration would have the form:
ii(t) = k.g.sin(t) (10)

where i is acceleration , ¢ is time, k is a constant coefficient and g is gravitation acceleration.

In order to find the velocity and displacement gravity by this acceleration function, the
acceleration has to be integrated twice over a range from ¢, to ¢, where ¢, is the time at which :
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ii(t) = a, (11)

where a, is defined as the yield acceleration. Goodman and Seed [28] showed that for frictional
sliding only, where cohesion along the sliding surface is zero, the down slope, horizontal, yields
acceleration for a block resting on a plane with inclination « and friction angle ¢ is given by:

a,=1g(p,—a)g (12)

where ¢, 1s a displacement dependent friction angle, which for all practical purposes in rock

mechanics could be replaced by ¢. The corresponding analytical solution for the velocity (¢)
and displacement u(¢) in simple form are given by:

U= j U =k.g.(—cos(t) + cos(t,)) (13)

U= j U=kg j(—cos(t))dt + cos(t, )(t — t,)=k.g.[-sin(f) + sin(t,) + cos(t, )(t — 1,)] (14)

and taking into account the frictional resistance offered by the inclined slope (complete form) are
given by:

U = gsina + kgsin(t)cosa — g(cosa — ksin(f)sin )tge (15)

U= j U =g.(sin(a) — cos(a).tan(¢))jdt+ 2.(cos(a) + sin(a).tan(¢))jk.sin(t)dt (16)

to ty

U= IU = g.(sin(a) — cos(a).tan(qﬁ))j(t —t,))dt+ k.g.(cos(ax) + sin(a).tan(gé))j(cos(é’) —cos(?))dt (17)

fo to

2

U= g.{(sin(a) —cos(@). tan(qﬁ){t2 —t,- tﬂ + k.g.[(cos(a) + sin(a).tan(gé))(cos(to )t —t,) —sin(¢) + sin(?,))] (18)

Considering a plane inclined at 20°, and k =0.5, the parameters used for the study are shown in
table 1.

Table 1. The used parameters for the simplest form of a sinusoidal function

Friction Yield Time at
Angle acceleration

a. (t
(o) (a,) , (Z)
" 0.3426 r%z 0.0699 sec

S

Acceleration, velocity and displacement function derived in Egs. (10), (13)-(16) and (18) are
plotted in Fig. 3 for one complete cycle that last 2z seconds.

The input acceleration record for 3-D DDA was the horizontal component only and the other
acceleration components were set to zero.

A comparison between the analytical solution and 3-D DDA results for Az = 0.01s is shown in
Fig. 4.
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Fig. 3 Analytical solution for acceleration, velocity and displacement (ii(¢) = 0.5g.sin(¢)) a) the simple form
b) the complete form

35 30
30 4 — Analytical — Analytical
25
25 ® DDA o 0 o4 ® DDA
£ E 20
£ £
2 £
§ g 15
s a
g 2 10
5 B
5 6 0 T
0 1 2 3 4 5 6
Time (sec) Time (sec)
(a) (b)

Fig. 4 Comparison between analytical solution and 3-D DDA results (¢i(¢) = 0.5g.sin(¢)) a) the simple form
b) the complete form

A very good agreement between complete form of analytical solution and 3-D DDA was
obtained, while error about 14% in the simple form can be seen and this could probably be
improved by optimizing the numerical parameters.

4.2. A harmonic function

The function (¢) =k.g.sin(wt) allows us to model different ground motion frequencies using
the parameter @ . The analytical solutions for the velocity and displacement in the simple form
are given by:

U= .[k. g.sin(wt) =k'—g (—cos(at)+cos(wt,))
® (20)

U= I U= kg [- sin(ar) + sin(et, ) +cos(awt, )t —t,)]
® ® ® (21)

and with respect to the frictional resistance offered by the inclined slope are given by:

U = gsina + kg sin(wt)cos a — g(cos a — ksin(wt)sin a)tgd (22)
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U= IU = g(sina —cos tan ¢)J.dt+ g(cosa +sin o tan ¢)Iksin(wt)dt
U= IU = g(sina — cosatanqﬁ)j(t —t,)dt+ kg(cos o + sin o tan ¢)J

U= g{(sin(a) - cos(a).tan(¢){t

— 1. -
2 0

to

to

to

cos(awt,) — cos(wt) dr

to

43

(23)

(24)

t]:| + K8 [(cos(@) + sin(r). tan(@) X cos(at, Xt — 1) sin(ar) + sin(wr,))] (25)
0]

Considering a plane inclined at 20°,k =0.75 and w=2, the parameters used for the study are
shown in table 2.

Table 2 The used parameters for the harmonic function

Yield :
Friction | acceleration Time at @,
Angl
nge(§0) (ay) (to)
22° 0.3426 0.0233 sec
5

In Fig. 5 the shape of the acceleration, velocity
Since w =2, a complete cycle lasts 7 seconds only.

Acceleration, Velocity,

Displacement

15

-
=)
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o

-10 4
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— Velocity (m/s)
— Displacement (m)

Time (sec)

Acceleration, Velocity,
Displacement

and displacement functions are plotted.

— Acceleration (m/s"2)
—— Displacement (m)

Fig. 5 Analytical solution for acceleration, velocity and displacement (ii(¢) = 0.75g.sin(2¢)) a) the simple form

b) the comnlete form

A comparison between the analytical solution and 3-D DDA results is shown in Fig. 6 for this
case. This figure shows that the results computed by 3-D DDA agree well with the analytical
solutions and it can be seen that result from 3-D DDA solution is maximum 8% lower than the

analytical results in case (a).

4.3. A sum of two sine functions
The influence of higher order terms in a series of sine functions is negligible and therefore we

will not proceed our validation effort beyond the sum of three sine functions. Therefore:

i(t)=k,.g.sin(wt) + k,.g.sin(w,t)

(26)

The corresponding analytical solutions the velocity and displacement in the simple form are
given by Egs. (27) and (28) below:
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Fig. 6 Comparison between analytical solution and 3-D DDA results (ii(¢) = 0.75g.sin(2¢)) a) the simple form
b) the complete form

U = K, .g.(_ cos( m,t) + cos( aJltO)) kgl — cos(w,t) + cos( a)2t0)) (27)
o, o,
U= k ;g [— sin(at) + sin(a)lto)]— kz—';g[sin(a)zt)— sin(a)zto)] + kl—'g.cos(a)lto) (t—t)+ k-8 cos(myt,) (t—t,)
1 a)z a)l a)z

(28)

and taking into account the frictional resistance offered by the inclined slope (complete form) are
given by:

U = g[sin a + (k, sin ¢ + k, sin @,t) cos a — (cos a — (k, sin w,t + k, sin w,t) sin a)tg @] (29)

U= _[U = g[(cos @ +sin a tg go)[ﬁ(cos w,t, —cos at) + k—z(cos W,t, —cos @,t)]+ (¢t —t,)(sin & — cos a tg p)]
o,

| @,
(30)
U= IU =g(sina —cosatg gz))[%(t2 —t3)—t,(t—t,)] +(cosa +sina tg (p)[kl—‘zg (sinwyt, —sinwt) + kz—‘zg(sin ,t,
a)] a)2
—sinw,t) + (klgcos wyt, +kz—gcos a)ztoj(t —1)] (31)
a)l a)Z

Considering a plane inclined at 20°, k, =02, k, =03, w, =1 and @, =2 the parameters used for
the study are shown in table 3.

Table 3. The used parameters for the sum of two sine functions

Yield )
Friction | acceleration Time at @,
Angle (Q)
(a,) )

22° 0.3426;1/2 0.0437 sec

S
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Acceleration, velocity and displacement functions for this case are shown in Fig. 7. A
comparison between the analytical solution and 3-D DDA results is shown in Fig. 8. At the end
of the cycle in Fig. (8a), 3-D DDA solution is about 7% lower than the analytical solution.
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Fig. 7 Analytical solution for acceleration, velocity and displacement (ii(z) = 0.2g.sin(¢) + 0.3g.sin(2¢))

a) the simple form b) the complete form
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Fig. 8 Comparison between analytical solution and 3-D DDA results (ii(r) = 0.2g.sin(¢) + 0.3g.sin(2¢))
a) the simple form b) the complete form

5. CONCLUSIONS

In this paper the displacement history of a single block on an incline subjected to dynamic
loading was studied. The analysis was performed for a single block resting on a plane inclined to
the horizontal for both simple form of analytical solution and taking into account the frictional
resistance offered by the inclined slope.

Three different sinusoidal functions with difference complexity considering the dynamic load
were investigated. Agreement between 3-D DDA and derived simple and complete form of
analytical solution was investigated. The observed agreement in all cases was very good, as
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experienced before in 2-D DDA by other researchers. The error was found to be 7% to 14% in 3-
D DDA, while previous 5% to 10% error was seen in 2-D DDA. The higher error in this study
could probably be improved by optimizing the numerical parameters. For the complete form
which the formulation of the analytical solution is obtained taking into account the frictional
resistance offered by the inclined slope, the agreement between analytical solution and 3-D DDA
was very well in all three different sinusoidal functions. However, the analytical solution is for
an ideal condition and can be considered as approximation of a physical problem with various
simplifying assumptions including: perfectly rigid block, constant friction, and complete energy
conservation.
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ABSTRACT: DDA (Discontinue Deformation Analysis) and DEM (Discrete Element Method)
are two important numerical methods for the analysis of discontinuous media. These methods
have been widely applied to the two-dimensional analysis of discontinuous deformation.
However, they are limited for three-dimensional analysis of practical rock engineering problems.
At present, spheres, bonded spheres or ellipsoids blocks are mainly used in 3D codes, which can
not describe the real behavior of more complex blocky system such as fractured rock masses.
Contact detection is a key problem in 3D DDA and DEM analysis. The limitations and
advantages of the existent contact detection schemes are discussed. Based on the advantages of
the existent methods, a new approach called incision body is put forward. The C program codes
for 3D DDA are developed. Convex blocks are the basic shape. A concave block can be formed
through combining several convex blocks. The simulation examples of block movement are also
given in this paper. The simulation result shows that the incision body method is capable of
overcoming indeed limitations of the existent methods, can detect 3D block contacts correctly
and hence simulate the open-close and slide process of the block masses.

1. INTRODUCTION

Discontinuous deformation analysis(DDA)[l’z] and distinct element method(DEM)?! are two
important numerical approaches which can model effectively rock mass discontinuities, and
hence compute the displacements of blocky system, as a result, have been enjoying wide
application in rock engineering and other engineering involving blocky system. Although
numerous extensions and improvements have been implemented with many papers published,
the two methods cannot analyze properly the practical three dimension problems of rock
engineering at present because that existent contact detection algorithms cannot get the exact
contact relationship sometimes between two 3D rock blocks that contact each other. Up until
recently, spheres, bonded spheres and ellipsoids were mainly used as elements or blocks in 3D
codes, which can not reveal the real behavior of more angular block system such as fractured
rock masses in that joints, fissures and faults intersecting. The real rock block can be convex and
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concave, also, can have any numbers of polygons as their faces. In principle, a contact may
appear between any two faces of any two blocks, and may exist in any combination of vertices,
edges and faces. Direct detection method is implemented through checking every possible
contact between faces, edges, vertices that belong to a block and the same that belong to the
other block. It has been proved to be excessively time consuming and not been used in code in
practice. The preliminary effort to detect 3D contact between blocks was made by Cundall™* who
proposed the common-plane algorithm to detect and represent contacts in system composed of
many polyhedral blocks. The common-plane method was developed in [5,6] for face-participant
contact, and [7] for fast detection. A further effort was made to analysis the 3D blocky system
using the CP method in [8], which was implemented by visual c++ programming. Unfortunately,
this algorithm cannot always detect the correct contact relationship between two 3D polyhedral
blocks, as was discussed in [9] and also emerged in author’s programming practice. Meanwhile,
a new scheme named penetration edges”’ was put forward to detect contacts between 3D
polyhedral blocks. Although this method explores a new way along which researchers may walk
to get a reliable detection method, it still sometimes detects wrong contact type or misses existent
contact between two blocks contacted each other. So a robust and reliable algorithm that can
detect contact relationship correctly between two real rock blocks is needed at present!' 2,

By analyzing the problems of existing contact detection methods and gathering the
advantages of them, this paper proposed a new method, namely incision body method, to detect
contacts between 3D rocky blocks more reliably. The algorithm has been implemented in code
programmed in visual c++. Numerical examples illustrate the applicability and reliability of the
proposed method. Three dimension blocks are assumed to be convex blocks while a concave
block can be modeled as a combination of several convex blocks attached to each other.

2. IDEAS AND PROBLEMS OF EXISTING CONTACT DETECTING METHOD

2.1. Direct detection method
Though this method is simple and straightforward, it dose not make use of the inherent
geometrical relations between three types of elements, namely vertex, edge and face, of a block.
For example, when detecting contacts between block A and block B, because that an edge of
block A consists of two vertices, it is not necessary to check for any possible interaction
relationship between the edge and geometrical elements of block B if relationship between the
two vertices and block B has already been checked. Furthermore, a face of block A consists of
several edges and, if two edges of the face contact with an edge of block B, then the face of
block A must contact the edge of block B without checking the relation between another edge of
the face of block A and the edge of block B. Similarly, because that two faces of block A
intersect each other at a certain edge, if the edge of block A contact a vertex of block B, then the
two faces of block A must contact the vertex of block B which dose not have to be checked over
while detecting possible contacts pertain to the two faces of block A.

Such straightforward relations between three types of elements represent part of geometrical
feature of a polyhedral block. These relations should be, and indeed have been, employed to
enhance the detecting efficiency by the following more valid methods.

2.2. Common plane(CP) method

Each face of a convex block partitions whole space into two parts, namely, inside part and
outside part. The intersection of inside parts of whole faces of a block defines the volume of the
block, on which the idea of common plane method based. When detecting contact between block
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A and block B, if an element of block A, for example an edge, is located in outside part of a face
of block B and the distance between every point on the element of block A and the face of block
B is greater than a tolerance, the element can not contact block B. If all elements of block A
located in outside of a face of block B and the distance between every convex of block A and the
face of block B is greater than a tolerance for contact, the two blocks can not contact. So faces of
a block are crucial in detecting contact because they part a block from space in which the other
block is located.

The idea of common plane method is based on the assumption that there must exist a plane
that can separate two blocks. If two blocks penetrate each other, there also must exist a plane that
can separate two penetration sections of two blocks. The plane separate two blocks, namely
common plane, is a plane that may be parallel to one face of either block or be not parallel to any
face of two blocks. As a result of using common plane, the contact detection between two blocks
reduced to detection between a block and a plane. The algorithm to position CP is: “Maximize
the gap between the c-p and the closest vertex and minimize the overlap between the common
plane and the vertex with the greatest overlap”. The algorithm itself defines the correct position
of common plane between two blocks contacted each other. During implementing the algorithm
in program, an initial position of CP is fixed using centroids of two blocks. The final position of
CP is determined based on the initial position. Because that relative positions of two centroids
cannot reveal adequately the local shape character of blocks, for instance, the same point can
play the centroid of many blocks at the same time that have different shapes, so the initial
position of CP cannot always ensure that the final position of CP would be fixed correctly. This
problem emerged in author’s programming and also has been noticed in [9]. The CP algorithm
was improved in [7] to speed up the detecting mainly and get the correct CP position more
reliably. But the problem of with the lack of reliability has not been solved by the improvement.

2.3.  Penetration edges method

The idea of this method is based on the assumption that there must exist an intersection between
two blocks in contact with each other. Since the volume of a block can be seen as a set of space
points, so there is a non-empty set of points that is the intersection. The edge or a part of which is
located in the non-empty set is called penetration edge. The penetration edge has three
realizations: a point of an edge of original block, a part of an edge of original block and a whole
edge of original block. Only if the length of a penetration edge is less than a limit, it reduces to a
point on the penetration edge.

When two blocks come into contact, combinations of penetration edges on block A and
block B determine the type of contact. The advantage of this method is that it can take the local
geometrical characteristics of a block into full account and, then, avoid the problem that hindered
development of CP method. All kinds of combinations of the penetration edges of block A and
block B constitute the universal set of edge-combination. All kinds of contacts constitute the
universal set of contact-types. Unfortunately, according to this method, the mapping from edge-
combination set to contact-type set is not a one to one mapping. Furthermore, the contact scope
of a block is not exact. As a result a contact between two blocks may not be recognized or may
be assigned the wrong type.

A reliable contact detection method should satisfy two criteria. Firstly, it should define an
exact contact scope for a block. When an element, namely point, edge and face, of another block
comes into the scope, a contact occurs between the element and another block. Secondly, it
should define a one-one mapping between the universal set of initial information and the
universal set of contact-type. For CP method, the initial information includes various relative
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positions of CP between two contacted blocks. In algorithm of penetration edges, the initial
information is all combinations of penetration edges.

3. IDEA AND PROCEDURE OF INCISION BODY METHOD

The idea of incision body method is similar to the one of penetration edges method. This method
detects contact type through identifying the geometrical type of the incision body of each block.
There are three geometrical types, namely, point and line and face (a incision body of a block
will be looked as a point while it’s volume is less than a tolerance).

The incision body of a block is the part of the block that is located in the volume
encompassed by outer limit of contact scope of the other block. For block A and block B that
contact each other, the incision body of block A is the intersection of Va and Vb’ and the
incision body of block B is the intersection of Vb and Va’(Va and Vb stand for volume of block
A and block B respectively, in the same way, Va’ stand for volume of contact scope of block A,
Vb’ stand for volume of contact scope of block B).

Detecting procedure of this method started by incising block B with planes determined by
contact scope of A and getting incision body of block B, then, identifying the geometrical type of
the incision body, for example, point; and then getting incision body of block A likewise, for
example, line; finally judging contact type, namely, point-line. There are overall 7 contact types,
namely, point-point, point-line, point-face, cross line-line, parallel line-line, line-face, face-face.

3.1. Contact scope of a block
In order to detect contact correctly, the contact scope of a block is defined at first. Suppose dO is
the tolerance of contact and d1 is the tolerance of allowable maximum penetration. If distance
between two elements is less than dO, the two elements contact each other. Assume that each
vertex is the intersection of three faces of a block. The contact scope can be disassembled into
four types of sections, as shown in Fig.1. The first type is face-control section. Each face of a
block owns one section of this type. This section is a space swept by the face of block when the
face slides along it’s outward normal direction with
length of dO. The second type is edge-control section.
It is a part of cylinder. Axis is the line coincided with
the edge and height equal to the length of the edge
while radius equal to d0. Each edge of a block owns
one edge-control section that is formed by subtracting
the parts of cylinder that located in space of block and
face-control section from the cylinder itself. The third
type is point-control section. It is a part of spheroid
whose centre is a vertex of block and radius equal to d0. Each vertex of a block owns one such
section that is formed by subtracting the parts of spheroid that located in space of block and face-
control section and edge-control section from the spheroid itself. The fourth type is penetration
section. There is only one such section for a block. It is a space encompassed by all inner faces
of a block. Each face of a block owns only one inner face that is formed by sliding the face of
block with length of dO along inward normal direction of the face.

If an element of a block comes into the contact scope of the other block, contact between the
element and the other block occurs.

3.2.  Classification of faces

Fig.1. Ilustration of contact scope of a block
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Faces of a block can be classified into three types according to the minimum or maximum
distance between the face and other block. The distance from a vertex to a face is defined as:
d"=n-(V-Vy) (1)

where n is unit outward vector normal to the face and Vj is any point on the face, and V is the
vertex. The minimum and maximum distances from a block to a face of other block are defined
as:

d™"=min{d";} i=1,2,....m ()

d™=max{d";} i=1,2,...,m (3)

where d'; is the distance from the i™ vertex of a block to the face, and min{-} and max{-}
represent minimum and maximum values, respectively, taken over all vertices of a block, and m
is the number of vertices of a block. If d™* from block A to a face of block B is less than —d1,
then the face of block B is an enclosure face. Else if d™" from block A to a face of block B is
greater than zero, the face of block B is a partition face. If a face of a block is neither an
enclosure face nor a partition face, then it is an incision face. When two blocks were detecting,
only the incision faces of a block were used to incise the other block to get the incision body of
the other block.

If a block has one partition face, then the detection can be implemented only by checking the
distances between every element of other block to the face. In fact, the partition face works like a
common plane. As a result, the advantage of common plane algorithm is introduced into incision
body algorithm in that it is good at taking the local geometrical characteristics of a block into full
account.

3.3. Procedure of contact detection

When detecting contact using this method, the whole procedure includes four stages. The first is
getting initial incision body of each block by incising twice. The second is getting final incision
body of each block by removing the false part of initial incision body from the body itself. The
false part of initial incision body of a block is the portion that is located outside contact scope of
the other block. The third is judging the types of two incision bodies belong to two blocks. The
fourth is getting contact type by combining the types of two incision bodies. Because there are
totally seven types of combination, so there are seven types of contact, namely, point-point,
point-line, point-face, cross line-line, parallel line-line, line-face, face-face.

In the first stage, in order to get the initial incision body of block A, two types of incising are
required, and two types of planes are used in turn. Each plane of the first type used in the first
incision is what coincides with a face on block B, whereas each one of the second type used in
the second incision is an outer plane of face-control section of a face on block B. The first
incising can find all faces of each type of block B and separate penetration section of block A
from other three sections, and find key incision faces on block B at the same time. The second
incising can get the initial incision body of block A by incising block A with planes determined
by the key incision faces on block B. Not all incision faces of a block are used ultimately to
determine the initial incision body of the other block. While incising block A with planes
determined by faces of block B, there is only one or two key incision faces on block B. If the
initial incision body of any block is empty, then the two blocks do not contact each other.

The two blocks cannot contact each other if any initial incision body located outside contact
scope of the other block. Whether an initial incision body of a block locates out of the contact
scope of the other block, a judging performed in the second stage will decide.

The final incision body of each block is also a convex polyhedron. All kinds of final incision
bodies of two blocks constitute the universal set of initial information of this detecting method.
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The geometrical type of final incision body will be determined in the third stage. Edges of a final
incision body are sorted into four types, namely, original edge, incision edge, original point,
incision point. If an edge is conserved without being incised after incising in the first two stage,
then it is an original edge that has two vertices. The incision edge has zero or one vertex but the
length is greater or equal than d2 (the tolerance for edge length). If length of an incision edge is
less than d2, the edge reduces to a point. If the edge has one vertex, it reduces to an original
point, else, reduces to an incision point. Let a, b, ¢, d be the number of original edges, incision
edges, original points and incision points of an incision body respectively. So the type of final
incision body can be represented with the combination of four numbers, namely, “abcd”. There
are 16 different of combinations. All combinations and corresponding geometry types are listed
in Table 1. The types marked with an asterisk are distinguished in program by confirming the
nice form of incision bodies.

In the fourth stage the contact type is determined by combining the two types of two incision
bodies.

Table 1: Types of incision bodies

No. “abed” Type
1 0000 empty or face*
2 0001 edge
3 0010 point
4 0002 edge or face*
5 0011 point or face*
6 0020 face
7 0102 edge
8 0111 point or edge*
9 1020 edge
10 010d(d>2) edge or face*
11 011d(d>1) point or edge*
12 0204 face
13 0212 point or edge or face*
14 021d(d>2) point or edge or face*
15 0313 point
16 abcd(at+b>=2) face

4. NUMERICAL EXAMPLES

The examples presented below have been used to demonstrate how the incision body algorithm
can detect contacts between 3D polyhedrons correctly and reliably. The algorithm has been
implemented in DDA method.

As the first example, consider the geometry of Fig.2 where a block system, consisting of 3
blocks in the shape of cuboid, rests on ground. Three blocks are numbered 1 to 3 along positive
z-direction with the fixed bottom block (No.1) having dimensions of 10mx8mx3m and the top
two blocks (No. 2 and No. 3) having dimensions of 6mx4mx2m. The top block is subjected to a
horizontal force F which linearly increased from 1x10°N at 0 sec to 3x10°N at 1000 sec. F acts
in the positive y-direction at the centre of a face parallel to the x-z plane. Four vertices of bottom
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face of the bottom block are fixed on ground. The material properties for the three blocks are:
Young’s modulus E=3160Mpa, Poisson’s ratio z=0.2,0=2400kg/m’. The interface properties
are: friction angle ¢=5, cohesion ¢=0, tensile strength=0. Figure 4 shows the results of example
1. Block 3 slides continually on top face of block 2 until it topples and comes into contact with
block 1. Finally, block 3 departs from block 2 and block 1 successively at 53 sec and 55 sec
respectively. Following departing, block 3 rotates and falls off block 1. This example shows the
effectiveness of the algorithm when detecting line-face and face-face types as well as forming

new contact and releasing of existent contact.
F
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Fig.2. Example 1 Fig.3. Example 2
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Fig.5g. Example 2 (3.0s)

The second example deals with a six-block system consists of five cuboids and one triangular
pyramid, as shown in Fig.3. Six blocks are numbered 1 to 6. The bottom block is numbered 1
and having dimensions of 12mx10mx3m. The top block is numbered 6. It’s top face is a
isosceles triangle whose base edge has a length of 4m and two sides have a length of (20)"m.
Middle four blocks are numbered 2 to 5 and having dimensions of 6mx5mx3m. Four vertices of
bottom face of the bottom block are fixed on ground while the top block is subjected to a vertical
force F which keeps 1x10’N all the time. F acts in the negative z-direction at the centroid of the
top face parallel to x-y plane that is horizontal. The blocks and interfaces have the same
properties as in the first example. Figure 5 shows the results of example 2. Block 6 splits the
middle 4 blocks and squeezes itself into joints in the midst of 4 blocks in little time with
concomitant slide and detachment between blocks. This example shows that the algorithm can
detect the following types reliably: point-point, point-line, point-face, cross line-line, parallel
line-line. Furthermore, it also demonstrates that the algorithm can distinguish different types
effectively and detect various contact type transform correctly.

5. CONCLUSIONS

To apply DDA or DEM in resolving practical problems in rock engineering, it is essential to
have a reliable 3D contact detection algorithm. But the existing detection algorithms cannot
always handle the exact contact relationship between two 3D rock blocks that contact each other.
Based on the analysis of ideas and problems of two methods already used in programming, the
incision body algorithm is proposed in this paper. Two examples in this paper demonstrate the
effectiveness and reliability of the algorithm in detecting contact between polyhedrons.
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DDA Benchmark Testing at UCT — A Summary

Scheele, F. and Bates, B.
Department of Civil Engineering, University of Cape Town, South Africa

ABSTRACT: Discontinuous Deformation Analysis (DDA) was initially developed for use in
rock slope engineering and has proved to be very useful in many other fields of engineering.
However, its readiness and applicability to real, usually complex, engineering problems is not
always apparent. For a number of years the major thrust of DDA research was the development
of suitable benchmark tests, to establish points of reference for basic, standard, small-scale
problems and thus hopefully, the development of guidelines for the selection of the input control
parameters of the computer code.

This paper presents a brief summary of the benchmark tests undertaken in laboratory conditions
at UCT since 1998. The paramount sensitivity of the control parameters and the relative
insensitivity of the physical characteristics in various situations is presented and discussed. The
findings will be demonstrated in a selection of more recent laboratory tests and their equivalent
DDA model simulations.

1. INTRODUCTION

In this paper a selected number of DDA benchmark tests are described that have been conducted
in Geotechnical Engineering at the University of Cape Town relatively recently. The benchmark
tests refer to laboratory model tests that can be used to study the effects of a single chosen value
or a combination of chosen values of the control parameters g0, g1, g2 and kO1 for the purposes
of verification. DDA Version 96, the original implementation of the DDA method developed by
Shi [1, 2], was used to simulate the benchmark tests.

2. BENCHMARK TESTING PROCEDURES

2.1. Criteria for selecting Benchmark Tests
Benchmark tests were generally designed with the following criteria in mind:

Simplicity - Discrepancies between the physical test and the
computer analysis should be easily identifiable.
Construction accuracy - The model should be designed in such a way

that the precision required for reliable results is
not greater than the precision allowed by the
construction techniques.

Measurement accuracy -  The limitations of the data capturing or
recording equipment should be taken into
account.

Repeatability - The test should be able to be repeated many

times to confirm that the results are consistent.
Models that are likely to be damaged during
testing should be avoided.
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The repeatability of a benchmark test is not only
related to the material from which the physical
model is made, but also to the variations in the
mechanism involved. Tests where small
deviations (such as the positioning of blocks)
would result in large differences between results

should be avoided.
Correspondence to A physical model should be designed to
subject - incorporate aspects which the computer

program is validated to simulate. If the
complexity of the physical model lies beyond
the scope of the computer program, it will be
difficult to identify the source of errors.

2.2. Material Properties

The material properties of the ‘building’ blocks are the Young’s modulus, Poisson’s ratio,
density and the interface friction angle. Both the elastic modulus and Poisson’s ratio were
generally obtained from the manufacturer’s specifications. The density of a material is calculated
as the ratio of the mass of a block and its dimensions.

The angle of friction of the interfaces was determined experimentally using a universal
tension/compression testing machine (ZWICK) fitted with a direct shear attachment. The
experimental set-up is shown schematically in Figure 1.

connection to
load cell

normal load

Fig. 1. Test accessory for interface shear investigations
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The rate at which shear took place was generally set to 150mm/min in accordance with ASTM D
1894-90 Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and
Sheeting [3]. Lower shear rates showed indistinguishable effects on the results. For each friction
surface, three normal loads were applied. Three shear tests were then carried out for each of
these normal loads.

2.3.  Recording of Data

The aim of the benchmark tests was to measure the displacements of the blocks over time once
the test was initiated. The overall behaviour of the model was recorded by a high speed digital
camera and subsequently, the displacements measured using the respective bitmap images. In
addition, stop watches were used to time each experiment, also to identify erroneous runs and to
provide general information as to the accuracy of the measuring systems.

Regarding the interface tests rates, loads and displacements were recorded by the ZWICK
internal data acquisition system (class 0.5).

3. OVERVIEW OF BENCHMARK TESTS

3.1. Inclined Block Model

The benchmark test (shown in Fig. 2) consists of two components: a set of blocks sitting
stationary on a stepped slope and a single, dynamic block sliding down an adjoining steep ramp,
striking the stationary blocks in such a way that the blocks fail with suitably large displacements.
The modes of failure are a combination of sliding and toppling.

The materials and geometry of the model were selected so that initially the blocks were close to
the state of limit equilibrium and thus requiring the same strike resulting in roughly the same
velocities with which the blocks were knocked over. This, in turn, guaranteed almost identical
and most consistent results each time the test was run.

Paper B

Fig. 2. Physical and DDA model [4,5]

A certain amount of trial and error investigation was required to identify the optimal values for
the control parameters kOl and g0. The values k01=0.80, g2=0.001, gl=0.001s and
g0=1.5x10°N/m. (as listed in the overview in Table 1) were found to produce final block
configurations which correlated very well with the physical observations.
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3.2. Steps Model

A number of PVC blocks were piled up in a staircase type fashion to form six steps. On each step
two steel cylinders were placed with one single cylinder at the edge of the highest step (as shown
in Figure 3). This cylinder was allowed to roll down, pushing apart the two cylinders located on
the lower step. Thus, the momentum was transferred to the cylinder sitting next to the edge,
which in turn rolled over to the next lower step. The chain reaction continued until the cylinder
hit the ground surface.

In this benchmark test the modes of rolling, colliding and sliding were being investigated.

Fig.3. Steps models [6]

The tests showed a high degree of repeatability; the average runtime of the experiments was
1.91s. In numerous simulations the control parameters of k01=1.00, g2=0.001, g1=0.001s and
g0=1x10°N/m were determined matching not only the run time of the physical model but also
the displacement behaviour of the cylinders.

3.3.  Half Pipe Model

This benchmark test consists of a wooden block with a high precision circular arc cut out. A steel
cylinder was placed on the edge of the ramp (as shown in Figure 4). Once the cylinder was
released it rolled down along the surface in dampened simple harmonic motion. The cylinder
lost energy while rolling from side to side of ever decreasing height until it came to a complete
stop in the middle of the half pipe. Adequacy in modeling the modes of sliding and rotational
acceleration was being tested.

Fig. 4. Concave half pipe [6]
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Again as before, the circular ramp as well as the cross-section of the cylinder was approximated
by a cyclic polygon containing 200 sides. Attempts were undertaken to represent the circular
shapes by a 1000 sided cyclic polygon to reduce inaccuracies.

However, the simulations were in both cases almost identical and in perfect agreement with the
observations thus not allowing an adequate assessment of the effects of the number of sides on
the results. The following control parameters of kO01=1.00, g2=0.001, gl1=0.001s and
g0=1.3x10*N/m were eventually employed.

3.4. Domino Run

This benchmark test consists of numerous rectangular PVC blocks lined up at 30mm spacing on
a horizontal surface (Figure 5). The first block was allowed to topple into the second block,
which in turn toppled, starting a process which continued through the entire line of blocks.

. d

Fig.5. Domino run

The time taken for the physical model to run was calculated by multiplying the number of frames
in the video recording by the frame length. An average test time of 1.267 seconds was calculated
which is in close correlation with the analytical result.

The behaviour predicted by DDA seemed most realistic with k01=1.00, g2=0.0005, g1=0.001s
and g0=500 000 N/m. The time taken here was not closest to the average experimental time
(which was obtained with g2=0.002), but cannot be seen as any less accurate in the context of the
video recording frame rate.

A comparison between the physical model and the DDA model is shown in Figure 6.
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Fig.6. Toppling behaviour in the physical and DDA models (30mm spacing) [7]
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3.5. Rockfall Canopy

Road cuttings in steep rock formations are frequently accompanied by cantilevered canopies.
These structures are intended to deflect the impact of rockfalls and to keep the road clear of any
debris. This benchmark test was conceived as a simplified representation of a cantilevered
rockfall canopy, where the investigation was intended to determine the maximum rock fall height
for which the canopy and “rock mass” would remain intact.

In the model the “rock formation” consisted of eighteen identical rectangular blocks in analogy
to a jointed rock layer. The canopy was represented by one of four smaller rectangular blocks. A
circular cylinder represented a falling boulder. The larger rectangular blocks were made from
high-density polyethylene and the smaller blocks from PVC plastic. A release mechanism was
constructed to ensure that the falling circular cylinder was consistently dropped from the same
position.

In the physical test the block directly above the cantilevered canopy was pushed apart from the
adjacent block mass. Successive blocks above this behaved in a similar manner, leaving a
consistent failure pattern in the block mass. Different drop heights were tested and the rock fall
canopy failed consistently for a drop height of 250mm.

Fig.7. Typical block positions after impact

None of the control parameters tested resulted in a good correlation between the physical and
DDA models. The block mass collapsed in all analyses (see also Fig. 8). In the physical test the
canopy was dislodged without causing a collapse of the block mass.

x &K

Fig.8. Collapse of block mass for a drop height of 210mm




66 Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

Since DDA is based on the assumption of uniform strain distributions in each block bending in
the canopy and non-uniform strains in the circular block due to impact cannot be modeled
resulting in unrealistic energy transfer during the collision.

3.6. Stepped Pyramid Model

This benchmark test was intended to address the rate controlled displacement of a particular
block while accurately monitoring the force required. The physical model is set up on a Perspex
base consisting of 12 identical polyethylene blocks. The blocks were arranged into five tiers as a
symmetrical pyramid. Three spaces in the block arrangement introduced a level of instability
(see Figure 9).

Connection
to load cell

e

controlled
displacement

Perspex surface

Fig.9. Stepped pyramid

A (key) block on the lowest tier was pulled away from the pyramid (using a steel wire attached
to a load cell) causing the structure to collapse. The tensile force was recorded. The test was
repeated three times. All three tests showed in principle identical collapse behaviour (see Figure
11). The force-displacement responses are shown in Figure 10. After a displacement of about
12.3mm the key block provided no (zero) support of the pyramid and the structure collapsed.

To achieve matching results the DDA simulation had to be undertaken in two stages: a static
analysis with a prescribed displacement of the key block of 12.3mm and a second stage with no
set displacements allowing the collapse of the pyramid under self-weight to take place.

The static analysis was run with the control parameters k01=0.00, g2=0.0005, g1=0.5s and
g0=2x10’N/m. In stage two the geometry was input with the key block at a displacement of
12.3mm. The block directly above the key block was also repositioned to reflect the geometry at
the end of stage 1. On a qualitative level the results from the static analysis seemed to be more
realistic than those from the dynamic analysis.
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Fig.10. Force-displacement responses with averaged result

The geometry of the physical model and DDA simulations at various displacements of the key
block are shown in Figure 11.

4. SUMMARY AND CONCLUSIONS

It appears that DDA, in its basic form (Version 96), is capable of simulating all discussed
benchmark tests as long as there are no or low energy collisions involved. Problems involving
friction, basic motion and systems with single or multiple blocks of any shape can be simulated
comfortably providing good and accurate results. This is in support of the findings of earlier
work [8].

Both dynamic and static problems can be solved. The inherent kinetic damping causes the
scheme to dissipate energy whilst still accurately simulating the primary response of the test
system. However, the real strength of DDA is its ability to solve static problems. In all cases, the
accuracy of the solutions of the analyses is highly sensitive to the choice of appropriate values of
the control parameters.

Benchmark tests (provided these experimental set-ups and performances are of highest precision
and accuracy) are very useful tools if clarity is needed about particularly complex physical
processes to be analyzed. This will set the framework for the choice of suitable control
parameters. Although it is unlikely that a guideline for the selection of definite values for kinetic
damping, k01, and the stiffness of the penalty springs, g0, will ever be developed.
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ABSTRACT: This paper presents a description of and results produced during a small validation
project involving comparison of the mechanical behavior of physical models constructed in the
laboratory, and equivalent DDA models. Wooden blocks were used in the laboratory
experiments, with three different materials along the block interfaces (wood, Teflon, and
sandpaper). Two types of models were constructed: 1) sets of three blocks on a single incline,
and 2) multiple vertical blocks on a double incline. The single-incline experiments produced a
range of results, but in most cases the displacements of the experimental blocks were greater than
those of the DDA blocks; two plausible explanations for this are 1) that the friction angle
realized in the experiments was lower than originally measured, or 2) that once motion initiated,
the friction dropped from a higher static value to a lower dynamic value. The double-incline
experiment was designed to demonstrate that the same geometric configuration can display either
sliding or toppling failure mode depending on the friction angles of the different surfaces. The
DDA results were found to be very sensitive to friction angle and geometry.

1. INTRODUCTION

Discontinuous Deformation Analysis (DDA) is a numerical analysis method used to model the
motions of rock masses under a wide range of conditions [1]. DDA allows the user to construct
models of blocky materials that recognize different loading conditions and interactions between
blocks, accounting for friction along block surfaces. One of the results of the analysis is the
expected failure mode, if any, resulting from the modeled conditions.

The primary objective of this research project was to validate DDA, showing that it produces
accurate results for known situations. Simple block models were constructed in the laboratory to
provide data for comparison with identical models constructed using DDA. The models were
designed to demonstrate sliding and toppling failure modes, and the associated block motions
were recorded. The models were then replicated in DDA and the motions and failure modes
were compared. The overall goal was to elevate confidence in the DDA method, thereby
promoting its use in practice as well as research. Itasca’s UDEC was used in one portion of the
study, providing a comparison of two different numerical methods to the experimental data.

While a significant amount of similar work has been done previously, particularly at Kyoto
University [2,3], the University of Capetown [4], Ben Gurion University [5], and Hokkaido
University [6], additional validation using physical models is beneficial to the DDA community.
This small study is designed to complement and extend the work already undertaken.
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2. LABORATORY MODELS

Wooden blocks constructed out of particle board were used to construct the laboratory models.
Wood was used because it is much easier to manipulate than rock. Particle board was selected
because it displays less anisotropy than standard lumber.

2.1. Material Properties

The properties of the wooden blocks were measured in the laboratory. The density of the wood
is 0.7 g/em’, which corresponds to a unit weight of 6.9 kN/m® (43.8 pcf). Montana Tech’s
triaxial testing apparatus was used to determine the Young’s modulus (28,000 psi) and Poisson’s
ratio (0.0357). Although these values are much lower than typical values for rock, the models
constructed involve extremely small loads on the block and the associated deformations are
negligible, so the results are expected to be insensitive to the elastic properties of the material.

The friction angle of the block surfaces was measured using the simple tilt test, as shown in
Figure 1(a). In order to incorporate a range of friction values in the models, the block surfaces
were covered with sandpaper to increase the friction angle, and with Teflon to decrease the
friction angle, as shown in Figure 1(b). The friction angle values observed in the tilt tests are
displayed in Table 1. Note that the tilt test measures the friction required for the initiation of
motion, which corresponds to the static friction coefficient.

(a)
Figure 1. Tilt tests were performed to measure the friction angle of the block surfaces: (a) tilt test in progress, (b)
examples of the three surfaces used: wood (left), Teflon (middle), and sandpaper (right).

Table 1. Average friction angles of the block surfaces measured using the tilt test.

material on surface material on surface of upper block
of lower block wood sandpaper Teflon
wood 30° 40° 20°
sandpaper 40° 46° 27°
Teflon 22° 36° 18°

2.2. Models

A suite of “single-incline” models was constructed using sets of blocks with the following
dimensions: 45° right triangle with 2” sides (2.5” thick), rectangle 2” wide by 2.5” high
(27thick); and rectangle 1” wide by 6” high (2.5 thick). Three sets of the blocks were made,
with a different material on the base of each block (wood, sandpaper, and Teflon), as shown in
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Figure 2. The blocks were arranged in the configuration shown in Figure 2(a), with the triangle
in the front and the tall rectangle in the back, on top of an inclined base block. Nine experiments
were recorded for each base block inclination, corresponding to the nine combinations of 3
materials on the base block and 3 materials on the bottom of the set of upper blocks.

Additionally, a “double-incline” model was constructed with multiple thin vertical blocks placed
on a base consisting of two inclined planes, a steeper upper incline and a shallower lower incline.
The model was designed to demonstrate that the same geometric configuration can display either
sliding or toppling failure mode depending on the friction angles of the different surfaces, as
discussed in [7]. Toppling requires very tall, thin blocks and a very low friction value between
the toppling blocks, both of which were difficult to achieve in the physical models. Only one
configuration was constructed, with an upper incline of 75° and a lower incline of 30° The
double-incline model is shown in Figure 2(b).

(a) (b)
Figure 2. (a) The sets of blocks used in the single-incline experiments. (b) The double-incline model.
2.3. Data Collection
The block motions observed during the tests were recorded using a 1000 frame-per-second video
camera. A mark was made on each block, and the associated horizontal and vertical movements
of the mark were measured with the aid of a transparent grid, as shown in Figure 2(b).
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Figure 2. The experimental setup, showing the video camera, measurement grid, and blocks.



74 Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

3. NUMERICAL MODELS

Numerical models were created in DDA that matched the experimental models as closely as
possible. The DDA software that was used for the study is the most recent version of UC-
Berkeley’s DDA for Windows, with DDAML input files. Figure 4 shows examples of the DDA
models.

257 Berkeley DDA for Windows for Windows 95/NT - Geomatry - toppling_45_6andbox.geo BEx 2% Berkeley DDA for Windows for Windows 95/NT --- Geometry - toppling_45_6andbox.geo, Analysis File - toppii... [= ][E1)[]
File View Geometry Analysis Resuls Options Help File View Geometry Analysis Resuls Options Help

RS =T RS =T

@ B 4 @NC:00  BNO Mac0.000  [Min:0.000 (5.196,10.136) @ w54 @ ET:0.5000 [15: S0/50 OC: -1 | | — 1] 0.0000 (5.755,4.143)

207 Berkeley DDA for, Windows for, Windows 95/NT --- Geometry = doubleincline.geo, Analysis Fi

204 Berkeley DDA for, Windows for, Windows 95/NT --- Geometry - doubleincline.geo, Analysis Fi

File View Geometry Analysis Results Options Help

BB @[t x = = BlB| @[ x|@ =

File Wiew Geometry Analysis Results Options Help

@ MNB: 10 @ ET: 4.1922 TS 150/150 oC-1 C |} J |1]: 0.0000 @ MB: 10 @ ET:2.6529 TS 150150 oc -1 C |} | |1]: 0.0000

(b)
Figure 4. DDA models of (a) one of the single-incline experiments, showing initial (left) and final (right) models;
(b) the double-incline experiment, showing one configuration that slides (left) or topples (right) depending on the
friction angles on the block surfaces.
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4. RESULTS AND DISCUSSION

4.1. Single-Incline Experiments

The results of several of the single-incline experiments are graphed in Figures 5, 6, and 7. The
graphs show displacement as a function of time for the experimental and DDA results, and
illustrate the range of results observed. The three graphs in each figure represent the
displacements of the three blocks in each set (triangle, small rectangle, tall rectangle). All of the
figures correspond to the experimental setup with wood material on the surface of the base block,
inclined at 30°. Figure 5, 6, and 7 display the results for the set of blocks with wood material,
Teflon, and sandpaper along the base, respectively.
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Figure 5. Graphs of displacement [in] vs. time [s] for Figure 6. Graphs of displacement [in] vs. time [s] for
the experimental (dark blue) and DDA (light yellow) the experimental (dark blue) and DDA (light yellow)
blocks. The base block is inclined at 30°, with wood blocks. The base block is inclined at 30°, with wood
material on the surface. The upper blocks also have material on the surface. The upper blocks have
wood material on the surface of contact. Teflon material on the surface of contact.
Displacements shown are for (a) triangular block, (b) Displacements shown are for (a) triangular block, (b)
small rectangle, and (c) tall rectangle. small rectangle, and (c) tall rectangle.
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Figure 7. Graphs of displacement [in] vs. time [s] for
the experimental (dark blue) and DDA (light yellow)
blocks. The base block is inclined at 30°, with wood
material on the surface. The upper blocks have
sandpaper material on the surface of contact.
Displacements shown are for (a) triangular block, (b)
small rectangle, and (c) tall rectangle.

Figure 5, with data for the wood on wood
models, is a case in which the friction angle
and inclination angle are equal (30°). There
is a small driving force due to the tendency
of the tall rectangle to topple at an
inclination greater than tan™(base/height).
The data show that the displacements of the
experimental blocks are greater than the
displacements of the DDA blocks. One
explanation for this is that the actual friction
angle of the wood/wood surface is lower
than that measured in the tilt test, which is
not unreasonable due to the variability in the
block surfaces. The other plausible
explanation is that while the static friction
angle measured in the tilt test was correct,
once the blocks start moving, the friction
drops to a lower dynamic value. Note that
the experimental data could be used to back-
calculate the best-fit friction angle realized
in the physical model.

The results displayed in Figure 6 correspond
to the Teflon on wood models, with a
surface friction angle (20°) significantly
lower than the angle of inclination (30°).
These results show the best match between
the experimental and DDA models, for the
triangle and small rectangle blocks. The tall
rectangle, however, displaced a great deal
more in the DDA model than in the
laboratory experiment, probably because of
a higher friction value on the real block due
to variation in the Teflon or wood material
along the surface of contact.

Figure 7 shows the results for sandpaper on wood, a case in which the friction angle (40°) is
significantly higher than the angle of inclination (30°). All three of the experimental blocks
displaced a great deal more than the DDA blocks. Again, this may be due to a discrepancy
between the friction angle measured in the tilt test and that realized in the actual model, either
due to variation in the material surfaces (degradation of the sandpaper during the course of the
experiments could cause the friction angle to decrease), or the difference between static and
dynamic coefficients of friction. In this case in particular, post-experiment re-testing of the
friction angle of the surfaces in contact could shed some light on the differences between the

physical and numerical models.
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4.2. Double-Incline Experiments

As previously mentioned, the double-incline model was designed to demonstrate that the same
geometric configuration can display either sliding or toppling failure mode depending on the
friction angles of the different surfaces. One set of blocks was constructed with the objective of
observing different failure modes when the surface materials were changed. In all of the
experiments, the lowest friction angle (18°, corresponding to Teflon/Teflon surfaces) was used
on the upper incline to maximize the driving force in the model. The materials along the lower
incline and vertical surfaces were varied, with a total of 5 different combinations tested. Table 2
shows the different combinations of materials modeled, along with a comparison of the modes of
failure observed in the physical models and predicted using DDA.

Table 2. Modes of failure observed in the models.

Configuration
lower incline friction vertical surface friction Laboratory Model | DDA Model
medium (30°, wood/wood) | medium (30°, wood/wood) sliding sliding
medium (30°, wood/wood) | low (20°, Teflon/wood) sliding sliding
high (40°, wood/sandpaper) | low (20°, Teflon/wood) toppling sliding
high (40°, wood/sandpaper) | medium (30°, wood/wood) toppling sliding
high (40°, wood/sandpaper) | high (40°, wood/sandpaper) | toppling/stable sliding

The results did not correspond very well, since DDA predicted sliding failure mode in all cases,
and the physical models displayed toppling failure mode in three of the five cases. This
discrepancy was investigated more closely, by 1) re-measuring the friction angles of the surface
materials, and 2) measuring the geometry actually achieved in the physical model. The tilt test
was again used to measure the friction angles. There was significant scatter in the results, as
displayed in Table 3. The actual width of the vertical blocks in the physical model was 0.5, as
opposed to 0.6” in the design.

Table 3. Ranges of friction angles of the block surfaces measured using the tilt test.

material on surface material on surface of upper block
of lower block wood sandpaper Teflon
wood 20-40° 40-50° 15-25°

sandpaper 38-48° 45-55° -
Teflon 18-22° - 12-20°

A number of DDA models were run to determine the degree of sensitivity to the friction angle
and geometry of the configuration. It was found that while the results were sensitive to geometry
and also to the timestep size and maximum displacement per timestep analysis parameters, they
were particularly sensitive to friction angle. In each of the three cases in which the DDA model
slid but the physical model toppled, corresponding to the three cases in Table 2 with
sandpaper/wood on the lower incline, the DDA models can be made to topple by making small
changes in parameter values. For instance, holding everything else constant, the models with
wood/Teflon on the vertical surfaces can be made to topple if the upper incline friction angle is
reduced by 4° (from 18° to 14°), or if the lower incline friction angle is increased by 1° (from
40° to 41°), or if the vertical surface friction angle is reduced by 1° (from 20° to 19°). All of
these are well within the range of values displayed in Table 3. This suggests that precise
measurement of the friction angle is critical for accurate results, but due to the inherent
variability of material surfaces, this is a very difficult property to pinpoint.
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5. CONCLUSIONS

In the experiments involving block motions along a single incline, the displacements of the real
blocks were typically greater than those of the DDA blocks. The most likely explanations are
that the actual friction angle on the blocks was lower than measured in the tilt tests (and
consequently used in the DDA models), or that the real blocks displayed a reduction in friction
coefficient from static to dynamic once movement initiated.

The results of the double-incline model study related to sliding vs. toppling failure modes are
extremely sensitive to the friction angles of the contacting surfaces. The initial results of several
of the DDA models did not match the observed behavior of the physical models, but only very
small changes in friction angles were required in order to produce the same failure mode.

Although this validation study did provide some useful results, there was quite a bit of
uncertainty associated with it. It would be valuable to repeat the work using more controlled
geometries and precisely measured material properties, if resources become available.
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ABSTRACT: In a previous study, the deformation of rectangular blocks due to gravity (volume)
loading was tested over a range of block sizes and material properties using UC-Berkeley’s DDA
for Windows. In all cases the percent error between DDA for Windows and the exact, analytical
solution was negligible. In this follow up study, the rectangular blocks were subjected to an
external point load, and again in all cases the percentage of error was negligible. Additionally,
DDA’s capability to model the deformability of blocks that are not rectangular was validated. In
these tests, a trapezoidal shaped block was subjected to an external point load and tested over a
range of block sizes and material properties. While the results were insensitive to variations in
load, material properties, and height of the block; they were sensitive to changes in block shape.
For the scenarios where the width of the top of the trapezoid varied, the percent error was close
to 0% for a trapezoid that was almost rectangular to 40% for the case where width at the top of
the trapezoid was so small it resembled a triangle. These results quantify and put in question
DDA’s ability to correctly model the deformation of non-equidimensional blocks due to the
stresses and strains within any given block in the analysis being constant across the whole region
of the block regardless of shape and size. Because of the error experienced in DDA, a
comparison was then performed using Itasca’s UDEC 4.0, which is a commercially available
discrete element method. The same trapezoid parameters were used in the UDEC runs,
revealing a 0.05% to 39% error. An additional sensitivity analysis was performed to find the
optimum mesh size for the UDEC blocks.

1. INTRODUCTION

Discontinuous Deformation Analysis (DDA) is a numerical method used to model the motions of
blocky masses [Shi, 1993]. An important aspect of the analysis of how a material reacts under a
loading condition is the deformation that is caused by the load being applied. In DDA the blocks
are "simply deformable," which means that stresses and strains within any given block are
constant across the whole region of the block regardless of its size or shape; consequently, DDA
block deformability is limited and is most accurate for models with more regularly shaped and
equidimensional blocks [MacLaughlin and Tinucci, 2000].

Validation of computer applications of DDA is an important part of the software development
process. This often involves testing to make sure the program is modeling simple mechanical
problems correctly. Simple mechanical problems are used because the data from the numerical



80 Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

method can then be compared to an exact, analytical solution. To ensure that the program is
modeling a complex problem correctly, it must first be verified that it is modeling the smaller
parts of the complex problem correctly.

In a previous study, the deformation of rectangular blocks due to gravity (volume) loading was
tested over a range of block sizes and material properties using UC-Berkeley’s DDA for
Windows. In all cases the percent error between DDA for Windows and the exact, analytical
solution was negligible [Duneman et al., 2003]. In this study, DDA’s ability to correctly model
the deformation of a block experiencing a point load with gravity turned off was tested over a
range of sizes of rectangular blocks with different material properties. Additionally, trapezoidal
shaped blocks were tested to see if DDA would correctly model a non-rectangular block. The
version of DDA software that was used was UC-Berkeley’s DDA for Windows.

2. ANALYTICAL SOLUTIONS

Two different analytical solutions were used: one for the rectangular block and one for the
trapezoidal block. To determine the deformation of the blocks, the analytical solution for the
strain that the blocks experienced was solved because strain is defined as the deformation of a
body under an applied force. For the rectangular block under a point loading condition with
gravity turned off, the definition of strain and stress is [Beer, DeWolf, 2002]:

e=T (1)

where € = strain, ¢ = stress, and E = Young’s Modulus of Elasticity.

o= (2)

where P = applied force and A = cross-sectional area on which the force is being applied. The
analytical solution for axial strain in a rectangular block is:

P
"~ AE (3)

The lateral strain was found by using:

€ Lateral = TVE yial 4)
where v= Poisson’s Ratio.

The same definition of stress and strain was used for the analytical solution for the strain
experienced by a trapezoid, but the deformation of the trapezoid was used to ultimately solve for

the strain experienced.

U= IHO PHOdy
o (bHy— (b —b)y)E

()

where b is the initial width of the base and b, is the initial width of the top of the trapezoid.
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The total change in height u, can be found by integrating over the initial height Ho.

_ PH, H, dy
e E '[0 (biH, — (b, —b,))y ©
pPH,[ 1 B o
u=" {_ Gy ol =y + (b1H0)|)L )

After substituting the limits of integration to evaluate the definite integral, the final equation used
was:

PH,[ 1 B
u=— [_(bl_bz)(1n|b2H0| 1n|(blH0|)} ®)

Since u = AH, the total strain in the block can be represented by:

s AH _ u (9)
HO HO

which corresponds to the axial strain for the trapezoid. The lateral strain can be found with the
same equation used for the rectangular blocks, Equation 4.

3. NUMERICAL VALIDATION OF DDA

3.1.  Parameters Investigated

Both the rectangular and trapezoid blocks were defined with a “base” case that was the starting
point of the sensitivity analysis. The base size for the rectangle was 1m x Im; the trapezoid was
Im wide at the bottom x 0.9m tall with a top width of 0.2m. Thickness was assumed to be 1
unit. The base case material properties for both types of blocks were a modulus of elasticity (E)
= 10 GPa and Poisson’s ratio (v) = 0.3. The base case point load was 100N. Figure 1 shows the
base case setup.

(a) (b)
Figure 1. Examples of block setup a) Rectangular block: 1 m x 1 m; b) Trapezoid blocks: 1 m x 0.9 m x
0.2 m.
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The unit weight of the material was 26.487 kN/m’. DDA was run in dynamic mode with true
rotation correction for 100 time steps with gravity turned off. The different parameters
investigated for each shape of block are as follows: one run of the base case scenario, one run in
which a third block containing the point load was added on top of the block being investigated,
one run in which the coordinates were changed on the base case but the size of the blocks stayed
the same, two runs with different modulus of elasticity (E) values (1 GPa and 100 GPa), two runs
with different Poisson’s ratios (v) (0.15 and 0.45), two runs with different point loads (10N and
1000N), two runs in which the height of the blocks stayed the same but the width changed, two
runs in which the width of the block stayed the same but the height changed, and finally two runs
were performed in which the block size was changed by a factor of 10 and 0.1. The complete
sensitivity analysis consisted of a suite of 15 runs for the rectangular block and for the
trapezoidal block, for a grand total of 30 runs.

3.2.  Error Calculations

The DDA output file that was used records the coordinates of the vertices of the blocks at the end
of each time step. The vertices used to determine the lateral deformation were the x coordinates
from the bottom of the block and the vertices used for axial deformation came from the right side
top and bottom y coordinates. DDA deformation for both the rectangle and trapezoid is
calculated from the original and final dimensions as follows:

(H ;o H o)
&, =—t—" 10
Axial HO ( )
(Wf - Wo)
E o] =———— 11
Lateral WO ( )
From these results the percent error is then calculated by:
Eppa — € dnabvic
Percent_ Error = ( DDA Analyncal) % 100% (12)
gAnalytlcal

EXCEL was then used to perform the calculations.
4. DDA RESULTS AND DISCUSSION

4.1. Results for the Rectangular Block

In all cases with the rectangular blocks the final error was found to be less than 0.15%. A graph
showing the final error percentage at time step 100 is shown in Figure 2. Positive error indicates
that DDA deformation is greater than the actual solution.

Although the final percent error was near 0%, it is interesting to note in Figure 3 that initially the
error percentage oscillates then dampens to 0%, but by the 15™ time step all error percentages
were oscillating under +/- 1% error. In a previous study it was found that for a dynamic analysis
of deformation under gravity loading using DDA, blocks can vibrate for more than 100 time
steps [Duneman et al., 2003]. This also seems to be the case for a dynamic analysis of the block
experiencing a point load with gravity turned off. The differences in the percent error for the
different scenarios are negligible, but the elasticity and the size of the rectangular block were the
most sensitive changes made.
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Figure 2. Final percent error for each scenario of the rectangular blocks at time step 100. The black bars
are axial strain error and the dotted bars are the lateral strain error.
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Figure 3. Percent error vs. time step for the different scenarios of the rectangular blocks.

In Figure 3, there is one error graph whose oscillation that has a higher amplitude and lower
frequency and does not match the others. This is the plot for the case in which the size of the
trapezoid was increased to 10 times the base case size; even though the error is initially greater it
can be seen in Figure 2 that the final percent error for this case (the last one plotted) was so close
to zero percent that it did not show up on the graph.
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4.2.  Results for Trapezoidal Block

For most cases with the trapezoidal blocks the error, shown in Figure 4, was 17%. When the
width of the bottom of the trapezoid was widened to 2 meters and 5 meters the percent error
increased to 29% and 42% respectively.
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Figure 4. Final percent error for each scenario of the trapezoidal blocks at time step 100. The black bars
are axial strain error and the dotted bars are the lateral strain error.

It is difficult to see in Figure 4 because of the scale, but the percent error for the base case and
material property differences are not all the same: they do vary by 0.01 to 0.10% error just like
the results of the rectangular blocks. Additionally the percent error for the lateral strain (light
bars) and axial strain (dark bars) are not all the same; for all the cases there is a 0.01 to 0.10%
error difference between the lateral and axial strain. Figure 5 shows that, just like in the
rectangular blocks, the percent error oscillates before damping to a more consistent percentage.
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Figure 5. Percent error vs. time step for the different scenarios of the trapezoidal blocks.
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Another set of runs was done to further quantify the effect that changing the shape of the
trapezoid has on the percent error. The width of the top of the trapezoid was varied while the
width of the bottom stayed at 1 m, causing the trapezoid to become either squarer or more
triangular as can be seen Figure 6. A graph of the variation in percent error is shown in Figure 7.
When the width of the top of the trapezoid was increased to 0.95 m (nearly rectangular shaped)
the percent error was less than 0.05%, but when the width of the top of the trapezoid was
decreased to 0.05 m (nearly triangular shaped) the percent error was close to 40%. An additional
set of runs was performed in which the width of the top and the bottom of the trapezoid were
kept at 0.2 m and 1 m respectively while the height was varied. Several of these blocks can be
seen in Figure 8 and the results are plotted in Figure 9. For all cases of different heights the
percent error was 17%.

b2 width =0.95 m b2 width=0.4 m b2 width = 0.05 m

Figure 6. Examples of trapezoids with varying top width (b2), the bottom width is held constant at 1 m.
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Figure 7. Percent Error vs. different lengths of the variation of the width of the top of the trapezoid
(b2)[m], with the bottom width held constant at 1 m.
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Height = 0.05 m

Height=1m
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Figure 8. Examples of trapezoids with varying heights, the bottom and top widths are held constant at 1 m
and 0.2 m, respectively.
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Figure 9. Percent Error vs. different heights of the trapezoid, with the widths of the top and bottom held at
1 m and 0.2 m, respectively.

An interesting observation about the variations of the dimensions of the block is that the results
suggest different degrees of sensitivity relative to the direction of the applied load. In Figure 7
when the dimension of the top of the trapezoid (perpendicular to the load) was changed there was
a large change in the percent error, but in Figure 9 when the height of trapezoid (parallel to the
load) was changed there was a negligible difference in the results.

5. UDEC COMPARISON

UDEC, or Universal Distinct Element Code, is a commercially available program developed by
Itasca. It is a 2-dimensional numerical analysis program based on the distinct element method
for modeling discontinuous materials. Deformable blocks are subdivided into a mesh of finite-
difference zones, and each zone responds according to a prescribed linear or nonlinear stress-
strain law; therefore, mechanical changes like stress or strain are calculated in each zone. DDA
and UDEC are similar but differ in that blocks in DDA deform due to a superposition of strain
modes [Itasca, 2004]. As stated earlier, DDA models stresses and strains within any given block
as constant across the whole region of the block regardless of its shape and size [MacLaughlin
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and Tinucci, 2000]. In this section, the results of UDEC models of the same trapezoidal block
investigation is presented, to allow a comparison between the trapezoid modeled as a whole
region, as in DDA, or subdivided into elements, as in UDEC.

UDEC Version 4.0 Double Precision was used to run the models and the same parameters that
were used in the DDA models were also used in UDEC. The only difference is that the modulus
of elasticity and Poisson’s ratio were converted to a shear and bulk modulus in UDEC, because
these material properties are preferred in UDEC. A mesh of zones was created using the
generate quad command in UDEC with the size of the zones specified to be 0.1 which is 1/ 10"
the size of the width of the bottom of the trapezoid, which in most cases is I m. The resulting
model is shown in Figure 10.

\ e
) T | —— \

Figure 10. Trapezoid modeled in UDEC with the dimensions of 1m x 0.9 m x 0.2 m with a 0.1 zoning.

Each run was allowed to equilibrate for 40,000 time steps. Figure 11 shows the percent error
between the analytical solutions and the UDEC results for the 13 different cases investigated,
corresponding to the variation in input parameters.
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Figure 11. Percent Error between UDEC and Analytical Solution.
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The percent error in Figure 11 ranges from 0.5% to 39%. A major difference from the DDA runs
is that the axial and lateral errors in UDEC differ from each other while in DDA they were very
similar. This can probably be attributed to the zones at the bottom of the block deforming
differently than the zones at the top, a feature that is not allowed in DDA. If percent error for all
13 different cases in UDEC are averaged, the average error for UDEC was 12% in the axial
direction and 18% in the lateral direction; this is compared to an average of 17% for both lateral
and axial in DDA. Although Figure 4 and Figure 11 do not look similar, both the results from
UDEC and DDA average to be very similar when looking at a number of different runs.

Since DDA’s greatest error came from varying the width of the top of the trapezoid to make it
either more equidimensional or more triangular, an additional comparison with UDEC was made
to see if similar results could be obtained. Figure 12 shows the results of these runs in UDEC.
The lateral error is the lighter bars and axial error is the darker bars. The UDEC runs do not
show a consistent variation in error with the change in block shape as was observed in the DDA
runs in Fig. 7. The percent error in UDEC ranged from 0.6% to 70%.

45

b2=0.4

b2 =0.5

25

Percent Error

75 b2 =0.05

Figure 12. UDEC percent error with varying top width of trapezoid (bottom width held constant at 1 m).

Finally, a sensitivity analysis was run in UDEC using the “base” case trapezoid to see if different
results could be obtained through a different degree of meshing. A meshing size of 1 and 0.01
was compared original 0.1 size; creating the different degrees of meshing shown in Figure 13.

(a) Mesh Size 0.01 (b) Mesh Size 1
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Figure 13. Different mesh sizes used in sensitivity analysis (mesh size 0.1 can be seen in Fig. 10).

The results of the sensitivity analysis are shown in Figure 14. The smaller mesh size produced
the smallest and most similar error between both the lateral and axial directions. It is suggested
in the UDEC manual to use many zones to represent the varying distribution of stress/strain.
From the sensitivity analysis it observed that the lateral and axial deformations will be more
uniform if more zones are used, but this is not always practical when running large models.
Decreasing the mesh size from 0.1 to 0.01 in this small model meant that the time it took the
models to equilibrate went from less than 5 seconds for the 0.1 sized zones to almost a 2 hour
for the small zones.

Mesh 0.01

Mesh 0.1

Percent Error
o

-20 4

25 4

Mesh 1.0
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Figure 14. Percent Error of Different Mesh Sizes in UDEC. The black bars are axial strain error and the
dotted bars are the lateral strain error.

It is suggested in the UDEC 4.0 User Manual to try and keep the zoning as uniform as possible
and avoid long, thin zones with aspect ratios greater than 5:1. When using the generate quad
command a mesh generator fills the block with triangular-shaped zones based on a single
parameter that controls the size of the zones; therefore, when working with non-uniform blocks
in UDEC it is difficult to stipulate the sizes of zones in different directions. An example of this
would be a block with one side 10 m long and another side only 0.1 m long. If the zone size is
too large the smaller side of the block would not have enough zones to adequately show
stress/strain in this area; where as if the zones were sized for the 0.1 m side and were smaller
there could be too many zones in the entire block and the run time would be quite long and
maybe impractical.

6. CONCLUSIONS

The data from the rectangular blocks show that DDA is correctly modeling the deformation in a
rectangular block that experiences a point load. This is important because it has now been
shown that the DDA solution for total strain in a rectangular block exactly matches the analytical
solution for both a point load and gravitational load.
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The data gathered from the trapezoidal blocks show that there are limitations of DDA. As stated
previously, one of the limitations of DDA is that deformability is limited and works best with
equidimensional blocks [MacLaughlin and Tinucci, 2000]. One of the reasons for this is that
DDA models stresses and strains within any given block as constant across the whole region of
the block regardless of its shape and size, and this is not entirely accurate when dealing with
blocks that are non-uniform. Figure 7 shows that the less rectangular the trapezoid becomes the
more error is introduced into DDA’s ability to model deformation. Interestingly, Figure 9 shows
that DDA is not sensitive to the height of the trapezoid. These results corresponds to a previous
study that showed that DDA can correctly model the deformation in a more square rectangular
block as well as a tall, thin rectangular block [Duneman et al., 2003]. This suggests that the
sensitivity to block shape may be directional, relative to the applied load, and further
investigation into this would be valuable.

The data from the UDEC analysis shows the zoning the trapezoidal blocks allows for different
axial and lateral deformations in the block because each zone can deform independently. When
the axial and lateral errors observed in many UDEC runs with blocks of different shapes and
properties are averaged and compared to the averaged percent error of the same number of runs
in DDA, the resultant percent errors are similar. Additionally, it was shown that the more zones
in a UDEC block, the axial and lateral deformations are more similar, but the trade off is that it
can take much longer for the models to equilibrate.
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ABSTRACT: The Discontinuous Deformation Analysis (DDA) with a second-order
displacement function was derived incorporating a six-node triangular mesh in order to enhance
DDA'’s capabilities for use in practical applications. The matrices of equilibrium equations for
the second-order DDA are given in detail for program coding. By close comparison with a
widely used Finite Element code, the advantages of the modified DDA can be seen clearly. The
modified DDA was applied to the analysis of stress distribution around circular tunnels. The
obtained results were compared against analytical results as well as the results obtained from a
commercial FEM code. A fairly good agreement was achieved between DDA, FEM, and
analytical solution.
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1. INTRODUCTION

Numerical methods in geomechanics can be classified into two main groups: continuum methods
and discontinuous methods. Examples of continuum methods are; the finite element method
(FEM), the boundary element method (BEM), and the finite difference method (FDM). . These
methods are now fully developed and have been successfully used in many applications. These
classical methods, however, face great difficulties when dealing with discontinuous media. Rock
mass discontinuities can be modeled in a discrete manner with FEM and BEM methods using
special joint elements [1]. However, these methods are incapable of simulating the behavior of
blocky media, in particular discontinuous rock mass. On the other hand, discontinuoum methods
such as discrete element method (DEM) introduced by Cundall [2], and discontinuous
deformation analysis (DDA) established by Shi [3], are now well developed and can be used to
simulate the behavior of the discontinuous media. The discontinuous deformation analysis
(DDA) method is a promising discontinuoum modeling technique which has great potentials for
modeling of blocky systems. Large displacement and deformation are considered under both
static and dynamic loading conditions. Various modifications to the original DDA formulation
have been reported in the rock mechanics literature [4, 5]. In the original DDA formulation, a
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first order polynomial displacement function was assumed for block deformation, which do not
allow for variable stress/strain distribution within a block. This approximation precludes the
application of the first order polynomial function to problems with significant stress variations
within blocks. To overcome this shortcoming, one approach adopted was to glue small blocks
together in artificial manner to form a larger block. This approach suffers form large
computational time. Ma et al. [6], Koo et al. [7] and Hsuing [8] implemented the high order
displacement function into the DDA algorithm.

Some researchers [9, 10] implemented finite element mesh into the original DDA blocks in order
to account for stress variations within the blocks. Moreover, Shi’s recent development, the
manifold method, was aimed at describing stress distributions within blocks [11]. The manifold
method, still retaining most of the DDA’s attractive features, can be identified as the generalized
finite element and discontinuous deformation analysis method. Additionally, Chen et al.
developed the high order version of manifold method [12]. This paper presents the
implementation of a high order triangular element into the DDA algorithm. The new code was
developed in C++ environment problem and to demonstrate the capability of the modified DDA
code the typical example of stress distribution around circular tunnels at depth was analyzed. The
following sections describe the implementation procedure and the analysis results.

2. DISPLACEMENT APPROXIMATIONS

In the displacement-based finite element method the primary unknown quantity is the
displacement field, which varies over the problem domain. In two dimensional plane strain
situations, the displacement field is characterized by two global displacement vectors u and v, in
the x and y directions respectively. The original DDA algorithm lacks ability to model complex
block deformations. This paper presents the implementation of a six node triangular element into
the original DDA blocks. The major advantage of these elements is their deformation capability.
Moreover, due to their simple geometry, they can easily fit any arbitrary block shape formed by
the intersection of pre-existing discontinuities.

5

X

Figure 1 Geometry of the six-node triangular element

Each element consists of 6 nodes and has 12 degrees of freedom in the x and y directions. The
displacement vector for the employed element can be represented in a matrix form as below:
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[Di]:[ul U, =+ Ug Vy V, Vs]T (D

The displacement function of the six-nodded triangular element can be written in the following
fashion:

u=a, +a,Xx+a,y+a,Xy+ax’ +a,y’ )

v=b,+b,x +b,y+b,xy+b.x*> +by’

The 12 unknown coefficients a,,a,,---,a, and b,,b,,---,b,can be expressed in terms of nodal

displacements by substituting the nodal coordinates into the above equations. The element is
positively oriented when six nodes are arranged counter-clockwise and the total displacement
field of the element e can be written as blow:

MERERCE 8

where
1 2 2 n n
[T(e)]: X y xy x>y 00 0 O 02 02 , [X(e)]z ¢ 1y 4)
000 0 O O I x vy xy xy n, n,
and,
1 X, Yy, XY, X ylz— [0 0 0 0 0 0]
1 x, y, X,y, X Y, 000 0O0O
1 x X X: yi 000 0O0O0
n, = 3 Y3 3Y3 ; yz , n, = (5)
1 x, Yy, X,y X, Vi 0 00 0O0O
1 X, ys Xiys X: y: 000 0O0O
I X Y6 Xe¥s Xg Yol 00 00 0 0]

3. DDA FORMULATION BASED ON THE 2™ ORDER SIX-NODED TRIANGULAR
ELEMENT

In the discontinuous deformation analysis method, the equilibrium equations are established by
minimizing the total potential energy induced into the system and solved. The total potential
energy, I1, of a the system with N number of nodes has the following form [3]

P J K o J+ [0 J[F]+C (©)
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_kn k, ki kln_ _dl_ 1
k21 kzz k23 k2n d2 2

[Kt]= ki ki ki ks, a[Dt]: d, 5[Ft]: f, (7)
_knl kn2 kn3 knn_ _dn_ _fn_

In Eq. (6) C in here is the energy produced by friction force and for the material analysis, F, is
called the loading matrix. Elements Kij and Kii in the coefficient matrix, given by Eq. (6), are
2x2 submatrices and elements d,.f; are2x1 submatrices. By minimizing the total potential

energy, I1,, that is produced by the forces and stresses, the equilibrium equations can be derived.
The global system of equations has the form of:

K. ][o]=[F] ®)

For a system with N node, the global stiffness matrix will be 2N x2N in size. In Eq. (6) the
off-diagonal contributions to the system matrix will exist only if the blocks are in contact. In
other words, the existence of sub-matrices kijand kjiis the result of contact between two

elements. The following sections demonstrate the determination of various sub-matrices required
to set up the global equilibrium equation.

6.1. Stiffness matrix
The strain energy Il due to the elastic stresses of element e can be written as:

11, = [[ e} fokixdy = O] [flx ' [B]' [E]BIlx © Jexay[o] ©)

where,
Ca ]
1 v 0 X
f}=[Elie} [El=tgv 1 0 | and [B)=] & (10)
1-v 1-v oy
0 0 — ou  ov
2 _+_
|0y x|

Hence, by minimizing the above energy function with respect to the displacement variables the
stiffness term associated with elastic stresses can be calculated as below and added to the global
[K, ] matrix:

x| [[BI"ElBlxdy[x©] > [K ] rs=1-6 (11)
Where

i(1), the number of the first node of element.
1(2), the number of the second node of element.
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1(3), the number of the third node of element.
1(4), the number of the fourth node of element.
i(5), the number of the fifth node of element.
1(6), the number of the sixth node of element.

It should be noted that the elements in [B,] matrix contain x"y™ terms, where n, and n, are non-

negative integers. It should be realized that the, integration of Eq. (11) is not straightforward.
The higher the order of the polynomial functions, the more difficult the integrating would be. Shi
[13] proposed the 2D and 3D simplex integration scheme, which allow for the integration of high
order polynomials. The presented research has adopted the integration method proposed by Shi

(3]

6.2. Initial stress

Initial stresses are often sources of energy within a blocky system. Examples of these stresses are
the in-situ ground stress caused by tectonic activities and also stresses due to lack of fit in
mechanical applications. In the DDA method, the stresses are accumulated from the previous
computational step. Therefore, the potential energy due to initial stresses can be easily
implemented into the DDA algorithm. In the first-order DDA, the stresses within an element are
considered to be constants. However, in the high-order formulation of DDA developed here, the
strains and stresses are no longer constants because the matrix [B] is a function of x and y. The
potential energy of the initial constant stresses in an element e can be written as below:

11, = [[te)" 6" jonay = [0 [T (8] [ENBIX hixay[Dy (12)

By minimizing the above energy function with respect to the displacement variables, the
following force matrix will be determined which must be added to the global force matrix:

~[[x©] [BI'[EIBIX® kxdy[De ] > [F]  r=1-6 (13)
-xeH]lxe b ] [F9] r=1-6
Where

i(1), the number of the first node of element.
i(2), the number of the second node of element.
1(3), the number of the third node of element.
1(4), the number of the fourth node of element.
1(5), the number of the fifth node of element.
1(6), the number of the sixth node of element.

and
)= [[[B]" [ ][B]dxdy (14)
The calculated [Fi(e)] matrix is added to the global force matrix.

6.3. Force of Inertia
Denote (u (t), v (t)) as the time-dependent displacement of any point (X, y) in element e, the force
of inertia per unit area is:
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_ g O] ][ ©]9 Dy
m=-M—; [V(tj_ M(T® |[x©] o (15)

where M is the mass per unit area. The potential energy of the inertial force of an element e is
2
D
= -m po] [[lxe T o fro](xo ]S 2 axay (16)

It is easy to show that the inertial force matrix is of the same form as that of the original DDA

then, one can write:

2M e T e T 5 € <

A_tZ[X( )] J‘J‘[T( )] [T( )]dXdY[X( )]_) [Kf(r)) i(s)]
r,s=1---6 (17)

Mo ] fre ol | [

where At is time interval of a step, and [Vo(e)] is the element velocity accumulated form previous

time step. The integral of ” [T(e)]T [T(e)]dxdy was calculated using the simplex method outlined
by Shi [13].

6.4. Fix point
When a point (x, y) in an element e is to be fixed, a very strong constraint spring is used at that
point. The energy of the constraint spring can be expressed as:

I, = P[D(e)]T[X(e)]T[T‘e)]T[T(e)][X(e)][D(e)] (18)
where P is the stiffness of the constraint spring. Minimizing the above function with respect to
the displacement variables determines the following sub-matrix which must be added to the
global stiffness matrix:

il o ol ki) rasies 9

[Ki(fr))i(s)] is added to the global stiffness matrix.

Due to limitation in the length of paper the implementation of the contact matrix and the body
loading matrix are not discussed in this paper.

7. VERIFICATION OF THE NEW MODIFIED DDA

The new second-order DDA code was developed in C++ environment. In the following sections
the application of the modified DDA is presented for a typical example of Circular tunnel in an
Infinite Elastic Medium.

The example presented below is used to demonstrate the displacement distribution around
underground opening. This problem verifies displacements for the case of a circular tunnel in an
infinite elastic medium subjected to a constant in-situ (compressive) stress. The problem
geometry as depicted in Figure 4 and the analytical solutions to the problem are taken from
classical Kirsch solution [14].
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The stresses o,,0, and 7,, for a point at polar coordinate (r,6) near the tunnel opening of
radius ‘a’ (Figure 2) are given by:

P+P ) B-P P 3d
O-r:—1+ 2(1_a_2]+ L 2(1—4“2 +3a4 ]c0s20 @2y
2 r 2 r r
P+P( &) B-B(, 3d*
o, =— 211+ |- 1+ cos20 22
2 ( r2] 2 r .
P_P 2 4
T,p=—— 2[1+2a2 _3a4 JsinZ@ (23)
2 r r

where P, P, are far field stress in x and y directions and a is the opening radius.

I A A

TTT;??T

Figure 2. Cylindrical hole in an infinite elastic medium [14]

The radial (outward) and tangential displacement based on solution given in [14], assuming
conditions of plane strain are given by:

2 2 2
u = F+P a +M a 4(1—0)—61—2 cos?26 (24)
4G r 4G r r
R-P(d < s
u, =———= — [ 2(01-20) —— |sin 260 25
=i (r][< ) 2

where G is the shear modulus and v is the Poisson ratio.

To compare the result of DDA with a commercial FEM code, Phasé’ (the powerful 2D elasto-
plastic finite element stress analysis program for underground or surface excavations in rock) is
used in this paper. The Phase’ model and boundary conditions is shown in Figure 3. A similar
model was constructed with the modified DDA. The model geometry is illustrated in Figure 4.
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Figure 3 The constructed Phase2 Model and boundary condition
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Figure 4 DDA model of a Circular tunnel in an infinite elastic medium

The input data used in the DDA analysis are as below:

E=6GPa,v=02,0,=0,=H =P =-30 MPaand r = | m.
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Figure 5 shows the radial displacement contours calculated by new DDA. Figure 6 compares the
radial displacement distribution obtained from the analytical solution, FEM (Phase2 code), and
the modified DDA method.
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Figure 5 Total displacement distributions around the circular tunnel is calculated by DDA
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Figure 6 Comparison of #, distribution for the circular tunnel in an infinite elastic medium
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With regard to the obtained results, the modified DDA results are in good agreement with the
analytical solution. At a distance of about 5 m from the opening wall the DDA solution slightly
diverges from the analytical solution. This is due to a very course mesh used in this area.
Comparing the discretization degree of Phase2 and DDA models, it is obvious that DDA with
quadratic triangular mesh provides better results than the general CST elements employed within
general FEM codes. Accordingly, considering the discontinuum modeling capabilities of DDA,
the modified code, with further verifications, has great potential for modelling of practical
problems.

8. CONCLUSIONS

The main purpose of using a finite element mesh within each block is to improve its deformation
capability. By adding the finite element mesh into each block it is possible to take advantages of
the continuum mechanics principles used in FEM and the discontinuum mechanics used by the
DDA method. Coupling continuum and discontinuum mechanics allows for simulation of
complex problems involving material fracturing, dynamic behavior and fluid flow. In this study,
a more powerful version of DDA method was developed using the six-node triangular elements.
This enhanced the deformation capability of DDA significantly, thus, making it a more suitable
tool for accurate calculations and practical applications. The matrices of equilibrium equations
for the high order DDA were outlined in detail for program coding. The successful application of
the modified DDA to problem with known solutions was demonstrated. The calculated results
show close agreement with the theoretical solutions, however, it is believed that more
verification and refinement of the new DDA is required to make it a more useful tool for
practical applications.

9. REFERENCE

1. Jing L, Hudson JA. Numerical method in rock mechanics. International Journal of Rock
Mechanics & Mining Sciences 2002; 39: 409-427.

2. Wang Z, Lia Y, Wang S, Yang Z. Numerical simulation of the geomechanical processes in
rock engineering. International Journal of Rock Mechanics & Mining Sciences 2000; 37: 499-
507.

3. Shi GH, Block System Modeling by Discontinuous Deformation Analysis. Computational
Mechanics Publication: Southampton. UK. 1993.

4. Lin CT, Amadei B, Jung J, Dwyer J. Extension of discontinuous deformation analysis for
jointed rock masses. International Journal of Rock Mechanics & Mining Sciences &
Geomechanical Abstract 1996; 33: 671-694.

5. Kim Y, Amadei B, Pan E. Modelling the effect of water, excavation sequence and rock
reinforcement with discontinuous deformation analysis. [International Journal of Rock
Mechanics & Mining Sciences 1999; 36: 949-970

6. Ma MY, Zaman M, Zhu JH. Discontinuous Deformation Analysis Using the Third Order
Displacement Function. Discontinuous Deformation Analysis (DDA) and simulations of
Discontinuous Media. M. R. Salami and Don Banks Editor, 1996.

7. Koo CY, Chern JC. The development of DDA with third order displacement function.
Discontinuous Deformation Analysis (DDA) and simulations of Discontinuous Media. M. R.
Salami and Don Banks Editor.



Proceedings of ICADD-7, edited by M. MacLaughlin and N. Sitar, Honolulu, Hawaii, December, 2005 101

8. Hsiung SM. Discontinuous Deformation Analysis (DDA) with nth Order Polynomial
Displacement Functions. 38th U.S. Rock Mechanics Symposium, July 7-10, Washington, DC,
2001.

9. Chang CT, Moteiro P, Nemati K, Shyu K. Behavior of marble under compression. Journal of
Material in Civil Engineering 1996; 8:157-170 1996.

10. Jing L. Formulation of discontinuous deformation analysis (DDA) an implicit discrete
element model for block systems. International Journal of Engineering Geology 1998; 49: 371—
81.

11. Shi GH, Manifold method, Discontinuous Deformation Analysis (DDA) and simulations of
Discontinuous Media. M. R. Salami and Don Banks Editor, 1996.

12. Chen G, Ohnishi Y, Ito T. Development of High-Order Manifold Method. International
Journal of Numerical Method in Engineering 1998; 43: 685-712.

13. Shi GH. Simplex integration for manifold method, FEM, DDA and analytical analysis,
Discontinuous Deformation Analysis (DDA) and Simulation of Discontinuous Media, TSI Press,
Mexico, 1996..

14. Jaeger, J. C., and N. G. W. Cook. Fundamentals of Rock Mechanics, 3rd Ed. London:
Chapman and Hall, 1976.



102 Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

(This page intentionally left blank.)



Proceedings of ICADD-7, edited by M. MacLaughlin and N. Sitar, Honolulu, Hawaii, December, 2005 103

DDA for Elastic Elliptic Element

Y. Ohnishi, S. Nishiyama, and S. Akao

Department of Urban and Environmental Engineering, Kyoto University, Kyoto, Japan
M. Yang

The Japan Research Institute Ltd, Tokyo, Japan

S. Miki

Kiso-Jiban Co., Ltd, Chiba, Japan

This paper was prepared for presentation at ICADD-7, the Seventh International Conference on Analysis of Discontinuous Deformation, held in Honolulu, Hawaii,
December 10-12, 2005.

This paper was selected for presentation by a subset of the Conference Organizing Committee following review of information contained in an abstract submitted
earlier by the author(s). Contents of the paper, as presented, have not been reviewed by the Conference Organizing Committee and are subject to correction by the
author(s). The material, as presented, does not reflect any position of the Conference Organizing Committee. Electronic reproduction, distribution, or storage of any
part of this paper for commercial purposes without the written consent of the author is prohibited.

ABSTRACT: The Distinct Element Method (DEM) and Discontinuous Deformation Analysis
(DDA) implicated a rigid disc element have been often applied to analyzing the behavior of
granular materials and ground. However, stress states in materials are not evaluated directly
because rigid disc elements have no deformation. We have developed an elastic elliptic element
and have introduced to the DDA. The mathematical formulation for the elastic elliptic element
has been attempted as an assumption that circular or elliptic element is deformed into an elliptic
element. The formulation is also derived in a same manner with the original DDA where an
element shape is polygon. In the formulation, main difference between an elliptic element and a
polygon element is the treatment of the contact between elements. Judging from the some sample
results, it is consider that the elliptic element DDA will be applied to an analysis of the ground
behavior with large deformations characterized as a combination of continuous and
discontinuous displacement.

1. INTRODUCTION

DEM implicated circular disc elements or spherical ball element is widely used for the analysis
of granular mechanics in many fields [1, 2]. DDA implicated circular disc elements or spherical
ball elements have been developed [3-5]. It has been also applied to the simulations of tri-axial
compression test of granular materials [6], rock falls [7], and so on.

However, circular disc elements and spherical ball elements in these analysis codes are
formulated as a rigid block, and many elements are demanded to simulate the behavior of
granular materials. These codes have disadvantage that stress states in granular materials are not
evaluated directly. In the DDA code, to handle many elements causes practical troubles about
computation time and storages. Strictly speaking, it is not true discontinuous deformation
analysis, because a rigid disc element has no deformation.

It is consider that deformable particle elements will save the number of elements in simulating
the ground behavior with large deformations characterized as a combination of continuous and
discontinuous displacement. It is useful to evaluate the stress states in granular materials directly.
Therefore, we have introduced a deformable circular disc element to the DDA. In this paper, we
have derived a basic formulation of the deformable circular disc element, and present analysis
examples and applications.
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2. ELLIPTIC DISC ELEMENT FOR DDA

2.1.  Element shape function and sub-matrices

The formulation has been made as an assumption that circular and elliptic elements are deformed
into elliptic elements. Assuming that (xy, yy) is the center of gravity of an elliptic element, the
shape of an ellipse is represented by,

x=R cos s+x,

(M

y=Rsins+y,

R= ab 0<s<2r7

2 2 2 .2
\/b cos s+ asins

where a and b are the length of major and minor axis respectively, and s is an angular parameter.
When only parallel translation (uy, vy) is involved, the displacement (1, v) at any point in the

element are given by
( J [1 IVOJ @
v) \0 1Av,

When only rotation (7y) of the element around the center (xy, yy) is involved, the shape of an
element can exactly be represented by

X =R cos(s+r)+x, (3)
y=Rsin(s+r)+y,

For a small rotation r, the displacement due to the rotation is simplified
u| (=(r=yo) 4)
[VH (x—xo)J(r‘))
Assuming that (&, &) is the normal strains at the element along X and Y direction respectively.
The displacement due to the normal strains are given by

@ ) (x _Oxo y —O J’oj[ij ®)

When only shear strain (4,) is involved, the shape of an element can be expressed by
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shear
deformation

normal
deformation

Fig. 1. Rotation and deformation of an ellipse

Ve
X co{s 5 J+ X, 6)
y=R sin{s+ 7/‘2”)+y0
Assuming small shear strain y,, the displacements are simplified to the following equation.

- yzy ) )

2

The total displacement (u, v) of the deformable elliptic element is the sum of displacement by
parallel translation, rotation, normal strains and shear strain. Adding the matrices of Eq. (2), (4),
(5) and (7), the element deformation matrix [7(x, y)] is obtained as follow.

Uy
I B

(MJZI 0 _(y_yo) X=X 0 T | (8)
volo 1 (x—x,) 0 Y=Y X=X | &
2 g,
7/)(}'

=[1(e.)]D]

The element deformation matrix [7(x, y)] in Eq. (8) is identical to that of a polygon element in
original DDA [8]. Therefore, sub-matrices for the inertia force and various loading conditions
are derived as a same manner with the original DDA. The differences between elliptic element
DDA and polygon element DDA are area integration of an element in calculating sub-matrices.
The area integration of an ellipse in Eq. (1) can be obtained analytically. The sub-matrices for the
elliptic element are also added to the simultaneous equilibrium equations, and displacement and
deformation are computed to solve the simultaneous equilibrium equations.

2.2.  Contact between ellipse

In the formulation, main difference between an elliptic element and a polygon element is the
treatment of the contact between elements. We have to know all pair of elliptic elements that
could possibly collide during calculation. The measure of proximity between elliptic elements is
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the characteristic length that is defined in a conventional way. As shown in Figure 2, an ellipse
has following relation for any point P on the boundary,

L=PF+PF'=2a 9)

where point F'and F are two focuses of an ellipse, and a is the length of major axis. Assume that
elliptic elements 7 and j are in contact. Denote F; and F;’ are the focuses on the element i. L; is
the minimum length of P;F; and P;F;’, where P; is the any point along the boundary of the
element j. Assuming that a; is the length of major axis in the element 7, following discriminant
are easily obtained.

L, >2q, = non - contact
(10)
L, =2q, = contact
L, <2a, = pentration
Element i
i N
S
P,
P
Element j

Fig. 2. Judgment of overlap between ellipses

If point P; is inside the element i, L; is smaller than 2g;. Contrary, if point P; is out of the element
i, L;j is always larger than 2a;. In practice, it is difficult to get minimum value of L;; analytically.
Therefore, iterative computing technique is used to obtain it. All pairs of elliptic elements, which
have possibility to collide, are examined by using this relation.

2.3. Contact sub-matrices between elliptic elements

When inter-penetration is detected between elements after deformation, the penalty spring has to
be attached to keep the penetration under allowance value. In this section, the contact sub-
matrices for the elliptic element are derived.

Assuming that elliptic element i is just in contact with elliptic element j, these two elements
share a common tangent. As shown in Figure 3, point Ci(x.;, y.;) and Cj(x;, y;) are intersections
between the line, which is normal to the tangent and runs through the contact point, and the
major axis of two elements respectively. Denote Pi(x,;, ;) and Pj(x,, y,) are the contact points
on the element i and ;j respectively. When inter-penetration occurs, penalty spring will be
attached along the line C;C; and the penetration value will be controlled. If the penetration value
is small, point C;, C;, P; and P; are assumed to be nearly on a line.

Assuming 4, and A are a displacement along the line C;C; and being normal to the line C;C;
respectively, &, and A, are given by
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Fig. 3. Contact between elliptic elements

where sina. and coso. are as follows:

sinaziy"_yCi =0,

cosq =29 Y =/, (12)
G

G=CC,

The potential energy /7 contributed to the penalty spring deformation is given by
1 >
Hk:Ek" S0+(Sj—Si)) (13)

where £, is stiffness of the penalty spring and sy is initial deformation of the spring. Denoting
r=CiP; and r/=C;P;, deformation s; and s; are expressed by
S=G-r-r
si=la+ v, = 0,0 ]D]
s;=lu;+Ly, = (fx l, ITj(xm"ym')][D.f]

The contact sub-matrices are obtained by minimizing the energy /7. By differentiating Eq. (13),
we get following sub-matrices:

CAESTR) (R Y Ry LEMSR) B L

(A LICen) (GRS NGRS ACHRT) B3 190

S O (R (GRS (I (>
_kp[Tf(xpj’ypj)]T(gx fy)T(Zx NGy ]~ [K]

ks [T € 0 > [F]

ks, [E(xp/’ym)]r(fx fy)T - [F/]

Sub-matrices in Eq. (15) are added to the simultaneous equilibrium equations, where [Kj;] is 6x6
sub-matrix, and [F;] and [F}] are 6x1 sub-matrix.

(14)
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When friction force or cohesion at the contact prevent shear displacement between elements, the
elements have to be locked each other. The sub-matrices for locking shear displacement are also
derived from Eq. (11), and the formulation is similar to deriving the contact sub-matrices. The
sub-matrices for the lock are given by

k10000 | IVIE,9,0]- (K]

K7, 0xy, ) T NI G5y, 0] = ]

k[0, ] VI 9,01 K] (16)
1,6, )] IV ,0] > [ ]

12,0 T NGy = vy =2,0) > [F]

k [7,0, ) N =X 3 =3) = [F]

M=[1-C. ¢y @ 1)

where £; is the stiffness of the shear penalty spring and [/] is 2x2 unit matrix. Sub-matrices in Eq.
(16) are also added to the simultaneous equilibrium equations when the lock conditions are
satisfied.

3. APPLICATIONS AND EXAMPLES

In order to illustrate effectiveness of the elastic elliptic element DDA, some simulations and a
comparison between the results by the rigid disc DDA and the elastic ellipse DDA will be
presented.

3.1. Loading test on the ground

First are the simulations of a loading test on the ground. In the simulations, the top face of
granular materials was subjected to the loading by moving the plate downward on the materials,
and simulations have been made for 5 models in Figure 4. The results after 1000 time step
calculations are shown in Figure 4. In the figure, (a) shows the result by the rigid disc DDA, the
others shows the results by the elastic ellipse DDA in this work. The thick and thin lines among
disc elements in Figure 4(a) indicate the intensity of contact force among elements. Figure 4(b)
shows results of the model where a shape of original particle was circular and particles were
packed with a hexagonal structure. Figure 4(c), (d) and (e) shows the results of the models where
a shape of particle was ellipse. Drawn stress crosses in the figure were normalized by the
maximum stress. The parameters used in the simulations are presented in Table 1. In loading, the
bearing plate 4B in Figure 4(a) was moved downward with a constant displacement rate
(2.0m/s). In the models, width of a bearing plate was adjusted to being in contact with 3
elements.
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Fig. 4. Displacement and stress (contact force) distribution after 1000 time step calculation

In the elliptic elements model, stresses have remarkably presented anisotropic distributions
related to the orientation of particles. It is considered that stress distributions of the results are
appropriate. The circular elements in initial state have been deformed into elliptic elements after
loading as shown in Figure 4(a). Figure 5 shows the relation between displacement (settlement)
of the bearing plate and total contact force acting to the bearing plate. The rigid disc element
DDA and the elastic ellipse DDA have showed different force-displacement curves. The force-
displacement curves also have depended on a shape of particles, packing structure, and
orientation of particles.

Table 1. Parameters for the simulations

Rigid disc | Elastic disc | Elastic ellipse
Original size(m) r=1.0(radius) a=1.25, b=0.8
Density(kg/m’) 2700
Young’s modulus(GPa) 10.0
Poisson’s ratio 0.45
Contact spring(MN/m) 100.0
Friction angle(deg) 0.0
Max. time increment(s) 0.00005
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Fig. 5. Relation between force and displacement (settlement)
for the simulation models in Figure 4

3.2. Compression test

Second illustrations are the simulations of compression test of the columnar or prismatic
specimen. In the simulations, the specimens, its height was 34.775cm, were composed by 780
circular elements with a hexagonal packing structure. A diameter of the elements was 1cm, and
its density was 2700kg/m’. The rigid disc DDA and the elastic ellipse DDA were applied to the
simulation. In case of the elastic ellipse DDA, Young’s modulus of the elements was 1MPa, and
Poisson’s ratio was 0.45. A stiffness of the contact spring was 1kN/m?, and a friction angle
between elements was 20 degrees. The specimens were subjected to the monotonic loading by
the top and bottom cap with a constant displacement rate (2.0cm/s) as shown Figure 6(a).

Figure 6(a) and (b) show the results after 5000 time step calculations by the rigid disc DDA and
the elastic ellipse DDA respectively. In the both results, each displacement of the specimen was
about 1.0cm. In case of the rigid disc DDA, two diagonal shear slip lines were observed,
however shear slip lines were obscure in the results by the elastic ellipse DDA. Figure 6(c)
shows the relations between displacement of the end cap and total contact force acting to the end
cap. The diagonal shear slip lines in Figure 6(a) became visible around the peak B on the force-
displacement curve in Figure 6(c). The displacement of granular materials, which are composed
of rigid particles, is represented by an accumulation of slippages among particles. In case of
elastic particles, both a slippage among particles and the deformation of particles contribute to
the displacement. It is considered that relative slippages among elastic particles are small than
that among rigid particles for the same displacement. Therefore, shear slip lines were obscure in
the results by the elastic ellipse DDA.
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4. CONCLUSIONS

In this work, an elastic elliptic element for the DDA has been developed, and applicability to
geotechnical problems was presented. A comparison between the results by the rigid disc DDA
and the elastic ellipse DDA was also presented.

The following conclusions can be obtained;

(1) The mathematical formulation for the elastic elliptic element has been attempted as an
assumption that circular or elliptic element is deformed into an elliptic element. The
formulation is also derived in a same manner with the original polygon DDA.

(i)  The applicability to geotechnical problems of the elastic ellipse DDA have been
confirmed by the simulations. It appears that the elastic ellipse DDA will be applied to an
analysis of the ground behavior with large deformations characterized as a combination
of continuous and discontinuous displacement.
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ABSTRACT: This paper provides preliminary consideration for analyzing ground deformation
resulting from fault movements by using discontinuous deformation analysis (DDA) technique.
This is one of the applications of DDA to practical subject. As a first step, we examined the
characteristics of fault movements from previous studies. As it turned out, it is necessary to
consider the influence of dynamic friction on ground deformation. Then the procedure for
incorporating the effect of velocity-dependent friction into DDA program is introduced. These
considerations give a better idea to modeling of real properties of rocks and sediments and to
setting boundary conditions and analytical conditions.

1. INTRODUCTION

Recently, construction of nuclear power plant on soft ground comes under review in Japan. In
most situations, soft grounds are underlain by hard basement rocks with some faults and/or
fractures in varying degrees. Larger faults can easily be detected by geographical and geological
information. Therefore, an important structure can be set at a place of safety away from such
large faults. However, there is no guarantee not to move relatively minor faults developed within
a construction site. To discuss the right and wrong of the construction, it is necessary to study
ground deformation due to fault movement.

To do this, we are considering using discontinuous deformation analysis as a tool to evaluate an
extent of ground deformation. For studying ground deformation due to fault movement,
numerical methods on the basis of elastic dislocation theory [e.g., 1] and finite element method
[e.g., 2] have been used. However, it is known that discontinuous deformation behaviors are
distinguished when deformations on the surface along a fault were investigated by field surveys
and by excavating trenches. Therefore these kinds of discontinuous deformations should be
considered in a numerical simulation. Konagai and Johansson [3] have developed two-
dimensional Lagrangian particle finite difference method for analyzing large deformations of
soils. This method is useful to analyze ground deformation with a dip-slip fault. But actual shear
behavior is three dimensional one. Thereby we choose discontinuous deformation analysis
(DDA), which is expected to extend into three dimensional one [e.g., 4 - 6].

This paper summarizes the extent of ground deformation resulting from faulting and discusses
how a model should be constructed and how analytical conditions should be set in this numerical
simulation.
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2. TWO REPRESENTATIVE EXAMPLES FOR DISCONTINUOUS DEFORMATIONS

Firstly, two representative examples are introduced to show that the ground has been deformed
associated with earthquake surface faults. One is a world-famous fault, Neodani Fault, and
another is Nojima Fault.

2.1. Neodani Fault
This fault is exposed to the textbook of Scholz [7, p.162], and is one of the earthquake surface
faults at the 1891 Nobi Earthquake (8.0 Richter magnitude). Even now, the fault scarp can
clearly be seen at Midori district in Neodani village. This fault scarp was formed as a result of
block movement along the fault. Figure 1(a) shows cross section of the fault in the conservation
center constructed on the part of the fault. Vertical displacement over 6 m can be seen and soft
grounds are cut by the fault. Figure 1(b) shows the schematic drawing of relative movement
around this district. The triangular part, which is pinched between nearly N-S and NW-SE faults
including Mt. Nishi uplifted repeatedly by every earthquakes, was displaced upward associated
with sinistral oblique slip of the fault, as like Mode III fracture. It is just evidence that this part is
formed by block movement.
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r Neodani Fault

/8-0
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Figure 1. Neodani Fault. (a) photograph of cross-section at trench taken in the conservative center, (b) schematic
drawing of the fault movement.

2.2. Nojima Fault

The Hyogoken-Nanbu Earthquake (7.2 Richter magnitude) hit the metropolitan area around
Kobe in the early morning of 17 January 1995. An earthquake surface fault, Nojima Fault, came
out along western shoreline of Awaji Island, which is located at south-west of the epicenter.
Figure 2 is photographs taken in the conservation center of Nojima Fault. It can be seen local
differences in displacement. In Figure 2(a), apparent vertical displacement occurs along one
surface of this fault. On the other hand, the fault branches into two surfaces with different
vertical displacements as shown in Figure 2(b).

It is thought that these kinds of discontinuous movements in ground are not special, rather
dominant near the earth's surface because a number of faults and fractures are developed near the
surface. Therefore, it is necessary to direct the eye to also these kinds of discontinuous behavior
in order to consider the displacement behavior of surface ground for constructing important
structures on the surface.
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(b)

Figure 2. Photographs of Nojima Fault taken in the conservation center. (a) a fault plane with apparent vertical
displacement of ca.50 cm. (b) a fault is diverged into two faults with different displacements.

3. EXTENT OF THE IMPACT FOR FAULT MOVEMENT

In order to construct a model for analyzing ground deformation, some relationships about fault
characteristics are needed to be considered:

e length versus width
e length versus displacement
e effect of thickness of covering sediments

3.1. Relation between fault length and fault width

There are a lot of previous researches studying about relationships between fault length and fault
width in fields and laboratories. From field surveys, it is often reported that zones with high
fracture density can be found in the vicinity of relatively large faults [e.g., 8]. Fracture
distribution along the Atera fault has been investigated by Ohshima and Yoshida [9]. They found
that the width of a zone with high fracture density is about 250 m measured vertical to the fault.
It is thought that their results indicate the width of process zone [10] associated with initial and
reactivated faulting. It is certain that the mechanically weak zones are formed along a fault.
These fractures presumably help a fault branch easily when an earthquake occurs.



116 Proceedings of the Seventh International Conference on the Analysis of Discontinuous Deformation

In addition, Hitomi et al. [11] provides an interesting result about positional relationship between
earthquake surface faults and their lineaments. They investigated ten earthquake surface faults of
Japan, and ‘maximum discrepancies’, which are maximum differences in distance between fault
traces (lineaments) and earthquake surface faults observed, were measured. The results show that
maximum discrepancies are within 300 m for dip-slip faults of 93% and within 100 m for strike-
slip faults of 86%. For plain part of dip-slip faults, the maximum value extends to 800 m. This is
good and practical information for estimating the extent of the impact of fault movement.

3.2.  Relation between fault length and maximum displacement

Displacements along a fault taper off gradually towards both the fault tips [12]. Scholz et al. [10]
concludes that fault growth is a self-similar process in which fault displacement scales linearly
with fault length. Displacement — length data with wide range of fault length are compiled by
Schulz and Fussen [13].

The relationships between fault length and maximum fault displacement are primarily obtained
from normal faults. Sano et al. [14] investigated the extent of the damage of 1999 Chi-Chi
Earthquake in Taiwan, and reported that main thrust fault may be diverged into many smaller
faults in the footwall of the fault. This description is consistent with the result of Hitomi et al.
[11]. Lately, Davis et al. [15] investigated the relation between fault length and maximum fault
displacement in the Ostler Fault, New Zealand, and then concluded that their data display the
similar scaling.

3.3.  Effect of thickness of covering sediments

Generally, elastic properties of sediments are smaller than those of basement rocks. When a fault
is propagating into soft sediments, deformation pattern is expected to be changed depending
upon the thickness of surface ground. This effect is examined with simulated materials like clay
or sand. Tani and Oyama [16] conducted shear experiments using dry sand at varying thickness
up to 400 mm. They found that widths of shear bands, which are defined by the distance from
fault to the rim of Riedel shear, decrease a little bit as it becomes thick. The ratio of the width to
the thickness of 400 mm is about unity.

The knowledge mentioned above is summarized conceptually in Figure 3.
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Figure 3. Conceptual model in the vicinity of a fault covered by sediments.
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4. CONSTRUCTION OF MODEL FOR DDA

It is very difficult to simulate all the processes happening when an earthquake occurs. Here
analytical domain for numerical simulation must be limited only the vicinity of the ground
surface including hard basement rocks. The width of model can be determined on the basis of the
results from Hitomi et al. and so on. Physical properties of basement rocks and grounds can be
estimated from the information of borehole logging data and seismic profile data. And the
thickness of covering sediments can also be given using the same information. Problem to be
solved is how a forced displacement should be applied to the bottom of the analytical domain.
Generally, the coefficient of friction is velocity-dependent. So this effect should be considered.

4.1. Velocity-dependent friction
Displacement rate along a fault is very high and in the order of 1m/sec. It is well known that the
coefficient of friction is velocity-dependent. Although DDA scheme is dynamic analysis, the

coefficient of friction is treated to be constant. Therefore the effect of velocity on friction should
be built onto DDA code.

The frictional behavior of many rocks has been described by a slip distance and/or slip rate
dependent constitutive laws. One possible constitutive equation is slip rate dependent
constitutive law developed by Dieterich [17] and Ruina [18]. Their constitutive equation is given
by Kanagawa [19] in the following simple way:

0

40 _ _K{@HH[KJ} 2)
dt L v,

where a, b, and L are experimentally determined constants, } is the slip velocity, 7, o, and
4 are shear stress, normal stress, and the coefficient of friction when the velocity is V. © is

,u=§:,u0+aln(;J+b® (1)

state variable of sliding surface, ¥} is the velocity at which the steady state friction is . In case
of steady state d@/dr = 0, the state variable at a steady state is

o - _h{lj G

0
where the subscript ss shows steady state. By substituting (3) into (1), the coefficient of friction
at a steady state can be written

4
e ﬂ0+(a_b)h{_J @)
Vs
Accordingly, the steady state friction velocity dependence is
Aan _ (5)
d(InV)

and can be determined by experimental measurement of x* at two different sliding velocities. In

case that a—b >0, the frictional behavior is referred to as velocity-strengthening, and on the
other hand, as velocity-softening in case that a—b < 0. This constitutive equation does not
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include the effect of velocity-independence in friction under very high velocity as pointed out by
Shimamoto et al. [20]. As a first step of research, it is sufficient to use this constitutive equation.

4.2.  Modification of DDA code

In DDA program, the velocity /' at each contact edge is expressed by shear displacement in
each time step. Because the shear displacements are obtained in open-close calculation before
solving the equilibrium equation, it is easy to update the coefficient of friction at each contact
edge. At this moment, V is the velocity of each contact edge at the beginning of each time step.

Obviously, it is necessary to obtain the coefficient of friction for wide ranges of velocity by
laboratory experiments and so on. Although one of the authors conducted shear experiments
using large specimens for the purpose of evaluating rock slope stability [21], shear displacement
is insufficient in order to obtain dataset of velocity and dynamic friction. In addition to previous
shear experiments, Ichiba et al. [22] conducted experimental works on rapid flow of granular
materials. This kind of result is expected to provide the information about velocity-dependent
friction as an alternative method.

5. FURTHER WORKS

Philip and Megard [23] reported about 1969 Pariahuanca Earthquake in central Peru. They
described detail deformational structures such as open fractures, en echelon shears and folds on
Quaternary moraines and terraces. According to these descriptions, we need to learn about the
three-dimensional deformation characteristics around a fault.

As a final goal of this study, mitigation measures should be proposed from an engineering point
of view. Tani and Oyama [16] have proposed very interesting ideas which are to improve the
surface ground so that ground deformation is dispersed and the individual displacements along
faults are minimized. These ideas should be evaluated quantitatively using DDA method.
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ABSTRACT: The numerical Discontinuous Deformation Analysis (DDA) method was used for
back analysis of structural failures in archaeological sites along the active Dead Sea rift system in
Israel and preliminary constraints on historical seismic ground motions were obtained.

Two validations were first performed for calibration purposes: 1) The well studied case of a
block on an inclined plane was re-studied and a much greater accuracy was obtained for the
dynamic case with respect to previous publications, 2) The dynamic displacement of the
foundation of a structure was simulated by inducing time-dependant displacements into the
foundation block and studying the response of the overlying block.

Two case studies are presented in the paper, in which historic masonry structures were modeled
and both synthetic and real earthquake records were applied as loading functions. The response
of the structures was studied up to the point of incipient failure in a mechanism similar to the one
observed in the field.

In both case studies the dynamic analysis was found to provide more complete and accurate
results than the pseudo-static solution. Therefore, we believe that such an approach can be
employed, where relevant, to provide constraints on paleo-seismic ground motions and
consequently on expected PGA values in seismically active regions.

1. INTRODUCTION

1.1.  Research Objectives

In this research we present an alternative method for obtaining strong ground-motion data: by
back analysis of structural failures in archaeological sites using numerical analysis by the DDA
method [1]. The results of this research will provide constraints on PGA estimates, generated by
the existing seismological strong motion catalogue in Israel.

In this work we focus on man-made masonry structures such as towers and arches, where hewn
stones forming the building create an initial geometrical network of reference. When failure is
confined to displaced blocks within an otherwise intact structure, block displacement is
measurable and a mechanical analysis is possible; this can not be achieved in a completely
collapsed structure. Therefore, several archaeological sites In Israel were examined for confined
structural failure, and two case studies were chosen for the preliminary analysis: The Nabatean
cities of Avdat and Mamshit.
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2. VALIDATIONS

DDA Validation studies were performed for calibration purposes only, all with respect to
analytical solutions. Section 2.1 repeats cases that have been validated before, yet sometimes
with greater accuracy here. Section 2.2 is a new development of a validation that has never been
performed before.

2.1. Block on an Incline

Block displacement as a function of time has been studied by many researchers, since a well
known analytical solution for displacement of a point mass is readily available. The case of a
single block on an incline is perhaps the most studied [2].

2.1.1. Gravitation only
For a single block resting on a plane inclined at an angle o with friction along the interface ¢,
and subjected to gravitational acceleration g, the analytical solution for displacement d as a
function of time ¢ is given by:

d(t) = lat2 = l(gsinor - gcosoctan¢)t2
2 2 (1)

The inclination of the modeled plane is 28° (Figure 1), and five friction angles are studied, ¢ =5°,

10°, 15°, 20°, 25°. The accumulated displacements are calculated up to 1sec.

Comparison between analytical and DDA solutions is shown in Figure 1.
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Figure 1.A. The model used for DDA validations of a block on an incline B. Block displacement —
gravitational loading only. Comparison between analytical (solid line) and DDA (symbols) solutions.

2.1.2. Dynamic loading
The case of a single block on an inclined plane, subjected to both gravitational load and
horizontal sinusoidal acceleration, has first been examined by Hatzor and Feintuch [3] for an
acceleration function consisting of a sum of up to three sines. Hatzor and Feintuch found that the
accuracy of DDA prediction was within 15% of the analytical solution, provided that the
numerical control parameters gl, g2 were carefully optimized, without application of any
damping .

(1) Note that in the analytical solution published by Hatzor and Feintuch (2001), the resisting force during
sliding for a,>a,.;; was neglected in the double integration.
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Tsesarsky et al. [4] broadened the investigation and compared DDA results with physical results
of shaking table experiments, for which an introduction of 1.5% damping was found to reduce
the error significantly.

In this section, the presented validation is for an acceleration function of one sine only.

The displacement d of the block at any time ¢ is determined by double integration on the
acceleration, with @ as reference datum:

d= jv = ”a = g[(sina —cosatan¢)(t2 /2—49t)]+

+ a_g2 [(cos a +sin o tan ¢)(w -cos(@b)(t — 0)— sin(at) + sin(zv@)]
@ )

where @ is the elapsed time from beginning of shaking until yield acceleration is reached and
block motion ensues.

The model is similar to the one presented in Figure 1, but with a plane inclination of 20°. Three
friction angles are studied: ¢ =20°, 22°, 30°, and the accumulated displacements are computed.
Figure 2.A displays the case of a=¢=20°, for which yield acceleration is zero, and displacement
is calculated for more than a full cycle of the input sinusoidal earthquake. The higher friction
angles, ¢ =22°,30° have #= 0.089sec. and 0.1802sec. respectively, which complicates the
analytical solution after half a cycle. For that reason, the accumulated displacements in Figure
2.B for ¢ =22° and 30° are calculated up to ~2.5 seconds.

wll  a=¢=20 811 =20
12 1| —analytical T 22 o
64| © DDA o
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2 2
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8 2 3
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Figure 2.A. Block displacement versus time, for the case of a=¢=20. Comparison between analytical
(solid line) and DDA (symbols) solutions. B. Block displacement versus time, for the case of a.<¢.

Figure 2.A and B. present a comparison between DDA and analytical solutions. The obtained
agreement is remarkable, with maximum displacement errors ranging between 0.2% and 0.9%.
The time-step size is kept constant in all DDA runs, 0.002 sec.

2.2.  Block response to induced displacements in the foundation
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DDA allows application of time-dependant displacements to “fixed” points in the mesh which
are defined and positioned by the user. We use this feature to simulate seismic ground motions
at the foundation and to investigate the response of a masonry structure, later in this work.

We start with a validation. The purpose of this validation is to examine the accuracy of this DDA
feature by comparing it to an analytical solution which is developed here for the response of a
single block resting on a block which is subjected to a time-dependent displacement function.
For the validation, the block system consisted of three blocks: the fixed foundation block (no.0),
the induced block (no.1), and the responding block (no.2) (see Figure 3). The displacement
function for block 1 was in a form of a cosine function, starting from 0:

d(t) = D(I-cos(2rat)) 3)
and the corresponding response of block 2 was investigated.

In order to compare between DDA and the analytical solution, the mode of failure of the
analyzed block in DDA had to be constrained to sliding in one direction only without rotation or
vertical motions. One way for constraining DDA to one degree of freedom in our case is by
generating a block system in which block 2 has limited motion options. The block system was
generated therefore such that the responding block had a very slender geometry and therefore its
preferred displacement mode was one dimensional sliding with no rotation or bouncing, namely
one degree of freedom, as in the analytical solution.

Figure 3. The DDA block system which constrains Block 2 to one degree of freedom — horizontal
sliding only. Block 0 is the foundation block, Block 1 receives the dynamic input motion (horizontal
— cyclic), and Block 2 responds.

2.2.1. The analytical solution
The analytical solution for this case must be computed in time steps, since the relative velocity
and the direction of the force are dependant on each other. The analysis was performed by
Matlab 7.0.
Figure 3 presents two blocks: The basement block (Block 0) is fixed, Block 1 is subjected to a
horizontal displacement input function, and Block 2 responds dynamically.
The only force acting on Block 2 other than gravity is frictional, which immediately determines
its acceleration:

m,a, = Fiiction (4)
mya, = f-m,g (5)
v

a, =H-g (6)
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The direction of the driving force is determined by the direction of the relative velocity between
Blocks 1 and 2 (v;*). When Block 1 moves to the right relative to Block 2, the frictional force
pulls Block 2 in the same direction, and determines the sign of a,.

When Block 2 is at rest in relation to Block 1, the friction force is determined by the acceleration
of the Block 1 (a;). The threshold acceleration, under which the two blocks move in harmonys, is
equal to the friction coefficient multiplied by the gravitation acceleration (zg). When the
acceleration of Block 1 passes the threshold value, the frictional forces act in the same direction
as aj.

The positive direction is determined by the sign convention in Figure 3, and the relative velocity
of Block 1 is given by:

Vi =V TV, (7)
The direction of the acceleration of Block 2 is set by the following boundary conditions and
inequalities:

=0 and | <HE a=a

and a|>pg | and a>0 = u

and a, <0 a, =—ug

Fovi#0 and v >0 . a = Kg
and v/ <0 a, =—Hg @®)

2.2.2. The numerical analysis
A sensitivity analysis for amplitude, frequency and friction was performed. Accumulating
displacement of Block 2 was calculated, and comparison between DDA and Matlab results are
presented in Figure 4.

Figure 4.A presents the response of Block 2 to changing amplitudes of motion (D), with constant
input frequency of 1Hz. The accumulating displacement is in direct proportion to the amplitude,
as expected. Note that the three displacement curves follow the periodic behavior of the induced
displacement function (T = 1 sec.), and that divergence between curves starts after 0.25 sec.,
where the displacement function has an inflection point.

Figure 4.B presents the response of block 2 to changing frequencies. Although the displacement
amplitude is constant (2cm), the acceleration amplitude (A=D® ?) increases with increasing
frequency (Eq. 2). The displacement curves follow the different periods of motion, and the
accumulating displacement is in direct proportion to the amplitude of the acceleration.

Figure 4.C presents the response of Block 2 to changing friction coefficients, with a constant
displacement function of D=0.5m, f=1Hz. Note that the accumulating displacement is in direct
proportion to the friction coefficient up to 0.5sec., where the induced displacement function
changes direction. After that point the accumulating displacement of £~0.6 is larger than z=1,
since the high friction works in both directions: forward and backward. Note that £=0.1 and
0.6 follow the periodic behavior of the displacement function, whereas £~=0.6 is in a delay of
about 0.25sec.
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Figure 4.A. Response of Block 2 to displacement input of /=1Hz.Comparison between analytical
(line) and DDA (symbols) solutions for different amplitudes of motion. B. Response of Block 2 to
displacement input of D=0.02m. C. Response of block 2 to displacement input of D=0.5m, /=1 Hz.

A remarkable agreement can be seen in all three figures. DDA follows the analytical results in
all cases, with changing friction coefficients, amplitudes, and frequencies of motion.

3. TWO CASE STUDIES

The applicability of dynamic DDA for back analysis of historical failures in masonry structures
was tested in two archeological sites in Israel. Original building stones were sampled and
transported to the Rock Mechanics Laboratory of the Negev at Ben-Gurion University. Lab tests
were performed in order to obtain physical and mechanical properties of intact rock as well as
block interface friction parameters. Test results are summarized in Table 1.

Table 1. Mechanical properties of original building block material.

Porosity (%)

Mechanical property H Avdat Mamshit
Density (Kg/m®) 2555 1890
2 5 30-38
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Dynamic Young’s modulus (GPa) 54.2 16.9
Dynamic Poisson’s ratio 0.33 0.37
Dynamic Shear modulus (GPa) 20.3 6.17
Interface friction angle 35 35

3.1. Masonry Arch: results from Mamshit

A unique structural failure is noticed in a tower at the corner of the Eastern Church at the
Nabatean city of Mamshit (Figure 5A), where a key stone has slid downwards out of a still
standing arch (Figure 5.B). In the tower, dated back to the second half of the 4™ century AD [5],
the outer walls and the arched doors were built of excellent ashlars, while the interior walls were
built of large squared blocks, with an occasional filling of smaller stones and earth cement
(Figure 5.A) [5].

wn

Figure 5. The damaged arch at Mamshit. A. The arch is embedded in a very heterogenic wall. B. The
Keystone has slid 4cm downwards while the rest of the arch remained intact.

3.1.1. Numerical solution
Modeling the embedded arch was a challenging task because of the heterogeneity in block
material shape and size (Figure 5.A). Because of material heterogeneity DDA material lines were
assigned to the arch blocks in order to assign different mechanical parameters to the arch and the
wall (Figure 6). Different mesh configurations and material properties were tested in order to
find the conditions in which forward modeling results would fit as closely as possible the
observed failure pattern in the field. The selected mesh configuration is a simple, consistent
masonry wall, in which the heterogeneity is represented by lower density and stiffness than those
of the hewn stones forming the arch (Figure 6).
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Figure 6. The final mesh configuration for the embedded arch in Mamshit. The uniform masonry wall
rests on two blocks: the lower is fixed, and the overlying block can be subjected to time-dependant
displacements. The height of the wall above the arch is 4.

Two different loading mechanisms were examined: In the first, referred to here as ‘dis. mode’,
the foundation block was subjected to time-dependant displacements, while in the second, all
block centroids were subjected to time-dependant accelerations, a loading mechanism that has
been studied before in DDA and is referred to as ‘gk. mode’ here.

Repeated runs of the problem revealed that the dis. mode, although validated successfully in a
two-block problem, does not provide satisfactory results for a multiple block system, where over
100 blocks respond to the induced motion of a single block at the foundation.

Figures 7 and 8 display the difference in forward modeling with the dis. vs. gk. mode. In both
cases the block system was loaded with a sinusoidal input function. In displacement mode the
keystone undergoes upward displacement, and the entire block system is deformed, whereas in
quake mode the keystone moves downwards and the rest of the mesh stays intact.
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Figure 7. Influence of loading mode on keystone displacement. A=0.32g (D=8cm), f~1Hz.
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Figure 8. Response of the Mamshit block system to an earthquake with 4=0.32g (D=8cm), /~1Hz. A.
dis. mode B. gk. mode.

A sensitivity analysis for the block system (Figure 6) was performed with over 50 runs.
Overburden, stiffness of blocks in the structure surrounding the arch, numerical damping (k01),
and motion parameters (Amplitude and frequency) were examined. Results are presented in
Figures 9 and 10, where the downward vertical displacement of the key-stone is plotted vs. time.
Unless mentioned otherwise, the mechanical parameters of the block system are:

Oarch=35, Owa=40, Eorch=17GPa, Ey.;=1MPa, h=0, and the analysis is performed in gk. mode.

In most simulations, the input function (either acceleration or displacement) was of a sinusoidal
form. A real earthquake record was used for comparison, in which the Nuweiba 1995 record,
recorded in Eilat and de-convoluted to rock response (see Hatzor et al. 2004 [6] for details on
this earthquake record), was scaled to different amplitudes (results are presented in Figure 10.B).

Figure 9 displays the structural response to different structural and numerical parameters. Clearly
from Figure 9.A the downward displacement of the keystone became possible only after the
collapse of all overlying layers, most probably due to relaxation of arching stresses.

Figure 9.B implies that a difference of four orders of magnitude between the arch and wall
materials is required to obtain the desired deformation, and for the deformation to be restricted to
the arch only. This large difference might seem exaggerated, but a close inspection of Figure 5.A
reveals the large heterogeneity and diversity of the wall, where spaces between wall-blocks are
filled with soft filling materials. The soft filling materials allow for large deformations under
low stresses, and drastically reduce the stiffness of the wall. We believe therefore that a 1MPa
wall stiffness is reasonable.
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Figure 9.A. Influence of overburden (4). A=0.5g, /=1.5Hz. B. Influence of block stiffness in
surrounding wall. 4=0.5g, f=1.5Hz. C. Influence of numerical damping (k01). 4=0.5g, /=1.5Hz.

In Validations of simple cases where DDA results are compared with analytical solutions, the
analysis should be fully dynamic (k01 = 1). However, it was found that in the case of a large
block-system, consisting of many blocks, some energy dissipation is required for obtaining
realistic results. On the basis of field and experimental studies Hatzor et al. 2004 and Tsesarsky
et al. 2005 [4, 6] found that 2% velocity damping should be sufficient. Figure 9.C suggests that
for the Mamshit case, the ideal amount of damping is 1%, since 2% damping reduces the
displacement unnecessarily, while 0.5% damping produces stronger keystone fluctuations. When
no damping is applied (kO1=1), the analysis results in complete destruction of the structure.

Figure 10 displays the influence of input-motion parameters on keystone displacement. It can be
seen from Figure 10.A that while a relatively low amplitude (4=0.1g) results in a small
displacement, a high amplitude (4=1g) results in strong fluctuations and in a shift in the
accumulated displacement direction after ~4 sec. The best fit amplitude for this block system
seems to be around 0.5g.
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Figure 10.A. Influence of amplitude. /=1Hz. B. Influence of frequency. A= 0.5g.

A very interesting behavior is displayed in Figure 10.B: the ideal frequency seems to be around
1Hz, while a low frequency (eg. 0.5Hz) results in strong fluctuations and a high frequency (eg.
5Hz and 10Hz) results in “locking” of the structure, and very little displacement.

The structure response to the real Eq. record of Nuweiba 1995, amplified by 15 (PGA~0.6g) is
also displayed in Figure 10.B. It can be seen that the behavior of the block system is not
significantly different when a range of frequencies and additional vertical accelerations are
introduced, meaning, that the results of the synthetic records are valid enough to be discussed
and analyzed further.

Figure 11 displays the dynamic block system response to what we believe is the best fit
earthquake, with 4=0.5g and /=1Hz. The accumulating downwards displacement of the keystone
is 3.11cm.

Figure 11. The result of the dynamic block system response under an earthquake with 4=0.5g and
f=1Hz. The accumulating downwards displacement of the keystone is 3.11cm.

3.2. A block on a plane: results from Avdat

Five blocks are displaced from the western wall of a Roman tower at the Nabatean city of Avdat
(Figure 12). The tower, dated to 294 AD, was founded directly on bedrock, and has risen to a
height of 12m, from which only 6m are left standing today [7].
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Figure 12.A. The Roman tower in Avdat, a view of the western wall. The displaced blocks are
numbered for reference. B. The displaced blocks.

3.2.1. Numerical solution
The numerical analysis of the roman tower at Avdat was performed on a block system
representing the tower’s northern wall, to best capture the observed westerly sliding of the three
corner stones.

Figure 13.A. The northern wall of the roman tower at Avdat. The five corner blocks are marked and
their displacement direction is displayed with an arrow. B. The DDA block system for the tower at
Avdat. Five fixed points (squares) are assigned to the confining block, and five measurement points
(circles) are assigned and numbered on corner blocks. 1,2 and 3 are three of the displaced blocks.

The block system, displayed in Figure 13.B, was generated using program DC of DDA [1]. The
DC mesh includes the entrance door and the confining block on the left side, which represents
the later added structure that restricts lateral movements to the left (Figure 13.A.). The confining
block was fixed by five fixed points, and the displacement of the five corner blocks was
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measured: three of the analyzed blocks (1,2, and 3 from Figure 12.A), one above (4) and one
below (0). The structure consists of one set of mechanical parameters, presented in Table 1.

The location of the displaced blocks at mid height of the wall and not at the top, where normal
stresses on the frictional surfaces are at minimum, is in contradiction with the basic physical
principals of a pseudo-static analysis, which would predict greater displacement of the upper-
most stones. Therefore, a simulation without the confining wall was performed in order to
analyze the basic behavior of the structure. The analysis predicts the exact observation that is
noticed in the field, though with greater expansion, in which all blocks in the doorway level, on
both sides, are displaced outwards (Figure 14).

This result might indicate arching caused by the doorway on both sides, which reduces normal
stresses, and allows for block displacement in the relaxed “abutments”, in mid-height of the
structure. This interesting result, again, demonstrates the extensive treatment of a dynamic
solution to such a multi-block problem, versus the restricted and limited analytical approach.

A sensitivity analysis for amplitude and frequency was performed, and results are presented in
Figures 15 and 16, where the average horizontal displacement (D) of the five measurement
points is plotted vs. time. All simulations were performed with 1% damping and a synthetic
sinusoidal acceleration record.

e

Figure 14. A simulation without a confining wall predicts the exact height of displaced blocks as is
observed in the field. A=1.5g, /~5Hz.

Figure 15.A displays the influence of the amplitude on structural response, under /=5Hz. The two
curves of A=0.8g and A=1g are erratic and intersect. Figure 15.B. displays the influence of
frequency structural response. There is no clear trend, though it seems that displacement
increases with increasing period of motion (decreasing frequency), due to longer periods of high
acceleration.

Searching for the best fit set of parameters for Avdat is not as straight forward as in the previous
case of the arch at Mamshit. There is no merit in comparing total block displacements since the
blocks move back and forth, and do not follow a consistent trend; their total displacement
depends on the duration of motion, which is unknown. Furthermore, relative displacements
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between the blocks might obscure the observed total amount of displacement in the field and

make the comparison meaningless.
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Figure 15.A. Influence of amplitude. /= 5SHz. B. Influence of frequency. A=1g.

Figure 16.A and B display the final result of two different runs, in which only the corner blocks

are displaced while the rest of the structure remains intact. Both simulations were performed

with no input vertical motions (4v = 0). In Figure 16A the horizontal acceleration amplitude (44)

is 1g and frequency (f) is 3Hz. The resulting horizontal displacement (DA_avmax) is 8cm. In
Figure 16.B Ah 1s 1.5g, f'is SHz., and Dh_avmax is 14cm. We believe these two sets of
parameters represent the best approximation that can be reached with a 2-D, numerical, back

analysis of the historical earthquake that caused the observed damage in Avdat. A determination

of the single, best fit set of parameters to this case study is not attempted here because of the
above mentioned limitations, although the graphical output in Figure 16A better fits field

measurements.

Figure 16. Best — fit simulations of the Avdat earthquake A. 4,= 1g, 4,=0, f=3Hz. D;_av,,=8cm. B.

A;=1.5g, A=0, f= SHz. D;_av,,,,=14cm.
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4. SUMMARY AND CONCLUSIONS

This paper describes back analysis of two earthquake induced failures in two archeological sites
in the Negev, Israel, that are dated back to the 3" and 4™ centuries AD. The sites may have been
subjected to more than one earthquake tremor in their history, but separation to individual
seismic events is beyond the resolution or scope of this study. Back analysis is performed by
subjecting the structures to simple, harmonic, dynamic loading functions and structural response
is discussed in terms of displacement evolution of selected structural elements: keystone in the
case of an arch (Mamshit site), and corner stones in the case of a tower (Avdat site).

4.1. General conclusions

e 2D-DDA successfully duplicated structural damage that was detected and measured in
the field, after the block system was generated correctly with adequate boundary
conditions and material properties.

e We found that the best style of input motion for structural analysis is “quake mode”
where all block centroids are loaded with time dependent acceleration simultaneously.
While this loading mechanism is reasonable for a jointed rock mass, it is less adequate for
masonry structures. Nevertheless, it provides a better deformation picture than
simulations where the entire structure responds to an input displacement at the foundation
block (“displacement mode”).

e Clearly, application of “quake” mode does not allow for wave propagation phenomena
such as amplification, de-amplification, etc. to take place when the motion is transferred
from bedrock to the structure. Further research is required to resolve the significance of
rock-structure interaction processes when masonry structures are founded on stiff rock,
for forward numerical modeling.

e Asaresult of applying “quake” mode and a harmonic sinusoidal function the obtained
ground-motion parameters may be higher than reasonably expected (eg. 1g at Avdat).
Therefore, we do not argue at this stage for exact historical ground motion restoration,
but focus on the structural behavior and failure patterns that are obtained, and compare
them to field observations.

e The sensitivity analysis performed with DDA demonstrates the importance of the
dynamic structural response, thus stressing the role of the duration and frequency of
ground motion. This is a strong proof for the partial determination of motion by the value
of PGA, often used in the fields of seismic hazard assessment and design.

e We wish to emphasize that over-all structure response is as important as local
displacement measurements. Therefore, graphical output of the deformed mesh
configuration is as valuable as the quantitative measurement point data, since it enables
us to understand the evolution of the structural damage and the dominant failure modes.

4.2.  Back analysis of masonry arch (Mamshit)

e We found that downward displacement of the keystone was only possible after the
collapse of overlying layers. A process that must have caused relaxation of arching
stresses.

e We found that most damage resulted from horizontal motions and that the significance of
vertical motions was negligible.
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e We found that most of the accumulated keystone displacement took place in the first two
seconds of the motion; therefore much longer runs are not necessary. This result may also
suggest the duration of the earthquake that caused the detected damage.

e Our best estimate for the horizontal amplitude and frequency of the earthquake that
caused the damage in Mamshit is 0.5g, and 1 Hz respectively. Resolution of the date and
number of events is beyond the scope of this paper.

4.3.  Back analysis of masonry tower (Avdat)

e 2D analysis of corner stones in the tower ignores in plane rotations, which may play a
significant role in the dynamic deformation of the structure.

e A very unique structural failure in Avdat, in which mid-height blocks have been laterally
displaced, is duplicated perfectly by dynamic DDA. The results provide and insight into
the structural dynamic behavior, which could not have been achieved by a different
analysis approach, certainly not by a pseudo-static approach.

e We found two possible sets of dynamic input motion that could have generated the
observed failure in the field: A) 4, = 1g, f=3Hz; B) 4, = 1.5g, f= 1.5Hz. The best fit set
of parameters is not determined conclusively since a meaningful and finite comparison
measure such as total block displacement will not portray the failure mechanism
properly, as blocks move back and forth, sometimes with no obvious trend, and so total
displacement is a matter of time frame.
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ABSTRACT: This paper describes the simulation of rock-falls caused by earthquakes in
October 1994 in Niigata Prefecture using discontinuous deformation analysis (DDA). It
introduces the formulation of viscous damping on contact of blocks by a Voigt-type model and
the velocity-energy ratio for the rock-fall models based on DDA theory. The paper also proposes
a method of inputting the earthquake accelerations in DDA and compares the method with actual
rock-fall phenomena. The results show qualitative agreement, and so the method is applicable to
physical phenomena.

1. INTRODUCTION

Earthquakes are known to trigger rock-falls at rock slopes and earthquakes are common in Japan.
Furthermore, rock slopes are often close to rail lines, roads and private houses. The Niigata
Prefecture Chuetsu earthquake that struck on October 23, 1994 and the Genkai earthquake
offshore of Hakata City in Japan caused heavy losses of life and are still fresh in people’s
memory. It is important to predict such disasters and to take measures before earthquakes strike
in order to protect life and industrial activity. With this background, we are studying the
applicability of DDA by examining small-scale rock-fall models using earthquake response
analysis. The present study investigates the optimum values of parameters in a model of actual
rock-falls of natural large rock slopes that occurred in Niigata Prefecture. The study focuses on
the input of earthquake acceleration time history, and considers the damping effects of contact
between blocks by a Voigt-type model based on DDA theory [1]. The numerical results of DDA
are compared with actual measurements at the site.

2. OUTLINE OF THE THEORY
2.1 Governing equation of motion

The governing equation of the potential energy T for large deformations of continuous and
discontinuous elastic bodies is given by:

n

e = Zn H(block)i — Z (H[ + i HlPij (1)
i=1 Jj=1

i=1
The first term on the right side of Eq. (1) is the potential energy of the continuum part, and the
second term is the potential energy of the contact between blocks. The first term is given by:
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. . 1 - c .
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Vv r vV

The first term of Eq. (2) is the strain energy of the velocity field, the second term is the surface
traction energy, and the third term is the energy of the inertia force and damping force, where,
c . . * . .
p’: density before deformation, p°: density after deformation, 7 . Kirchhoff stress velocity,
D : deformation velocity tensor, o; : Cauchy stress, ii : acceleration, u: velocity, p: unit mass,

b: body force, c¢: viscosity coefficient, 7 : surface traction force, V: volume of a block, and T":
surface area of a block.

The second term on the right side of Eq. (1) is the potential energy of the contact between
discontinuous planes, and is evaluated by the least squares method by using a penalty as follows:

o1 . ) 1 . )
I3 = EkN[(uj —u)-nT _Ekr[u'lr—ulT]z 3)

where, ky: penalty coefficient in the normal direction, k7: penalty coefficient in the shear
direction, (3’ —')-n: amount of penetration in the normal direction, u7: amount of slip in the

shear direction, and #: direction cosine of the contact plane.

DDA (Shi, 1984) is formulated from Eq. (1) using the kinematic equations based on Hamilton’s
principle and minimized potential energy expressed by:

Miu+ Cu+ Ku = F 4)

where, M: mass matrix, C: viscosity matrix, K: stiffness matrix, F': external force vector, ii:
acceleration, u :velocity, and u: displacement of the center of a block.
The kinematic equation of motion Eq. (4) is solved by Newmark’s B and y method (Hilbert,

1993) by using parameters 3 = 0.5 and y = 1.0, and the algebraic equation for the increase in
displacement is solved for each time increment by the following three equations [2, 3]:

K-Au=F (5)

where,

E:%M+2—77M+p0[1<e+[<s] (6)
At At P

ﬁ:éM-a+(AF—ZJadv)—Ma(t) (7)

where, Au: incremental displacement, K, : stiffness matrix of linear term, K, : initial stress

matrix caused by rigid rotation, and a(¢) : time history of earthquake acceleration.

2.2 Viscosity matrix of a body and contact friction

The viscosity matrix of a body C in Eq. (4) can be rewritten as follows in terms of viscosity 7,
and mass matrix M:

C=nM ()
The physical meaning of viscosity 5 is the damping of the rock itself, the viscosity of air

around the rock surface and the vegetation on the surface of the rock slope.
On the other hand, in earthquake response analysis it is conventional to prevent the reflection of
seismic waves from the boundary to the blocks in the analysis area by using dash pot damping
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elements as shown in Figure 1. We therefore introduce Voigt-type viscous damping elements
between blocks as shown in Figure 2. The original DDA developed by Shi (1989) was
formulated by defining penalty parameters for the normal direction P, and the shear direction Px.
We also introduced parameters for the normal damping 7, and the shear damping 7, based on

the original DDA theory. In the case of Voigt-type damping, the penetration d and the velocity
strain d/ At are expressed by:

. d
Ji=fprfy=pd+n, d=pd+n,— )
Analysis
arca
Damper
n ps
Slider W Pn
Ps N
Base block o<e—Acceleration input| point Block j
Fig. 1. Boundary condition of earthquake response analysis Fig. 2. Voigt-type viscous damping of friction

Block i
| 1
P2(x2.y2) l
S0 Klockj/ e T\ d
P1(x1,y1)

Fig. 3. Mechanism of block contact by penalty

The total reaction force of the penetration f; is expressed as the summation of the force by
penalty f, and the force by dash pot f as follows:

n n
ft:fp+f,7:pd+A—‘;d:(p+A—‘;)d (10)

The potential energy of the penetration between blocks considering contact viscous damping is
expressed by:

1 n
Hpq:ftdza(p_'_ﬁ)dz (11)
The quantity of penetration between blocks d is defined by:
d=([E,-][Di]+[G,][Dj]+SZ—°j (12)

where, Sp: area of the penetration triangle in Figure 3, and /: length of the contact edge
respectively.
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The unknown parameter of the center of gravity of a block is expressed by:
(D} ={uovoroe.e,7,} (13)
The contact matrix between blocks is expressed by:
L L)

(14)

1
[Gj]=;()’3 —Vox —x3ITj(x2,y2)]

‘*’%()’1 e xz—xllTj(x3,y3)]

The displacement matrix of a block is defined by:
1 0-(y— - 0 —y,)/2

(1= 0=y) x—xo) =) (15)
01 (—x) 0 -y G—x)/2

Substituting Eq. (12) into Eq. (10), the total reaction force of the penetration f; is given by:
n S
ft:(p+Tp)([Ei][Di]+[Gj][Dj]+I_OJ (16)

Substituting Eq. (16) into Eq. (11), the potential energy of the penetration between blocks
considering the contact viscous damping is expressed by:

L M Lo, S, )
U,,,,—z(p+ A)d —2(p+ A [[Ei][D;]+[G,][D,]+ lj

1 n
=3 (p+ X”)([D,- I'[E T [END1+[D,1[G,1'[G,1ID,
28 28 S,
ZO [£,1[D; ]+ lo [Gj][D/]+l—2)
Minimizing the potential energy by deriving the penetration d, the stiffness matrix of penetration
between blocks is expressed by Eq. (18) and superposes the global stiffness matrix:

1+2[D,1"[E,1'[G,1[D,] (17)

+

<p+%>[Ei]T[E,~] STK, (4 DIE VG, 1- [K, ]

(p+0G V(1K 1. (040G, 116,15 (K ) (18)

The external force of the contact is expressed by Eq. (19), and also superposes the global
external forces:
S0y B F] S0y Ty

(P A)[ i1 =l i],—T(p+X)[Gj] - [G/] (19)

The relations between displacements, velocities and accelerations at an arbitrary point of a block
at time ¢ in step i are expressed by the following three equations, respectively:

wo = [D i]= A2t2 az[ath(z)] . A a[gt(t)] (20)
oD@ _ 2y, 1 ADU-AD] 2 4 71
Y [Di] or Az (D]~ (21)

2 OIDWI_ 2 pg 2 ADG—AD] _ 2

2 (22)
or’ At’ At ot AL’

2.
[Dl']— AituH
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3. NUMERICAL EXAMPLES
3.1. Analytical models and parameters

In order to examine the applicability of the earthquake response analysis by using DDA, a
numerical example model is created for a rock slope along the Shinano River which was
fractured by the Niigata Prefecture Chuetsu earthquake on October 23, 2004. The analyzed rock
slope was measured after it had collapsed by aerial survey and ground surface survey. These
surveys were done to clarify the mode of falling slope, the distance traveled by rock blocks from
the slope, the time taken for the rock blocks from the toe of the slope, and the relation between
the parameters in the analysis.

Figure 4 shows the geological features near the slope and the epicenter of the Chuetsu
earthquake. The modeled slope is located 8 km from the epicenter and the rock slope consists of
Tertiary deposit inclined at 20 to 25 degrees to the horizontal elevation. Figure 5 shows the
topography after collapse. The size of collapsed rock blocks ranges from 2 and 3 meters to 10
meters. The collapsed rock blocks traveled 100 to 150 meters at the toe of the slope. Figure 6
shows a sectional view of the analyzed slope. The height of the slope is almost 145 meters, the
width of collapsed rock is almost 500 meters, and the volume of collapsed rock is estimated to be
about 500,000 m”.

Collapsed slope . B = S0 0 (R . i
[ " y : TF ‘. / ) "-:’.'; 513 \ ! ;
& V = / ion

Shinano River

West

Epicenter

“ #
i g il DA e e
i o 1 o e

{

Fig. 4. Geological features around the slope  Fig. 5. Topography after collapse

T Collapsed slope

130 m 4>‘
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Fig. 6. Section of the analytical model (Section A-B)

Figure 7 show the acceleration record of the Chuetsu earthquake near the collapsed slope
measured by Niigata University (NIG019, 37.30, 138.8, East-West and up—down). Figure 8
shows the Fourier spectrum of acceleration, revealing large amplitude of over 200 Gal in the
east-west direction at the frequency of 1.5 to 5 Hz. On the other hand, the up—down wave of
amplitude was 150 Gal, independent of frequency.

The position of acceleration of seismic waves in the model is defined as the center in the
horizontal direction of the slope and 10 meters from the bottom of the base block in the vertical
direction. The boundary condition of the base block is adopted in the horizontal roller condition
at the bottom of the block.

In reality, the actual collapsed rock slope contained blocks of various sizes, and so it is very
difficult to estimate the block size before collapse. Therefore, in order to distinguish the
difference in collapse mode between large and small block sizes, we set up two models as shown
in Figure 9. The size of the large block model was set to 5 to 10 meters (model-1) and that of the
small one to 2 to 3 meters (model-2).

The material properties and parameters used in the analysis are shown in Table 1. The elastic
modulus of the slope is estimated to be 1 to 3 GPa and the unit mass to be 20 to 25 kN/m’. We
analyzed the models using these parameters.
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Fig. 7. Input acceleration of Chuetsu earthquake (NIG019, 37.30, 138.8)
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Table 1. Material properties and parameters

Items Parameters
Time increment 0.001 second
Elastic modulus 3 GPa 1 GPa
Unit mass 25 kN/m® | 20 kN/m®
Poisson’s ratio 0.30
Friction angle, Cohesion $=30°, c=0.2 MPa
Penalty coefficient (Normal) | 2 GN/m’
Penalty coefficient (Shear) 0.5 GN/m’

Viscosity (Block body)

5 %x(unit mass)xsec

Viscosity (Normal contact)
Viscosity (Shear contact)

5%x(Penalty Pn )xsec

10%x(Penaltv Ps)xsec

Velocity — energy ratio

Rock VS Rock: 0.80
Rock VS Soil: 0.40

(b) Small block model (Model-2)

143
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In order to compare the distance of collapse from the slope toe, two unit masses is set up and the
viscosity of the block itself is defined as 5% of the unit mass [4, 5]. The viscosity of the block
contact is defined as 5% and 10% of each of the normal and shear penalty coefficients
respectively. The velocity-energy ratio is defined as 80% and 40% for the rock vs. rock and the
rock vs. soil respectively.

3.2. Analytical results

Figure 10 shows the deformation of Case-1 (Model-1, E = 3 GPa, 25 kN/m®) and Case-3 (Model-
2, E =3 GPa, 25 kN/m’) after 5, 10 and 15 seconds, respectively. The lines in the figures show
the trace of blocks. From these results, the rock slope started to collapse at the crest of the slope
and the blocks were pushed out toward the toe of slope from the top of the slope. The collapsed
blocks moved along the surface of the base block and reached 90 meters from toe of the slope
after 15 seconds. The blocks at the center of the slope moved within the body. These modeled
behaviors agreed well with the observations. Comparing Case-1 and Case-3, the distance
traveled from at the slope toe was greater in Case-3 than Case-1. This result shows that smaller
blocks traveled further than larger blocks in the model. The reason for this result is that the
friction forces between the base block and the collapsed blocks is smaller for small blocks than
for large blocks.

Figure 11 shows the result of Case-2 (Model-1, E = 1 GPa, 20 kN/m®) and Case-3 (Model-2, E =
3 GPa, 25 kN/m3). The unit mass of Case-2 is 20 kN/m’, which is 80% of that of Case-1.
Therefore, the friction between the base block and collapsed blocks is smaller than in Case-1.
The distance traveled from the slope toe is 10 to 15 meters longer than in Case-1.

After 5 seconds After 5 seconds

After 10 seconds After 10 seconds

After 15 seconds After 15 seconds
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(Case-1, E = 3 GPa, 25 kN/m®) (Case-3, E =3 GPa, 25 kN/m’)
Fig. 10. Comparison of difference of block size

After 15 seconds
After 15 seconds

(Case-2, E =1 GPa, 20 kN/m?) (Case-4, E =1 GPa, 20 kN/m®)
Fig. 11. Comparison of difference of elastic modulus of blocks
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Figure 12(a) shows block velocities with elapsed time at toe of the slope. In the case of the same
block size, the blocks of small unit mass travel faster than the blocks of large unit mass. In the
case of small block size, the average velocity of blocks is slightly higher than in the case of large
block size. Figure 12(b) compares the velocities of Case-3 (no contact viscosity) and Case-5
(with contact viscosity). Figure 13 shows the deformation of Case-5 after 15 seconds with
contact viscosity. The coefficients of the viscosities of contacts are assumed to be 5% of the
normal and 10% of the shear direction penalty coefficients.

Regarding the effects of contact viscosity, it is evaluated that the velocity of the block of Case-5
is one-third that of Case-3 after 5 seconds, and that the distance traveled from the slope top is 5%
shorter than in Case-3. This is due to velocity-proportional damping in the Voigt-type viscosity
model.

4. CONCLUDING REMARKS

We introduced a contact viscous damping model based on the DDA theory, ignoring the
additional reaction forces between blocks at the boundary. We presented an earthquake response
analysis using the DDA model for the rock slope fall caused by the Niigata Prefecture Chuetsu
earthquake in October 2004. The numerical results were compared with the topography of the
collapsed slope, and the results agreed well with the actual rock fall phenomena.

The principal influences of the parameters in the analysis for the distance traveled are the block
shape and unit mass. The effect of the viscosity of block contact is reduced at higher speed of
blocks during contact. The DDA results show that the parameters adequately model the rock
slope collapse caused by an earthquake.

However, the actual rock fall behavior is a three-dimensional phenomenon, so the relation
between two and three dimensions needs to be clarified. It is also important to analyze the
characteristics of earthquake wave acceleration at the slope.
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ABSTRACT: According to some past researches, it was reported that in case of applying DDA
to the full dynamic problem such as impact problems, if input parameters, e.g. time increment
and penalty coefficient, are not appropriate, accidental energy loss caused by numerical errors
occurs in the results. This paper examines the relationships between input parameters and
energy loss at the collision between two objects by performing free fall tests of a block with
DDA under a variety of experimental conditions, and studies how to select appropriate input
parameters according to the analytical condition to decrease the numerical errors. As the results,
it is revealed that as a necessary and sufficient condition for the precise DDA simulations of full
dynamic problems, it is indispensable to set some specific input parameters about contact
computation within the proper range which is determined according to analytical conditions.

1. INTRODUCTION

Geotechnical materials such as sand and gravel are an assembly of granular particles. The
mechanical behavior of granular materials is extremely complicated because it would be mainly
ruled by a lot of non-linear factors due to the discrete and non-homogeneous internal structure, or
disorderly particle alignment. In general, experimental research such as model test and element
test would be adopted for investigating the mechanical behavior of granular materials in
comparison with numerical simulations. However, it is hard to separate one factor from the
others based on experimental research because it is almost impossible to control experimental
condition precisely and exclude an individual difference between test samples completely in
laboratory tests. Meanwhile, numerical simulation has an advantage that it can examine the
mechanical behavior of geotechnical materials in terms of micromechanics as well as controlling
an arbitrary experimental condition accurately, compared with experimental research.
Accordingly, numerical simulation (numerical experiment) has been widely utilized to examine
the geotechnical problem which is hard to be reproduced by real laboratory tests these days.

Especially, from the viewpoint of the mechanics of granular materials, discontinuous models
seem to be appropriate for simulating the mechanical behavior of granular materials caused by
the movement of constituent particles. This is because discontinuous analyses assume granular
materials as discontinuum and consider the granularity of geotechnical materials. In
discontinuous modeling, the movement of an individual particle can be microscopically traced
under both kinematic and static constraint conditions which consider the mechanics of granular
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materials and the discontinuum mechanics. Therefore, discontinuous analysis has been recently
applied to various kinds of the mechanical behavior of granular materials, for example,
liquefaction of saturated granular soils [1], settlement of railway ballast under cyclic loading [2],
and designing of rockfall prevention works [3].

In discontinuous analysis such as Distinct Element Method (DEM) [4] and Discontinuous
Deformation Analysis [5], when two elastic or rigid elements come in contact, a frictional slider,
elastic springs and viscous dashpots are created at the contact point. The results of numerical
simulation with discontinuous analysis are sensitive to the input parameters concerned with
contact between elements. The reason for this is that contact mechanism in discontinuous
analysis plays an important role in not only the transmission mechanism of external force and
kinetic energy at collision but also the stability of computation or the convergence for iterative
calculation.  Accordingly, it is indispensable for improving the prediction accuracy of
discontinuous analysis to examine the influence of the input parameters concerning contact
mechanism on the transmission of kinetic energy at the collision between two objects in case of
analyzing the mechanical behavior of granular materials, where many blocks come in contact
repeatedly during simulations.

2. OBJECTIVES OF RESEARCH

This paper presents a fundamental study to improve the reliability of numerical simulation in
case of applying DDA to the mechanical behavior of granular materials.

The objectives of this paper are:

e to examine the relationships between input parameters and the transmission mechanism of
kinetic energy at the collision between two objects.
e to show how to select appropriate input parameters according to the analytical condition to
decrease the numerical errors.
In this paper, a series of free fall tests using a regular polygon block are performed with two-
dimensional DDA under a variety of experimental conditions altering block materials, falling
heights, ball diameters, etc. Based on the results, the influence of input parameters on the
prediction accuracy of numerical simulations is evaluated in terms of the correctness in
transmission of kinetic energy. Then, the validity of the method for selecting input parameters in
DDA simulations is examined.

3. ANALYTICAL ASSIGNMENT IN DDA SIMULATION

3.1. Input Parameters in DDA

DDA, which is based on the minimizing potential energy, is a dynamic analytical method for the
discontinuous assemblages. The movements of each block are the cumulative displacements for
each time step, and the deformation property of a DDA block is linear elastic in this paper.
When two DDA blocks come in contact during computations, contact springs are introduced to
prevent blocks from penetrating to each other as shown in Figure 1. Contact damping is not
necessary in the calculations to maintain the stability of computation, and it makes the physical
meaning of input parameters in DDA clearer than in DEM. Hence, DDA is expected as a
method to solve the contact problem of discontinuum and simulate the mechanical behaviors of
discontinuous blocks after contact.
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Fig. 1. Contact mechanism of DDA. Fig. 2. DDA model of ballasted railroad track.

In discontinuous analysis, the contact computation plays an important role. DDA introduces the
methodology called “Open-close iteration,” to set the correct contact spring patterns of block
systems and calculate the approximated contact forces for each contact pair under the rule
keeping “no-penetration, no-tension criterion between two blocks.” Some specific input
parameters controlling numerical calculation, namely “reference length (w0),” “displacement
allowed ratio (DAR or G2),” “maximum time increment (Atm.x),” and “stiffness of normal
contact spring (k,),” are employed to consider the convergence efficiency of time integration and
derive the correct solution about the contact behaviors simultaneously. These control parameters
are most difficult to be decided among all designated analytical conditions because most of the
parameters cannot be obtained by experimental results. Moreover, the problems with lots of
blocks and complicated contacts such as the mechanical behavior of granular materials are very
sensitive to these control parameters. Therefore, the selection of control parameter has a
significant effect on computational results in simulating the mechanical behavior of granular
materials.

Moreover, the time integration method introduced in DDA is one of the Newmark-type
approaches [6]. The Newmark-type time integration guarantees the unconditional stability of
numerical computation if the parameters satisfy the specific conditions. Accordingly, the
Newmark-type approach can be good to analyze static problems because with large time
increment the simulation results approach to the static state fast and remain stable. However,
when DDA is applied to the full dynamic problem such as impact problems, the numerical
simulation may not attain the correct solution in theory according to the analytical conditions.
This is because for example, in case of employing larger time increment in the block collision
simulation, accidental energy loss caused by numerical errors, namely “algorithmic damping,”
occurs in the results [7]. Although DDA introduces Open-close iteration to control the size of
time increment during contact computation, it is not small enough to neglect the algorithmic
damping. Accordingly, the small time increment should be employed to the dynamic problem in
order to diminish the numerical errors during time integration.

3.2.  Simulations of Granular materials

This section presents a numerical simulation of railroad ballast under cyclic loading as an
example of analytical assignments in applying DDA to the mechanical behavior of granular
materials. Figure 2 shows the element meshes of DDA models before loading. The DDA model
is composed of some polygon blocks, named “ballast blocks,” which represent andesite ballast
particles and rectangular blocks, named ““a sleeper block™ which represents an aluminum sleeper,
named “a roadbed block™ which represents steel roadbed and named “side blocks” which
represent a rigid soil container. Vertical loads with constant amplitude between the maximum
value Ppax of 2kN and the minimum value of 0.5kN was repeatedly applied to the center of the
sleeper block as shown in Figure 2. The waveform was triangular, and the number of loading
cycles was five. Furthermore, the gravity force was applied to the DDA model throughout the
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simulation. “Analysis type index” or “Kinetic damping parameter [8]” (kO1) was set equal to
0.0, and so the DDA simulations were performed under quasi-static conditions. For further
details about analytical conditions, the paper [9] is to be referred.

The applicability of DDA to the cyclic plastic deformation of railroad ballast was examined.
Figure 3 shows the relations between the vertical load P and the vertical displacement u of the
sleeper comparing analytical results derived from the DDA simulation with experimental results.
It is observed that the load-displacement relation of analytical results in Figure 3b differs from
that of experimental results (Figure 3a) in the elasto-plastic deformation at unloading process. In
DDA simulations as shown in Figure 3b, the vertical displacement increases progressively not
only at loading but also at unloading, though the vertical displacement of experimental results
decreases at unloading. Accordingly, at the above-mentioned analytical conditions, DDA may
not simulate railroad ballast under cyclic loading well.

2

Then, one of the control parameters, namely “stiffness of normal contact spring (k,),” was
changed to improve the prediction accuracy of DDA simulations. Figure 3¢ shows the load-
displacement relations under cyclic loading obtained from DDA simulations which decreases £,
from 200.0 GN/m to 0.2 GN/m, together with their average time increments. It is recognized
that the difference in the stiffness of normal contact spring has a considerable influence on the
simulation results, and that in adopting the k, value of 0.2 GN/m, the analytical results are
similar in the shape of load-displacement relation to experimental results compared with in
adopting the k, value of 200.0 GN/m because the vertical displacement decreases at unloading
like experimental results. This example demonstrates that the selection of unsuitable parameter
may cause wrong computational results.

Beside, Figure 3 shows that with the decrement of the 4, value, the average time increment
increases. Here in this paper, the time increment is not given as one of input parameters, but the
average time increment is derived from DDA simulations. Consequently, in case of a long term
simulation for granular materials, selecting small stiffness of normal contact spring has an
outstanding advantage. On the other hand, as mentioned above, a small time increment should
be employed to avoid the numerical errors caused by algorithmic damping. Also, a large
stiffness of normal contact spring should be selected so as to prevent blocks from penetrating to
each other. Accordingly, it is indispensable for the precise and efficient simulation of granular
materials to select a well-balanced stiffness of normal contact spring.

4. FREE FALL TEST

Some researchers investigate the influence of input parameters on the analytical results by simple
and basic simulations [10]. In this paper, a series of free fall tests using a regular polygon block
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are performed with two-dimensional DDA program to evaluate the influence of input parameters
on the prediction accuracy of numerical simulations in terms of the correctness in transmission of
kinetic energy.

4.1. Numerical Models

Free fall test simulations under plane-strain condition were performed while changing analytical
conditions such as materials of a ball and/or a reflector plate, falling heights H, ball diameters D.
The schematic diagram of DDA models is shown in Figure 4. The test implement is composed
of only two DDA blocks, namely a “ball block” which represents a free falling ball and a
“reflector block” which represents a fixed reflector plate. At the begging of each simulation, the
ball block, which shape was a regular octagon and which diameter was 40 mm or 60 mm, was
placed so as to turn a certain angle of the ball block downward. In the simulations, a ball block
at the height of 0.2 m, 0.4 m and 0.6 m from the upper surface of the reflector block falls by the
gravity force G of 9.8 m/s” and collides with the reflector block. Here, the initial velocity of the
ball block is zero. Consequently, the contact type between two blocks is vertex-to-edge contact
as shown in Figure Sa.

D= Ball
40mm1@ block ——>
1G

60mm H~ Regular
i 0.2m, Octagon
y | 04m, corne Block 1 Block 1
0.2m 0.6m
Falling
direction
Block 2
Block 2
Fig. 4. Schematic Section of DDA model. Fig. 5a. Vertex-to-edge contact.  Fig. Sb. Edge-to-edge contact.
Table 1. Material Properties of DDA Model.
Block Unit Mass y | Young’s Modulus £ | Poisson’s | Cohesion C, | Friction Angle ¢, Input
Material g/em’ GPa Ratio v kPa deg. COR
Andesite 2.70 20.0 0.1 0 0 1.0
Iron 8.00 210.0 0.3 0 0 1.0

Free fall test simulations in this paper assume to be the perfectly elastic collision problem where
the energy conservation law holds good. Therefore, the material properties of blocks and the
interface properties of block edges were selected as shown in Table 1. As for the material
properties, the parameters y, £ and v were set referring to the material properties of andesite and
iron. As for the interface properties, both ¢ and C, were set equal to zero assuming frictionless
dynamic contact problems only in vertical direction. Besides, as for one of input parameters in
DDA simulations, the coefficient of restitution COR which represents the energy dissipation of
mechanical energy at the collision between two objects, was set equal to 1.0.

4.2. Coefficient of Restitution

In this paper, the coefficient of restitution is used as an index to evaluate the influence of the
input parameters on the transmission of kinetic energy at the collision between two objects. For
this purpose, the output COR is calculated by Eq. (1).

COR=\/H,/H, (1)
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Where Hj = initial falling height, H; = maximum rebounded height after first collision.

Some examples of DDA simulations which differ in the average time increment At,,. are shown
in Figure 6. Here, the average time increment Aty is defined as the elapsed time while two
blocks keep contact divided by total number of time steps during the contact. The relationships
between vertical positions of a ball block and elapsed time differ according to the average time
increment. In the DDA calculations assuming the perfectly elastic collision between two blocks,
the mechanical energy should conserve, and then the fallen ball block ought to return to the
original position. However, in Figure 6, the simulation that employs larger time increment does
not obey the energy conservation law, though the simulation using smaller time increment keeps
it. This indicates that the potential energy dissipation mechanism, that is “algorithmic damping,”
exists in DDA in case of using larger time increment as aforementioned. Therefore,
computational errors were evaluated by comparing the input COR with the output COR obtained
from analytical results. The successful DDA simulation, which can obtain the correct output
COR value, is defined as the simulation in case the difference in both COR is less than 2.0 %.

Before turning to a closer examination of analytical results in next chapter, a few remarks should
be made concerning the shape of a ball block. In this paper, the ball block which shape was a
regular octagon was mainly used, and it was set so that the corner of a ball block hit with a
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Fig. 7a. Influence of block shape on success rate. Fig. 7b. Influence of contact type on success rate.
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reflector block. Then, as a preliminary investigation, the influence of the difference in the block
shape and the aspect of the polygon corner on the analytical result of free fall test simulations
was examined. Figure 7a compares the success rate of DDA simulations which used a variety of
block shapes, while Figure 7b compares the success rate of DDA simulations which contact type
is vertex-to-edge contact with that of edge-to-edge contact (Figure 5b). From these results, it is
recognized that the difference in the block shape has a little influence on the success rate, and
that the success rate in case of vertex-to-edge contact is higher than that of edge-to-edge contact.

5. RESULTS AND DISCUSSIONS

This chapter will discuss the relationships between the analytical precision of DDA simulations
and some input parameters including the aforementioned control parameters.

5.1.  Cause of Different Rebound Type

The analytical results can be divided into five types as one successful simulation and four
unsuccessful simulations, namely “penetration,” “stay,” “over” and “loss”, as shown in Figure 6.
Here, the state called “penetration” is such a simulation that a ball block penetrates through a
reflector block, the “stay” is such a simulation that a ball block clings to the surface of a reflector
block the “over” is such a simulation that a ball block rebounds over the initial position and the
“lack” is such a simulation that a ball block does not return to the initial position after collision.
Hereinafter, “penetration,” “stay” and “over” are called “ill-condition” in the mass. Table 2
shows the number of the successful DDA simulations and the unsuccessful DDA simulations
among 6 kinds of DDA simulations which differ in the combination of D, i.e. D = 40, 60 mm,
and Hy, i.e. Hy = 0.2, 0.4, 0.6 m, under keeping the other analytical conditions like &, and MD
constant. Here, the maximum allowed displacement MD is defined as “displacement allowed
ratio (DAR or G2)” multiplied by “reference length (w0).” So, if the number is 6, the success

Table 2. Classification of DDA simulation results.

Material kny MD (=w0xG2) (mm)
Pro (GN/m | 0.12 0.21 0.29 0.42 0.84 1.26 1.68 2.52 3.36
perty
) 6 0 4 0 0 0 0 0 0
0.2 (1
Ball: An i 2.0 L L
aReflecﬁii:te 20.0 L 4 2 2 2
Andesite 200.0 3 6 2 2 2(1) (1)
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0.2 (D
2.0 1 1
Ball: Andesite 20.0 1 4 2 2 2
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rate of DDA simulations is 100%. Besides, in Table 2, a figure without parenthesis is total
number of successful DDA simulations under the designated analytical conditions, and a figure
in parenthesis is total number of ill-conditioned simulations. An underlined figure means total
number of simulations which results in “penetration.” From the table, the following tendencies
may be founded;

e The suitable combination of &, and MD for successful DDA simulations may lie in some
specific range. For example, under the analytical condition in this paper, the best-suited
combination is MD = 0.84 mm and &, = 200 GN/m.

e The appropriate k, value depends on the material property of a ball block, though it has a
little influence on the material property of a reflector block. Under the analytical condition
in this paper, the appropriate k, value in using an iron ball block is about 10 times of the
appropriate k, value in using an andesite ball block.

e In case of setting both &, and MD in comparatively small value, the DDA simulation results
in “penetration” state. In case of setting both k, and MD in comparatively large value, the
DDA simulation results in “stay” or “over” state.

These results indicate that the control parameters such as &, and MD have a serious influence on
the transmission of kinetic energy at the collision between two objects in applying DDA to the
full dynamic contact problem.

5.2.  Relation between k, and Material Property

The influence of material properties such as », E and v on the selection of appropriate &, value is
examined under keeping input parameters except the variable input parameter constant. Figure 8
shows the range of the appropriate &, value against various densities of a ball block and various
Young’s moduli of a ball block. With increasing the density of a ball block, the appropriate £,
value gradually increases. On the other hands, the variation in Young’s modulus £ of a ball
block has little effect on the appropriate 4, value. In addition, another investigation confirms that
the variation in Poisson’s ratio v of a ball block also has little effect on the appropriate &, value.
From these results, it is revealed that the appropriate &, value mainly depends on the mass of a
ball block in a variety of material parameters.

5.3. Relation between MD and Aty
The relation between the output COR values and the At,,. values is examined to show the proper
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Fig. 8a. Influence of density on k. Fig. 8b. Influence of Young’s modulus on k,.
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range of time increment for decreasing numerical errors during contact computation. Figure 9
shows the relations between the output COR and the At,,. derived from all DDA simulations
except the simulations which results in “penetration,” “stay” and “over” states. The correct
output COR values can be obtained when the Af,. takes the comparatively small value of
1.3x10°~2.3x10sec. However, some cases cannot obtain the correct COR value, even if the
Ataye 1s in the above range. Moreover, there is a tendency to increase time increment extremely
when the total number of time steps during contact is more than 20 steps, and consequently the
correct output COR values cannot be obtained. These indicate that the employment of the small
time increment is necessary condition for the successful DDA simulation.

Next, the method to keep time increment in the aforementioned proper range by selecting
appropriate input parameters according to the analytical condition is examined. Figure 10 shows
the relations between the maximum allowed displacement MD and the Az, at the respective &,
values, comparing the analytical results in case of an iron ball vs. an iron plate with those in case
of an andesite ball vs. an andesite plate. The Az, tends to increase with the increment of the
MD, irrespective of the &, value, and the At,,. is highly sensitive to the MD compared with the
sensitivity to the k,. Besides, the difference in the MD-At,. relations due to the material
properties on cannot be discerned. From these results, it is recognized that setting time
increment to the appropriate value needs to control the maximum allowed displacement MD,
which is defined as “displacement allowed ratio (DAR or G2)” multiplied by “reference length
(w0).” Accordingly, in case of employing both the same MD and the same k,, the analytical
results are the same, regardless of the selection of G2 or w0 values. This tendency has already
been confirmed in this free fall test simulations.

5.4. Relation between k, and At,,,,

The preceding sections illustrate that the k, and At,,.(MD) plays an important role in the
transmission mechanism of external force and kinetic energy at collision and the stability of
contact computation. In this section, the relations between £, and At,y. are examined to attain the
correct numerical solution in theory according to the analytical conditions.

Figure 11 shows the relationships of an iron ball and an andesite ball, respectively. In case DDA
simulations can obtain the correct output COR value, the At,y. value is confined within the limits
according to the 4, value, and the minimum limit of Az, has a tendency to increase gradually
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with the decrement of the k,. Besides, it is recognized that the proper range of At,y. is influenced
by the material properties like density. Especially, as for the maximum limit of At,., there
seems to be a considerable difference due to the material properties. The important points from
the above considerations are summarized as follows. There is some possibility of not obtaining
the correct numerical solution in theory in case of employing extremely small time increment,
while too large time increment leads to the wrong solutions as the error due to algorithmic
damping cannot be neglected. Therefore, it is a necessary and sufficient condition for the precise
DDA simulations of full dynamic problems that time increment lies in the proper range from the
minimum value to the maximum value, which are determined by the material properties and the
k, value.

Figure 12 also shows the relationships of an iron ball, comparing analytical results of Hy =20 cm
with those of Hy = 60 cm. In spite of no difference in all analytical conditions except falling
height between both figures, Figure 12a is different from Figure 12b. Accordingly, it is
recognized that the difference in the falling height of a ball block, that is the kinetic energy of a
ball block, influences the proper range of Af,., and that both the minimum limit of the
appropriate At,y. and the width of the proper At range increase with increasing the kinetic
energy of a ball block before collision. This indicates that other factors except the control
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parameter previously mentioned influence the transmission mechanism of kinetic energy at
collision, and another potential energy dissipation mechanism besides “algorithmic damping”
may exist in DDA. For example, it is said that the “Open-close iteration” can cause unreal
contact behaviors as the tensile forces and too large contact forces are generated if control
parameters, e.g. “criteria of opening (f0)” and “criteria of open-close (f7)”, are not appropriate
[11]. In this paper, though both the f0 value and the f7 value are fixed, the penetration length at
collision is closely related to the kinetic energy of colliding objects. Therefore, these control
parameters ought to be adjusted to the kinetic energy of a ball block so as to diminish the
numerical errors during contact computation as much as possible. However, it needs further
investigation concerned with the influence of these control parameters on the transmission of
kinetic energy at the collision between two objects

6. CONCLUSION
The following conclusions can be obtained;

(vij The control parameters such as k, and MD have a serious influence on the transmission of
kinetic energy at collision in applying DDA to the full dynamic contact problem.

(viii) The suitable combination of &, and MD for successful DDA simulations may lie in some
specific range.

(ixy The appropriate k, mainly depends on the mass of a ball block, though it has a little
influence on the material property of a reflector block.

(x) The At.. tends to increase with the increment of the MD, irrespective of the k, value, and
the At,y. 1s highly sensitive to the MD compared with the sensitivity to the .

(xi) Setting time increment to the appropriate value needs to control the maximum allowed
displacement MD, which is defined as G2 multiplied by w0.

(xiiy There is some possibility of not obtaining the correct numerical solution in theory in case
of employing extremely small time increment, while too large time increment leads to the
wrong solutions as the error due to algorithmic damping cannot be neglected.

(xiii) As a necessary and sufficient condition for the precise DDA simulations of full dynamic
problems, it is indispensable to put time increment within the proper limitation which is
determined by material properties and £,,.

xiv) The difference in the falling height of a ball block, that is the kinetic energy of a ball block,
influences the proper range of At,ye.

(xv) Other factors except k, and At,y. influence the transmission mechanism of kinetic energy at
collision, and another potential energy dissipation mechanism besides “algorithmic
damping” may exist in DDA.
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ABSTRACT: Rock blasting is a large deformation, large displacement process, accompanying
with both dynamic and static effects, blocks in the discontinuous rock medium may be fractured
by explosive impulsive loads. DDA method meets the characteristics of rock blasting and the
blasting fragment size can be forecasted by this method. In order to simulate rock blasting
process exactly, plastic constitutive relation is added to the initial edition of 2D-DDA code and
energy dissipation is taken into account. A typical rock bench blasting is calculated by the
extended code and the blasting fragment size is analyzed.

1. PREFACE

Since the method of Discontinuous Deformation Analysis was put forward by Doctor Shi Gen-
hua, it has been developed a lot and now is used in various fields, such as rock and soil
engineering, water conservancy projects and so on. For the numerical simulation of rock
blasting, DDA has its superiority in theory compared with traditional numerical methods such as
FEM and DEM. DDA meets the characteristics of rock blasting [1]: large deformation, large
displacement, accompanying with both dynamic and static effects, the calculated media is
discontinuous block system and the blocks may be fractured by explosive impulsive loads. As
both joints in the initial rock medium and new cracks generated by the effect of explosive loads
can be calculated by DDA method, the blasting fragment size forecast can be done by this
method.

However, DDA hasn’t been playing an important role in the simulation of rock blasting until
now and only a little work in this field has been down. Zhu Chuan-yun, Jiang Qing-hu [2], Liu
Hong-yan [3] etc. have calculated blasting funnel using 2D-DDA method. In their work, the
simple elastic constitutive relation was used and the dissipation of energy was not considered.
A.Mortazavi and P.D.Katsabanis simulated bench blasting process with extended 2D-DDA code
and achieved satisfying result [4], but the calculated model was limited in static state and the
simulated pile differs from the practical pile. It is obvious that simple constitutive relation can’t
meet the characteristic of the association of dynamic and static effects of rock blasting. For the
initial edition of 2D-DDA code, the friction among blocks is the main way of the consumption of
energy and obviously it’s not enough, the energy dissipation can’t be ignored. In order to
simulate rock blasting exactly, the author may try to solve both of the two problems, and a way
of forecasting blasting fragment size is put forward in this paper. Then a typical rock bench
blasting with a consideration of over drilling is calculated with the extended code and the result
is analyzed.
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2. CODE EXTENSION

2.1. Plastic Constitutive Relation

As Drucker-Prager yield criterion is the revise of Mohr-Coulomb yield criterion, the effect of
ambient pressure o, to the yield of rock medium is taken into account and this criterion can also
reflect the effect of shear stress to the expansion of volume [5]. So this yield criterion is to be
used in the extension of the initial edition of 2D-DDA code. This criterion can be expressed as
follows:

— 12 —

Where [, is the first invariant of stress tensor, J,is the second invariant of deviator stress

tensor,, K are material parameters, their relations to cohesion ¢ and angle of internal friction
@ are:

o= 2sin g
V3(3-sing)

_ bccosg
 V3(3-sing)

The linear strain-hardening plastic constitutive relation is added to the 2D-DDA code and the
two dimensional Drucker-Prager yield criterion is used.

2.2.  Energy Dissipation

In the initial DDA method, the friction among blocks is the main way of the consumption of
energy [6] and for the one order displacement function DDA code, fracture of blocks can’t be
calculated. In order to calculate rock blasting with DDA method, the dissipation of energy is
taken into account according to the calculation of suppositional cracks.

While a block is under plastic condition according to the Drucker-Prager yield criterion, the
plastic constitutive relation is used.

Because the expansion of rock medium is limited [5], if a block expands above a certain ratio
that’s permitted, it is considered to be fractured and a crack is recorded. For this fractured block,
it can’t bear tensile stress [7], so the tensile stresses of the block should be set zero and the
increase of the strain of this block in this time step should be ignored.

When a block doesn’t expand as much as that ratio, if a certain principal stress is bigger than the
tensile strength of the rock medium, the block is considered to be fractured and a crack is
recorded. This principal stress should be set zero and the increase of the corresponding principal
strain of this block in this time step should be ignored.

When a block doesn’t grow as much as that ratio, if a certain principal stress is bigger than the
compressive strength of the rock medium, the block is considered to be fractured and a crack is
recorded. This principal stress should be set the value of the compressive strength and the
increase of the corresponding principal strain of this block in this time step should be ignored.

Because rock media’s strength may grow a lot under the condition of high strain increasing ratio
[5], the tensile strength and compressive strength may be multiplied by 10 while the strain

increasing ratio is bigger than 10*.
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So in each time step, stresses and increased strains in this time step in x-axis, y-axis and the shear
direction should be transformed to the principal directions and the transforming angle should be
recorded for the backward transformation [8].

2.3. Blasting Fragment Size Forecast
With the consideration of the above records of suppositional cracks and the open and close
conditions of the initial joints, the blasting fragment size can be forecasted.

In the fractured area (Fig.1) of the blasted rock media [9], if the number of suppositional cracks
is n, in a certain initial block, it is supposed to be fractured into 2" smaller blocks and the area
of each of the smaller blocks is:

S=6)"S, @

Where S, is the initial average area of the blocks in the jointed rock media. If a block is still
felted to n, other blocks, the area of the felted bigger block is:

fractured area 4m

fractured
area

‘b01:eh6>le _

11m
10m

rock media

Fig.1 Typical rock bench

S =(n, +1)S, 3)
Where S, is the initial average area of the blocks in the jointed rock media. If a block is not

suppositional fractured and is not felted to any other block, the area of this block after blasting is
the same as that before blasting:

§=5, (4)

The representative dimension / of each block is calculated by the assumption that all the blocks
before and after blasting are equilateral triangle, so / can be calculated by the following formula:

1=2]Ls (5)

NG

The proportion of the total area of blocks which have the same representational dimension to the
total area of blocks in the fractured area can be gotten:

n,S
NS,

B =—"x100% (6)
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Where n, is the number of blocks which have the representative dimension of / and Sis the
corresponding block area. N is the total number of blocks in the fractured area and S, is the
initial average area of the blocks in the jointed rock media.

To define I' is the proportion of the total area of blocks which have the representational
dimension smaller than /, so I" can be calculated as follows:

r=%5 (7)
Where f. is the proportion of all the blocks which have the same but smaller representational

dimension than /.

Then a I"-/ curve can be drawn and this curve reveals the blasting fragment size distribution.

3. SIMULATION OF A TYPICAL ROCK BENCH BLASTING

3.1.  Simulation of a Typical Rock Bench Blasting

The sketch map of the calculated typical rock bench is shown in Fig.1. As the fragmental zone is
not going to be calculated, the diameter of the borehole is 2.5 times [9] of the initial borehole,
it’s 500 mm . The rock media is granite, and the material parameters of rock media [10] and the
joint parameters are shown in Table 1 (2600 kg - m>=4382.261b- yd ).

Table 1. Material parameters

Density Yong Poisson | Friction | Cohesion Tensile Compressive
P modulus ratio angle c strength strength
kg-m™ | E,/GPa v or MPa | ©,/MPa | o ,/MPa
rock media 2600 62 0.22 60 50 18 155
joints - - - 45 2 0.5 -

In A.Mortazavi and P.D.Katsabanis’s work, the effect of stress wave to the blast is ignored and
only the blasting products’ effect is calculated. In this paper, both of the above two effects are
going to be taken into account by the method of compositing the two load history together.

The sketch map of the composition load history acted on the borehole wall where the explosive
effects directly (6 m (6.5617 yd) at the bottom) is shown in Fig.2. On the borehole wall where
the explosive doesn’t effect directly (5 m (5.4681 yd) at the top), the load will gradually start in
2 ms with the dissipation of the peak value to zero in the direction to the borehole mouth. All the
loads on the bore hole will finish in 6 ms .

The peak value of explosion pressure of 2 " rock explosive is [9]:
P, = % poD,,’ =3240MPa

Where p, =1g/cm’ (2123.89 ib-yd ™) is the density of the explosive, D, =3600m/s (3937
yd/s) is the explosion velocity. As the crush zone is not going to be calculated, according to the
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effecting area of the load and the theory that most energy is consumed in the crush zone [9], the
real peak value is:

(note — Figure 2 removed because it would not convert to .pdf)

Fig.2 Load history
1 r,

P =—(—)P, =130MPa
10 'y

Where 7, is the radius of the initial borehole and 7, is the radius of the borehole with out the

consideration of crush zone. The ratio m is used because of the dissipation of the energy for

crush in this zone.

As the effect of explosion products is taken into account, the turning point time and the ending
time of the load are ¢, = 0.2ms and ¢, = 6ms . The peak value time ¢, =10vs and turning point

pressure P, =30MPa is decided by the explosion shock load itself.

In the calculation, according to the weak plastic character of granite, the Yong modulus under
plastic condition is 0.8 times of that under elastic condition, and the maximum expansion ratio of
each block is 0.1%.

The initial joints in the rock media and representative moments of the simulation are shown in
Fig.3. Compared with the initial edition of 2D-DDA code in which elastic constitutive relation is
used and the energy dissipation is not taken into account, the control of the blocks is obviously
improved. The movement of the blocks in the bench displays the real bench blasting quite well.
But the control is still not enough: the fractured area is lager than that in theory; the flying rocks
are not fully controlled.
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The blocks that should fall and form the blasting pile may be out of control if the calculation
goes on and the energy dissipation is not enough. For the reflection of the boundary to the stress
wave, the free surface on the top is disturbed by the explosive load.

i *
1K ] s \\ s sEn s L F
i /
(a) the initial joints in the rock media (b) Relax of the borehole
) &’AVD A n . . 7 Ay B 40 R <1D A<7 %

1 7

4

BB TR e ) %%

(¢) Flying rocks (d) To fall down

Fig.3 Initial joints and representative moments

3.2. Fragment Size Analysis
By the fragment size forecast method mentioned above, the I'-/ curve is shown in Fig.4. The

initial average area of the blocks in the jointed rock media is 0.11m” (0.1316 yd*), and the
initial average representative dimension is 0.50 m (0.5468 yd).
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Fig.4 Blasting fragment size forecast

4. CONCLUSIONS

According to the simulation result of the typical rock bench blasting, it’s feasible to simulate
rock blast with DDA method, especially for the forecast of blasting fragment size distribution.
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By adding plastic constitutive relation and energy dissipation to the initial edition of 2D-DDA
code, A new method to solve complex static-dynamic problem such as rock blasting by DDA is
presented.

However, the beneficial tentative work in this paper is still not satisfied and some more work
should be done for the following reasons.

(xvi) Because of the constitutive relation of rock is very complex in reality, it need to take a

precise and practical elastic-plastic constitutive relation through a lot of test.

(xvii) The energy dissipation method in the above work is primary and not precise. In order to

solve eventually the problem, we can develop high order displacement function DDA with
the calculation of real cracks and energy dissipation among blocks [4].

(xvii) For the simulation of rock blasting, how to get the real explosive load history and put it into

the simulation work should be studied, maybe we can turn to FEM method. For the
calculation of impulsive loads, absorbing boundary should be developed.
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ABSTRACT: With advantages of real time variable employment and large discontinuous
deformation simulation for DDA method, and on the basis of field geological investigation and
its mechanical parameters study, the numerical simulation of startup and a whole sliding process
of Qianjiangping Landslide has been carried out by use of DDA method. The corresponding
criterion for startup of a landslide has been established, and the whole process characteristics
have been analyzed based on the calculation results. It is shown that the main reason of landslide
is the reduction of mechanical parameters of controlled sliding surfaces in the landslide body
resulted from rainfall and rise of reservoir water level. The landslide belongs to thrust load
caused landslide. Compared to the actual process characteristics and the spatial morphology of
the Qiangjiangping landslide, it has been proved that the simulation results by DDA are quit
reasonable and acceptable. In addition, the most valuable progress is that methods adopted in this
paper supply a new way for stability study of landslide or other geotechnical engineering.

1. INTRODUCTION

On July 13 of 2003, a foundation rock landslide called Qianjiangping landslide, with the total
volume of about 20.4x10°m’, happened in the left bank of Qinggan River in Zigui County,
located in the Three Gorges Reservoir area . When it happened, the front of sliding body was
thrust to the right bank of Qinggan River and 30m high water wave formed, which resulted in the
collapse of houses, the block of Qinggan River, and a serious loss of lives and property.

The geologic features and startup mechanism of Qianjiangping landslide was paid attention by
society because it is located in the Three Gorges reservoir area and happened in the time no
more than 2 weeks after the storage of Three Gorges reservoir up to 135m elevation.

The research of landslide deformation and failure mechanism by the use of numerical methods is
one of the main research aspects for landslide problems in recent years. There exist many
difficulties in studying the startup and the whole sliding process of landslide with existed
numerical methods because they are not able to employ the real time variable in the model or to
simulate discontinuous deformation in large scale during calculation.

DDA method in its mechanical principles has overcome the shortages mentioned above, and has
the potential usage to simulate the startup and whole sliding process of a landslide which, in
author’s view, should be a very important milestone to realize clearly what the true mechanism is
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in a landslide[1-5]. On the basis of field geological investigation and its mechanical parameters
study, the numerical simulation of startup and process characteristics of Qianjiangping Landslide
has been carried out, and some important mechanical deformation mechanism and landslide
philosophy have been revealed with use of DDA numerical modeling in this paper.

207 MAIN FEATURES OF QIANJIANGPING LANDSLIDE
2.1 Process of landslide

There was a obvious sign of deformation appeared before about 15~18 days of landslide:
probably on June 27, at the north-east side of rear of sliding body, a crack occurred in the wall of
a house with the elevation of 350m ; at the south-west side of sliding body, a crack of 3~6cm
wide occurred in the road of 280m elevation and increased to 10cm wide on July 4, forming a
steep ridge of approximately 10cm high.

Before 14 hours of landslide, another crack of 0.5cm wide appeared at the elevation of 140m of
the sliding body, and 3~5cm wide cracks were also found in the gentle slope at the elevation of
182m. At 24:20 of July 13, massive sliding happened.

2.2 Spatial morphology and scale
Qianjiangping landslide is in arm-chair shape in general, the rear edge is in arc shape, while the
sides fan out and the front is also in arc shape, as shown in Fig. 1.

The front elevation of sliding body is 94.7m before sliding and 170m after sliding, and the front
is 600m wide; the rear is 35001405m in elevation, 380m in width and 1150m in longitudinal
length. The influenced area covers 0.68x106m” in total, with average thickness of 30m and
volume of 20.40x10°m’.

2.3 Characteristics of micro-topography

The typical micro-topography of
landslide consists of rear edge
cliff, massive sliding zone,
sliding terrace (gentle slope),
sliding sidewall and pinnate-
tension joints (groove), barrage
and dammed lake, slide tongue |
and landslide tension influenced
zone, etc.

The rear edge cliff is located on
the rear of sliding body with the hll s
elevation from 330m to 405m and o
in arc shape. The bedding rock, smooth and
planar and behaved as the bottom sliding
surface in foundation of the landslide is
revealed , with attitude of 1407130°. Its exposed area is with width of about 380m and length of
180m.

The slide front tongue, shaped with anti-dip stratum, is formed by high speed sliding of landslide
and thrust to the right bank of the Qinggan River. Its material consists mainly of rock blocks,
contented with soil and produced by foundation rock cracking, and pebbles from original

Fig. 1. Spatial morphology of landslide
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riverbed on the top of the front tongue, which indicates that movement of the lower foundation
rock had occurred.

2.4 Others

According to the scrapes and slickenside grooves on the rear sliding surface, the sliding direction
is as the same as the bed rock orientation basically, and it can be determined as NE130°. The
sliding distance was about 150m. The volume of landslide sliding into water was
2.40x10°m’ [accounting to 1/9~1/8 of the total. Water wave of 23(125m in height was formed
at the front of landslide. Based on the monitoring information obtained by seismometer station,
the maximum sliding velocity is estimated as 16m/s.

3. GENERAL GEOLOGY CONDITIONS

The exposed strata of sliding area belong to Niejiashan Group of Jurassic System [1J;.,0],
residual deposits 1Q""*'(Tand riverbed alluvial layer [1Q"[] of quaternary system. Niejiashan
Group![1J;2n[1is composed mainly of massive sandstone filled with feldspar and quartz, and
siltsand mixtured with a small amount of clayrock and mudstone.

The strike of the slope in the sliding area is accordant with the geologic structure with orientation
in the strata of 130°115°133°. The dip of the strata from top to the toe of the slope is varied
gradually, steep as 33° in the rear edge at the top to 15° at Qinggan river side, seeing Fig. 2.

(note — Figure 2 removed because it would not convert to .pdf format)

Two groups of joints, namely SN and EW, developed in the sliding area. They have played an
important role to form side walls and rear tension cracks during landslide.

Rock samples with sliding face contained have been taken from landslide field, and tested in
laboratory. The shear strength for the upper sliding surface, {=0.2501c=0.05MPa, and for material
in the lower part of sliding body, f=0.37~0.401 C=0.023~0.09MPa.

4. BLOCK SYSTEM AND PARAMETERS IN DDA MODEL
434

4.1 Block system

Fig. 3. Block system in DDA model
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According to the geological condition of the landslide, the bock system, formed by different
sliding surfaces and joints, has been obtained as in Fig. 3.

4.2 Properties assignment

In order to conduct flexibly different simulations involved in running cases and the
corresponding parameters, different material regions and block boundaries have been pre-
determined individually prior to properties assignment of the block system. For deformation
properties, 4 regions in total, where three in the sliding body including one which located below
the reservior water level at 135m in elevation, and one for the sliding foundation; for shear
strength in block boundaries or sliding faces, 11 types in total.

Parameters in each material region and block boundary or potential sliding surface can be
assigned individually. It is convenient to conduct deformation analysis of the block system in
different conditions.

4.3 Parameters

In order to get reasonable parameters for the landslide analysis, relative considerations which
include aspects of geological conditions, rock and soil mechanical tests and parameters back
analysis for the landslide have been conducted comprehensively. Parameters used in DDA model
are listed in table 1, where material parameters (1) refers to the general running condition of the
slope ( not considering the influence of rainfall and storage of reservoir to parameters) , and
parameters (2) refer to the parameters which have been reduce to an extent by water seepage of
storage of reservoir at 135 water level and rainfall.

Table 1 Parameters used in DDA

Calculation Deformation Strength properties Strength properties
conditions properties along general block along the main
boundaries sliding faces
E ( o o M
apa ) m ¢ CLMPal] ¢ CLMPal]
Paramete
) 0.5~1.0  0.35 18~23  0.03~0.06  18~23  0.02~0.05
P t
Ty 0.5+1.0  0.35 18~20  0.03~0.05  12~15  0.02~0.03
Sliding
foundation 2.0 0.25

5. STARTUP OF LANDSLIDE
5.1 Criterions

For a potential landslide, there is a direct criterion to judge if a landslide occurs. It can be
expressed as: for a given load condition, there is a determined sliding surface in the sliding body,
and all above the sliding surface would have a massive sliding failure. This means that any part
in the sliding body would have obvious displacement and velocity. In DDA model, some
particular blocks in sliding body at different positions, i.e. upper part, middle part and lower part
of the land slide, are chosen as monitoring points. If all monitoring points have obvious
displacement and velocity at time t, then the landslide may occur.
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In this paper, three blocks, 43#, 53#,and 394# in figure 3, have been chosen as monitoring
points. From curves of displacement and velocity versus time of these points obtained by DDA
modelling, the startup of landslide can be determined.

5.2 Conditions of landslide startup

With the established DDA block system, the deformation and failure mechanism of the landslide
in three cases have been carried out respectively.

(1) Not consider storage of the reservoir

Parameter (1) in table 1 is used. Curves of displacement and velocity versus time of monitoring
points in sliding body are shown in Fig. 4. It is shown that the landslide at this condition is stable
although there are obvious deformation and velocity at the upper part of the slope for blocks 43#
and 53# at first, but the block 394+# at the lower part show a very little displacement and velocity.
In this case, the startup of landslide does not occur.

(2) Water lever in the reservoir rises to 135m, and parameters remain unchanged

In this case, parameter (1) in table 1 and the submerged unit weight in the material region below
the 135m water lever are used. The corresponding curves are shown in Fig. 5. From Fig. 5, it is
shown that the startup of landslide does not occur.
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Fig. 4. Calculation results in case (1)
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Fig. 5. Calculation results in case (2)

(3) Water lever in the reservoir rises to 135m, and parameters decreased to some extent
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As the reason of storage of the reservoir and heavy rainfall, mechanical parameters in landslide
may be decreased by the effect of water seepage. Parameter (2) in table 1 is used, and the
corresponding curves are shown in figure 6. It is shown that at beginning of deformation (time
interval of OA), displacement and velocity for blocks 43#, and 53# are obvious, but very little
for block 394# at lower part of the landslide. It means the startup of landslide does not occur.
After time interval OA, there are obvious increasing of displacement and velocity of block 394#,
and velocities in three blocks behave nearly a same level immediately after time A. It means that
the startup of the landslide occurs.
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Fig. 6. Calculation results in case (3)

6 PROCESS CHARACTERISTICS

According to numerical analysis with DDA method, the whole process of landslide can be
divided into three periods, shown as in Fig. 7 and Fig. 8.

(1) Startup of landslide

There are obvious deformation at the rear edge and upper part of the landslide. The shear failures
between blocks near the surface of the upper slope occur, and there are severe deformation and
stress concentration in compression at the slope toe. The displacement and velocity at toe is very
small, seeing part curve of 394# in figure 8 within time interval OA.

(2) Rapid sliding period

When deformation of the landslide develops to an extent, compression failure at the toe occurs.
Local blocks at the toe of the slope have been thrust to the air, and shear movement of the
landslide occurs. Immediately a whole landslide is induced with comparative increasement of
displacement and velocity at each monitoring blocks, shown in Fig. 7(a) and Fig. 8 within time
interval AB. By calculation, the maximum velocity of the three chosen blocks is Sm/s.
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(a) After 15000 steps (b) after 50000 steps
Fig. 7 Deformation pattern of block system

(3) Velocity reduction and cease of the landslide

Following sliding down of the landslide, the potential energy of the landslide is decreased, and
the front tongue become anti-sliding. The velocity of landslide reduces gradually and the
landslide stop at last, shown in Fig.7(b) and Fig. 8 within time interval BC. The total duration of
the landslide is about 40 seconds and the maximum sliding distance is 105m.

7 CONCLUSIONS

On the basis of field geological investigation o e P >

and its mechanical parameters study, the |2 45 FOA AB A BC ! I
numerical simulation of startup and a whole | > 4| | i o
sliding process of Qianjiangping Landslide |8 35 | :

has been carried out by use of DDA method. |2 3| E

The corresponding criterion for startup of a 2': i

landslide has been established, and the whole 15 b

process characteristics have been analyzed 1

based on the calculation results. It is shown 0.5

that the main reason of landslide is the 0 o 0 0 %0 40 5
reduction of mechanical parameters of Tine (Sec)

controlled sliding surfaces in the landslide

body resulted from rainfall and rise of  Fig.8. Sliding velocity versus time during the whole process
reservoir water level. The landslide

belongs to thrust load caused landslide. Compared to the actual process characteristics and the
spatial morphology of the Qiangjiangping landslide, it has been proved that the simulation results
by DDA are quit reasonable and acceptable. In addition, the most valuable progress is that
methods adopted in this paper supply a new way for stability study of landslide or other
geotechnical engineering.
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ABSTRACT: According to the fact that mathematical meshes are independent of structure
boundaries in numerical manifold method (NMM), Gen-hua Shi, the inventer of NMM, proposes
an idea that large deformations of solid structures can be computed by means of NMM with
fixed mathematical meshes, similar to Eulerian description approach in point of the characteristic
that material particle moves in fixed meshes. In this paper, an attempt is made to compute large
displacements of structures using fixed rectangular mathematical meshes and 1-order polynomial
cover functions. Following the time steps, equations of NMM for large deformations are
adopted. After each time step is completed, deformed boundaries of the structures are intersected
with fixed mathematical meshes to generate new manifold elements. Several approaches are
presented to compute initial stresses. The results of large deflection of a cantilever beam show
the feasibility of NMM with fixed meshes, and indicate that more research should be further
done on the approach of precisely computing initial stresses in the structures.

Key words: numerical manifold method, fixed mathematical meshes, large displacement
problems, initial stress load

1. INTRODUCTION

Solving problems in spatial description is also called Eulerian approach whose typical feature is
that material particle moves in fixed meshes. Compared with the substance description
(Lagrangian approach) which is usually adopted in solid mechanics, Eulerian approach is very
attractive because the fixed meshes will not be distorted with the deformed material (structures),
so computational accuracy unlikely descends when too large deformations occur.

As for finite element method (FEM) of solid mechanics, it is difficult to implement moving
structures in fixed meshes. Because the meshes must strictly satisfy boundaries of the structures,
and fixing meshes implies that the boundaries can not move. Whereas in numerical manifold
method (for short NMM) ! the feature that meshes are independent of structure boundaries
offers the possibility of solving geometrically nonlinear problems (large displacements or large
deformations of structures) in fixed meshes.

In NMM, two independent mesh systems are introduced. One is physical mesh system defining
real material boundaries as the integration fields, another is mathematical mesh system defining
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only the numerical approximations. Separation of the two mesh systems results in the manifold
elements of arbitrary shape.

The manifold method computations follow the time steps. The approach to implement moving
structure in fixed meshes, proposed by Shi, is that the deformed boundaries (physical meshes)
are intersected with fixed mathematical meshes to generate new manifold elements after each
time step is completed. In this paper we shall call the NMM with this procedure as NMM with
fixed mathematical meshes, for short, fixed-mesh NMM.

Besides the forementioned advantage of keeping computational accuracy, another important
significance of fixed-mesh NMM in the future may consist in the fluid-solid coupling analyses
considering large deformation of structure and large disturbance of fluid, because it may be
convenient to solve the coupling problems when treating both fluid field and solid structure in
the same background meshes. Furthermore, studying fixed-mesh NMM is also the requirement
of NMM itself, because in Lagrangian description approach, when high-order manifold method
is adopted by increasing the order of polynomial functions in covers, very large deformations can
result in the incompatibility of the straight mesh edges with the deformed meshes!?!, and then
incorrect deformations such as separation of element edges can be observed.

This paper makes an attempt to solve problems of large displacements, restricting the study to
the case of isotropic linear-elastic material of continuum for the sake of simplicity. With fixed
rectangular mathematical meshes and 1-order polynomial cover functions, it is implemented that
structures move in the meshes. In the end of the paper, large deflection results of a cantilever
beam illustrate the feasibility of the fixed-mesh NMM.

To avoid confusions, in the following text we shall only designate meshes as mathematical
meshes.

2. EQUATIONS OF NMM

The manifold method computations follow the time steps. The quasi-static equations at each load
step (or time) for linear-elastic material are given (from ¢=i to t=i+1) as

[KYiAdiy = tF) —ﬁBlT 03302 () Ad,.}=1d;} +{Ad,,} 2)

{oiv1} =10} +[E][BI{Ad; 11} (3)

where [K], [B],[E],{F},{d } and { o } denote stiffness matrix, strain matrix, elasticity matrix,
load vector (F is the total load which is already applied by the time of i+1), displacement vector

and stress vector, respectively. Expressions of these matrices and vectors can be referred to Ref.
1.

Eq. (1) is the equilibrium equation in which I (81 (0,340 represents initial stress load. Eq. (2)

means modification of the coordinates of structures, indicating [B], [K], {F} are all computed in
the current configuration. Eq. (3) means superposing stresses as initial stresses for the next step.

The above equations differ greatly from classical FEM formulas for large deformation
computation *!, because [K] and [B] are identical to those of small deformation problems,
involving neither complicated nonlinear terms nor equilibrium iterations usually appearing in
FEM processes. One can directly use program codes for small deformations to carry out the
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entire procedure conveniently. Nevertheless, these equations demand that incremental
displacements of each step should be small enough to neglect the second order displacements.
The requirement leads to a problem: in FEM, a relatively large load can be applied in a time step
and unbalanced forces can be eliminated in an iterative way, while in NMM, time of each step
should be small and consequently times of solving linear system equations may increase a lot.
Fortunately inertia dominant equilibrium equations are presented in Ref. 1, introducing inertial
effect to Eq. (1) as

(IK1+[K ¢ D{Ad 1} = {F}+{Fg } - j (81 {o;1d02 @)
Q

where, [K, Jand {F,} are stiffness matrix and load vector respectively caused by inertial forces.
Eq. (4) can be used to compute dynamic problems with large deformations. Considering the
statics is the ultimate stabilized state of dynamics, energy reduction should be introduced, such
as velocity multiplying an appropriate constant. When using Eq. (4), the condition number of the
linear system equations in each step is good enough for iteration solver, so computational time is
saved.

In order to improve computational accuracy, 1-order cover functions are used in this paper.
Because of the shape arbitrariness of manifold elements, simplex integration method ' which
can give the accurate result is usually adopted in NMM. However the requirement of integrand
being polynomial functions about x and y results in the difficulties of formulation and
programming. As a foundation of this paper, approaches are obtained to develop expressions of
high-order NMM matrix and to automatically form program codes in Ref. 4.

3. MANIFOLD ELEMENT GENERATION

According to the idea of fixed-mesh NMM, deformed boundaries of the structures have to be
intersected with the fixed mathematical meshes to generate new manifold elements after a time
step is completed. One may doubt if this generation procedure is carried on for many times, the
additional much computational amount is involved. In fact the procedure costs much less time
than generation of FEM meshes. For example, similar intersecting operations have been done by
Shi to cut 2800 three-dimensional blocks of DDA, and only 30 seconds are spent in a computer
with 2GHz Pentium-M CPU. As to NMM, there are still better approaches to reduce more
computation time. So generally speaking, generation of manifold elements does not increase a lot
of computation amount.

Two-dimensional manifold element generation program written by Shi is adapted to rectangular
mathematical meshes in this paper. In fixed-mesh NMM additional works must be done as
follows:

(xix) Before the computation starts, original mathematical meshes are established. They should
cover the entire area in which structures may move throughout the whole computation
procedure.

(xx) Vertices in the boundaries of the structure should be refined to ensure the accuracy of
intersecting operations for many times.

(xxi) In each step, only mathematical meshes covering current structure boundaries are to be
considered. So current active meshes should associate with the original mathematical
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meshes to ensure that stresses of elements and velocities of nodes can be transferred from
the current time step to the next step.

4. DEFINITION OF INITIAL STRESSES

After the renewal of configurations and the generation of new manifold elements, displacements
of structures are transferred from the previous time step to a new step. The difficulty is the
computation of the initial stress load in Eq. (1). Initial stresses are essential to the fixed-mesh
NMM. We will encounter the problem of how to calculate exactly the stress distribution after a
time step is completed. Because of the movement of material, shape of the manifold element in
each mathematical mesh varies along with the time step, and part of material may enter a new
mesh. Therefore two problems should be solved: one is how to superpose stresses in a manifold
element as shown in Eq. (3), and another is the transference of the stresses when material enters
a new mesh.

4.1. Stress superposition

As for polynomial cover functions of displacements, stresses in manifold elements are also in the
form of polynomial functions. Some approaches are presented and discussed in detail for the
computation of coefficient matrix of stresses in the following.

e Approach a: coefficient superposition
Stresses in manifold elements are written as

o} =[Elle} =[E][Blid} = [E][N]{t} )

where [NV] is the coefficient matrix, {¢} is the vector of polynomial functions. Eq. (5) means that
the strain { € }=[B]{d} can be expressed in the form of [N]{z}. So in Ref. 5, stress superposition
is actually the superposition of coefficient matrix [N] with respect to homogeneous material.
Then initial stress load J'[ 51 (o100 1S calculated using simplex integration method.

Q

This approach is simple and the computing procedure is stable, yet the results of large deflection
of cantilever beams have considerable error compared with the analytic solutions because this
approach does not consider the effect of the configuration change when superposing stresses.

e Approach b: inversion formula method
In this paper inversion formula method is presented which performs well in Lagrangian
approach. As for 1-order polynomial cover functions, stresses of manifold element are
distributed as 2-order polynomial functions in rectangular mathematical meshes. Therefore, six
points are selected in each manifold element to compose a group of stress points, such as three
points around the element centroid and another three midpoints between them as shown in Fig. 1.

manifold element

Fig.1. Six stress points of a manifold element in a mesh
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When a time step is completed, accumulated stresses of these six points are computed
respectively according to Eq. (3), and the accumulated stress of any point in a mesh can be
interpolated using shape functions of six-node triangular element. So the stress vector in the
mesh can be written as

A 1 1
a| [¢ o] |2 [d o] fer el ] [an - ad] |
gldd | B | e, | P N [
NI e ol ] a - a x (6)
X)) Xy £3) l5 Xy Xy 1 6 x) 1 6 x)

L ) )

where, the shape functions of six-node triangular element, L; to Ls are rewritten according to
polynomial functions, and then right multiply the matrix of stresses to obtain polynomial
coefficient matrix [/N;]. Thus the stress distribution formula is deduced inversely from the
accumulated stresses of the six points.

After the above procedure is finished, stress points should move to the positions of the new
configuration in which the next time step will be computed. Moving positions is very important.
If positions do not shift, this approach will return to the above coefficient superposition approach
and lead to large errors. However, when large displacements occur, stress points may move
outside the mathematical mesh and may be not suitable for describing stresses in that mesh. To
solve this problem, alternate operations of stress points are designed as follows:

(a) In a time step, incremental stresses of stress points are computed in current positions
and superposed with the existent total stresses.

(b) Coefficient matrix [N] is obtained according to Eq. (6).

(c) Stress points are relocated, and their accumulated stresses are computed via [N;]{t}.
(d) Compute the new coordinates of these stress points in the new configuration.

(e) Go to (a) for a new time step.

e  Approach c: least-squares method
Actual computations indicate that stresses in an element will become too complicated to be
described via a group of six stress points when too large deformations occur. Thus approach b is
not appropriate because differences become significant when using various groups of stress
points.

Therefore an improved method is adopted. More stress points are selected in a manifold element
to obtain coefficient matrix [N,] using least-square fit to 2-order polynomial distributions. We
require only substituting the least-squares formula for inversion formula of Eq. (6) in the second
step of the above alternate operations in which other procedures need not change.

4.2. Transfer initial stresses when material enters a new mesh

It is necessary to consider transference of initial stresses when material enters a new
mathematical mesh. Small blocks are the tools for the transference in this paper.
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When complicated boundaries of material are encountered in the procedure of manifold element
generation, some small blocks often appear which occupy much less area in a mathematical
mesh, such as 1% to 5% proportion to the whole area of the mesh. These small blocks will lead
to an ill-conditional system matrix. A usual solution is attaching the small block to its peripheral
mesh in which the area of manifold element is large enough, and displacements and stresses of
the small block are controlled by the mesh .

As for the fixed-mesh NMM, when material boundaries enter a new mesh, a small block
definitely appears at once as shown in Fig. 2. Calculation error would occur if initial stresses of
these small blocks are neglected during the integration of initial stress load. The approach is
treating the small block as the stretching part of the manifold element of the mathematical mesh
to which the small block is attached, so strain matrix of the mesh is used for integrations of
initial stress load and the new mesh does not work.

material boundary

/ >,

Fig.2. Small blocks (dashed area) in new mathematical meshes

Along with the deformations of material, the area of the small block may increase to the extent
exceeding the proportion (1% to 5%), and the block may be controlled by the new mesh to which
it belongs. When this happens, the stress coefficient matrix [N;] of the old mesh to which the
small block has been attached is transferred to the new one. Then the procedure of initial stresses
computation in the new mesh will continue from the third step of the above alternate operations.

5. NUMERICAL EXAMPLE OF LARGE DEFLECTION OF A CANTILEVER BEAM

Based on the two-dimensional program written by Shi, the above procedures have been carried
out through implementation of Fortran codes. We consider a cantilever beam whose original
position is shown in Fig. 3 in which the background rectangular frames represent the fixed
mathematical meshes. The length of the beam is 10m, with both height and width are 1m. The
Young’s modulus £ is 3 « 10° kN/m?, and Poisson’s ratio v is 0.2. The beam is subjected to a
concentrated force P at the midpoint of the section of the free end, which is always downward
vertically. Load of 12.5kN is applied in a time step.

When using approach b to define initial stresses, it is observed that the relative errors compared
with the analytic solutions are not over 3% when the vertical displacement of the free end gets to
5~6m. However when the load reaches about P=700kN, deformations of the beam begin to
oscillate and then computation fails. It is found that distribution of the stresses in the elements
become complicated when too large deformations occur.
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Approach c is then used. More stress points are selected for the least-squares method. Table 1
gives the results of several steps, and corresponding deformations are shown in Fig. 3. The
relative errors are all under 2%, indicating that the precision increases somewhat. Larger load
can be computed, but oscillation still comes when P>900kN.

This example implies that it is feasible to compute large displacement problems using fixed-
mesh NMM. However, the approaches in this paper are not good enough to precisely describe
the distribution of stresses in any cases, so when the deformations become too large, the initial
stress load is not accurate and the computation becomes instable.

Table 1. Displacements of the midpoint at the free end of the cantilever beam

p Horizontal displacements—u (m) Vertical displacements—v (m)

(kN) Numerical Analytic Relative error Numerical Analytic Relative error
solutions solutions!®! (%) solutions solutions!® (%)

125 0.16 0.16 0.00 1.63 1.62 0.62

250 0.57 0.56 1.79 3.04 3.02 0.66

500 1.61 1.60 0.63 4.96 4.94 0.40

750 2.60 2.55 1.96 6.10 6.03 1.16

875 3.02 2.97 1.65 6.50 6.46 0.59

* results of Lagrangian approach (the analytic solution of P=875kN is not presented in Ref. 6)

Fig.3. Deformation of the cantilever beam
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6. CONCLUSION

In this paper, an attempt is made to solve large displacement problems using NMM with fixed
mathematical meshes, and the given results of a cantilever beam indicate that the approach is
effective. However, at present it is still a problem of how to accurately describe stresses of the
manifold elements. This paper presents several approaches to solve the problem. They are
effective to some extent and will fail when very large deformations occur. So it can be deduced
that better results will be obtained in the dynamic occasions when rigid motion is dominant.

The accurate computation of stresses is most important to the fixed-mesh NMM in which
material moves through the meshes. Relevant solutions presented in this paper are rough and
some improvements can be made in the future. One potential way is the modification of
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coefficient superposition approach. It is found that this method is stable to compute very large
displacements even if the relative error is considerable (up to 20%). So if something could be
done to consider the effect of the configuration change when superposing stresses, the approach
might be the ultimate solution.

Although the study of this paper is preliminary, the purpose of presenting the possibility of fixed-mesh NMM is achieved. One can see that fixed-
mesh NMM has both the advantage of tracing material particle in Lagrangian description and the virtue of fixed mesh in Eulerian description.
Therefore the study is attractive even if there is a long way to go.
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ABSTRACT: The simplex integration is commonly used in the numerical manifold method
(NMM) for accurate integration. But in high-order NMM a difficulty is encountered by adopting
the simplex integration since all integrands have to be explicitly expressed in the polynomial
form. In this paper the formulations of element matrices (stiffness matrix, load matrix, efc) of
high-order NMM are derived by using the special matrix operations including Kronecker
product, Hadamard product and vectorization, therefore the terms of element matrices are
expressed explicitly in matrix product form in which the integrands are only the product of
polynomial bases, resulting in a convenience of implementation of the simplex integration and
development of codes. Also given in the paper is a recursive simplex integration formula, with
which much less computation is required and the integrals of all polynomial bases of lower order
are incidentally obtained after the integral of the polynomial base of the highest order has been
computed. Based on the derived formulae, a program of high-order NMM for elastic stress
analysis of 3-D continua is developed and verified by examples.

Key words: numerical manifold method, high-order cover function, formulation of element
matrices, fast simplex integration, special matrix operations

1. INTRODUCTION

The manifold element is basic element in numerical manifold method (Shi, 1996), whose
formulation is similar to that of the finite element. However, different from the finite element,
the manifold element may have complex shape. The integration on the complex domain is
simplified to numerical or analytical integration on several simplexes. If numerical integration is
adopted, the number of integration points will rapidly increases with the order of the cover
function becoming higher. The simplex integration proposed by Shi (1996) is an analytical
integration and commonly used in NMM. But in high-order NMM a difficulty is encountered by
adopting the simplex integration since all integrands have to be expressed explicitly in
polynomial form. Basing on the simplex integration and triangular mathematical meshes, Lu
(2001,2002) derived explicit polynomial expressions of the integrand of terms of the element
matrices for 2-D high-order NMM. But the derivation is tedious since the formulae are manually
carried out by the fundamental matrix multiplication. To avoid the complicated derivation,
Kourepinis et al (2003) proposed a strategy, whereby the coefficients and base exponents of the
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polynomial function of terms of the geometric matrix are stored in a multi-dimensional array,
and then the polynomial coefficients of the integrand of terms of the element stiffness matrix are
determined by the fundamental matrix multiplication. With the help of the Mathematica
software, Su et al (2003) presented a simple method for automatic producing of subroutine codes
for 2-D and 3-D high-order element matrices, but the codes are very long in the case of high-
order cover function.

Different from the works of Lu, Kourepinis and Su, in this paper the terms of element matrices
of high-order NMM are derived by using the special matrix operations and the integrands are
expressed explicitly in product form of polynomial bases convenient for implementation of the
simplex integration and development of codes. A recursive formula for fast simplex integration
proposed by the first author is also introduced. The matrices, e.g. point loading matrix, fixed
point matrix, which are not in integration form, are referred to Shi (1996) and not listed in the
paper.

2. ELEMENT DISPLACEMENT

2.1.  Cover function
The polynomial cover displacement functions on cover C, can be expressed as:

u;(x,y,2)
V(% 3,2) = D 1(x,3,2)D; (1)
w(xy,2)]
T . .
Where D; = {u,,v,,w;} are unknowns; ¢ are polynomial bases, e.g. l,x,y,z, etc. For a

complete N-order cover function, the number of terms of the cover function
m=(N+1)(N+2)(N+3)/6.

2.2.  Element displacement function
Assuming that the manifold element e is the intersection of n covers, the global displacements
are written as:

u(x,y,2) | w,(x,y,2) |
v(x,2,2) = D W0y, 20y, (xp,2) =D 3N, (x,,2)D, @)
i=1 i=l j=I
w(x,y,z) w,(X,,2)
In which
Wix,3,2) =D fit:(x,0,2) =F'T, [
&=l

F;’ = {f;l ’f;'z ’.“’f;,, }T O Tw = {tw71’tw'27.'.’tw'l1}T s

Ny =t,W, = ta/'FiTTw = FiTT/ 0

1

= = cee T = = | ~
To=t,T,={t,.t, -t} s b, =tt,,E=1~n.

J g w ctwés

Where W, 1s weight function; F;, and 7, are the polynomial coefficient and base set of W,

1 w

respectively. Using finite element mesh as mathematical mesh, W, and n are the shape function
and number of nodes of the finite element, respectively. In NMM the mathematical mesh and the
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physical mesh are independent each other. Therefore simply shaped finite elements can be
utilized to define the mathematical mesh, such as 3-node triangular element and 4-node
rectangular element in 2-D, 4-node tetrahedral element and 8-node cuboidal element in 3-D,
whose shape function can be expressed explicitly in polynomial form.

2.3. Partial derivative of displacement function
As seen in Eq.(2), the partial derivative of displacement function depends on the partial

derivative of N ;- Let x, (@ =12,3) denote x, y, z, respectively, then
aNi' T aT T T
Ni/,azgj:Ff gJ:Fi (CiooTi) =(Fi2Cp) Ty Q)

Where T, ={T,,.T,

constant vector resulted from the partial differentiation on the base set T,. Zero terms are

T - . . . . .
Za,n-,Tjga} is the polynomial base set of the partial derivative and C,, is a
included in C,, . The symbol “o” stands for the Hadamard product of matrices. Let 4=[a, ]and
B =[b,] be of the same order, then 40 B =[a,b,].

rsTrs

3. ELEMENT STIFFNESS MATRIX AND MASS MATRIX

The submatrix of the element stiffness matrix is written as:

Ky =[BiDB,dv, ik=l~n;jl=1~m (4)
Where D =[d,] is the elastic matrix and B is the geometric matrix. For 3-D continua,
N, 0 0
0 N, O
0 0 N, 3
Bi’ = " = AaNi‘a (5)
7 ]vg/',z ]\/[j,1 O ; Yy,
0 N,; Ny,
N, 0 N,
100 (000] 000]
000 010 000
000 000 001
4, = , A= , Ay = (0)
010 100 000
000 001 010
1001 | 1000 1100
The submatrix is rewritten as:
3 3
Kijk[ = J-v(z AaNlj,a )TD (Z AﬂNkl,ﬁ)dV
’ " ()

=33 LAJDAﬂ

=1
3 3
a=1 =1

N. N, .dv

ij.at Vkl,p
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The (r,s)-th term of the K, can be expressed as:

303
(Kijkl)rs = ZZIVdquy,aNkl,ﬁdv7 p= k3(r—l)+a’q = k3(s—l)+ﬁ (8)

a=1 =1

In which the indicator set (k,,k,, - -k,) =(1,4,6,4,2,5,6,5,3). For 2-D continua, the indicator set
(ky,ky, ks, ky) = (1,3,3,2) and p = k2(r—1)+a’q = k2(s—1)+,6’ ,a=1~2,=1~2.

Let d, =D, T, be a polynomial function, then the term of K, can be expressed as:
3
(Ky)w = 2.2 [ Dy, Ty (F 2 Co )T, (Fy 0 Cyp) Thydy
a=1 p=1
s (9)
Z[qu ®(F,°C,,)®(F,° C]ﬁ)]TJ.V(Td ®T, ®T,)dv

a=1p=1

Where D, is coefficient matrix and 7, 1is base set. The symbol “®” represents the Kronecker
product of matrices. Let 4=[a,]e R™™ ,B=[b,,]e€ R™"", then the terms of (4® B) have

expression (A® B), ), .o (s-1ym+p = ArDagp -

As seen in Eq. (9), the integrands are only the product of the polynomial bases and can be
integrated directly by the simplex integration. The following formulae are the same.

If D is constant, Eq. (9) is reduced to

3 3

(Kijkl)rs = szpq ka/)’ (10)
a=1 p=1

k= J‘VNH’“NH, ,dv

=(F 2 C,)' [T, Tdv (F 2 Cp) (1

Furthermore for isotropic material,

3
(Ki/'kl)rs =1 krs +G ksr + 5rsGZkaa (12)
a=1

Where 4 and G are the Lame’s constants, J is the Kronecker Delta operator.

Let p be constant density of material and / is identity matrix, the mass matrix has also a simple
expression:

My =pI[N,Nydv=pIF[TT dvF, (13)

4. ELEMENT EQUIVALENT LOAD

4.1. Body load
Let constant body load per unit volume be Q= {qx,qy,qz}T. The submatrix of the body load

matrix is expressed as:
Ry =[N,dvO=F[T,dvO (14)
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4.2. Face load
Let face load applied at element surface 4 be a polynomial function P={p,p,, p.} = PT,.

The submatrix of the face load matrix is expressed as:

T
R, = L N,Pdd = PfjA T,TTdAF, (15)
Where Pf 1s coefficient matrix and T p 1s base set.

4.3. Initial stress
Let initial stress vector in the manifold element be a polynomial function o, =S7,. The

submatrix of the load matrix is expressed as:
3
R, = [ Bjodv= AS[T,T}dv(F-C,,) (16)
a=1

Where S is coefficient matrix and 7 is base set.

The r-th term of R, can be expressed as:

3

(Ri/ )’ - Z Rk}(r—])m (1 7)

a=1

R=S[T,T}dv(F°C,,) (18)

4.4. Initial strain

Let initial strain vector in manifold element be a polynomial function ¢, = ET, . If each term of
D is a polynomial function, then we have expression D=D, (I, ®7,). Here E and D, are
coefficient matrices, 7,and7, are base sets, Iq is identity matrix of a same order as D. As the
symmetry of D and (/, ®T,)B; = B; ® T, the submatrix of the load matrix is expressed as:

R, = [ B Deydv
= [B] (1, ®T,)" DJET,dv

= [(B,®T,®T) dvDE (19)

3 _
=24.® [@, ®T)N, dv]" DE
3 _
=24, ® [T, ®T)T;dv(F > C,)]" DE
a=1

Where the symbol “—” represents the vectorization of matrix row by row. If D is constant, the
r-th term of R; is reduced to
3

(le)" = szs(H)m (20)

a=1

R=DE|T.T;dv(F,>C,,) 1)
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5. ELEMENT STRESS AND STRAIN

After the displacement coefficients D, have been computed, the stress and strain of the manifold
element can be computed as follows:
o=De, £=) > B,D, (22)
i=1 j=1

Substituting Eq. (3) into Eq. (22), the strain can be rewritten in a polynomial form similar to
& = ET, as an initial strain for next time step:

uy(FoCy) 0 0
0 v, (FoCp)t 0 .
| L
0> R 1 @)
= vy (B0 Cy) oy (o Cy) 0 T,
0 wy (F o Cp)' vy (FeCp)' :
Wy (FeC)t 0 u; (FoCp)" |

6. RECURSIVE FORMULA FOR SIMPLEX INTEGRATION

The integral of polynomial base x™ ™ z™ on an oriented simplex v is expressed as:

m . m, m. (n, —=D)lvol
J;x Xy zZ - dV = 1 ' my,m,,m.
(m,+m,+m_ +n,—1)!

(24)

Where n, and vo/ is the number of vertices and the volume of the simplex, respectively.
For segment:  n, =2, vol= oriented length of the segment;

For triangle: n, =3, vol= oriented area of the triangle;

For tetrahedron: n, =4, vol= oriented volume of the tetrahedron.

Also basing on the special matrix operation, a recursive formula for s was derived [Lin,

2005]

o . —~
55,0,0 cheaooszaoo: i=l~m,
a=1

My, my, ,m.

ZCﬂ 12 Capo Sicajpor> 1=0~m,j=1~m, (25)
k J /5’
:Z Z ZC aﬂylajﬁ'ky:l_o m,] O m k—l'\’
=1 £=0 a=0
i
In which, SOOO:I,Ci‘”:#,iZcx,
a al(i-a)!

€ p, = (@ +P+y—DNE (X oYW oz
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X i Z 1

X z 1
X=14"ly= :yz Z=1"\E=

Xy ynv Z, 1

In whichx,,y,,z, are the vertex coordinates of the simplex. X ‘“ denotes the « -th power of

Hadarmard product of matrix X . The recursive formula requires much less computation than the
Shi’s formula and the integrals of all polynomial bases of lower order are incidentally obtained

after the integral of the polynomial base of the highest order has been computed. e, , is

computed before the implementation of the recursive calculation. X oY o Z" is also
computed by a recursive procedure.

7. NUMERICAL EXAMPLE

Based on the derived formulae, a program of high-order NMM is developed for elastic stress
analysis of 3-D continua by using 8-node cuboidal element mesh as mathematical mesh. The
formulae and program have been verified by analytical and numerical examples.

Fig.1 shows a gravity dam with width of 20m, elastic modulus of 10°N/m’ and Poisson’s ratio of
0.2. The mathematical mesh is shown in Fig.2. The manifold element mesh, i.e. the intersection
of physical mesh (dam) and the mathematical mesh, is shown in Fig.3. The mesh for FEM
computation is shown in Fig.4.

20m

20m

S FRFITIES:
A
ELH

TELE
i

i

i

o
a7
i

80m

A

1:0.05 O
¥
¥

A

62m

Fig.1 Section of Dam Fig.2 Mathematical mesh Fig.3 Manifold elements Fig.4 Mesh of FEM

The displacement and stress at the action of reservoir water pressure are computed by NMM and
FEM and compared in 7ab.1. It can be seen that the results of 0-order cover function are far from
the FEM solutions. When the order increases, the results approximate to the FEM solutions and
the stress o _at point C reaches to the water pressure at the same point.

Tab.1 Comparison of solutions of NMM and FEM

NMM
FEM
0-order | 1-order | 2-order
u at point 4 (m) 0.181 0.170 0.180 0.181
o, at point B (MPa ) 1.121 0.752 1.113 1.147
o, at point C (MPa) -0.494 -0.445 | -0.487 | -0.501
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8. CONCLUSION

The formulation of high-order NMM with the help of the special matrix operations makes the
derivation and code development convenient such providing a sound base for application and p-
version adaptive analysis of NMM. Besides of the program for stress analysis, a program for
transient temperature analysis has been developed. The derivation presented in this paper is
based on an assumption of all covers with cover functions of same order. However the derivation
procedure is also suitable for the case of different covers associated with cover functions of
different order.
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ABSTRACT: Manifold Method [1] is not only widely used in rock science, mechanical
engineering, but also used in information sciences and data communications. The results
introduced here briefly demonstrate that how this numerical analysis can be applied in sound and
image compression, and the results discussed here also show that manifold method can be
regarded as a fundamental method of computation in scientific field.

1. DATA COMPRESSION

Compression refers to storing data in a format that requires less space than original. Compression
is important for today’s data communications for faster transmission and less space on storage
devices. Compression tools scan the data files to reduced un-necessary space without recovery
problems. Typical compression methods can reduce the size of most files from 50% to 90%.

Sound is recorded as continuous waves with multi-frequency range. One of most popular sound
compression methods is MP3, which belongs to lossy compression category, and which becomes
today’s audio standard [2]. Its transformation stream is split into multiple channels, each channel
into a frame of samples, each frame into frequency sub-bands, and each sub-band into blocks.
Each block is using a modified Digital Cosine Transformation (MDCT) [3] to reduce those waste
frequency space to reach comprising results.

Due to nature of lossy algorithms, audio quality suffers when a file is decompressed and
recompressed (generational losses). For MP3, the limitations also include (1) limited maximum
frame size (320 kbps), which leads to unavoidable degradations of sounds quality. (2) Inoptimal
window sizes, which brings time/frequency resolution either 576 samples for a long block, or
192 samples for a short block, and it is limiting the frequency resolution, and also the coding
efficiency. (3) Hybrid transform scheme (MDCT on top of the 32 sub-bands produced by
quadrature Mirror Filters of layer II), which introduces some noise that cannot be totally
removed. However the popularity of those programs makes us thinking some easier and more
efficient way to improve the algorithms by introduce manifold methods.

2. MANIFOLD METHOD
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The term “manifold” here comes from the topological manifold and differential manifold. The
Manifolds connect many individual folded domains together to cover the entire material volume.
Then, the global behavior can be computed by functions defined in local covers. The new
method has separated and independent mathematical covers and physical mesh: the mathematical
covers define only the fine or rough approximations; as the real material boundary, the physical
mesh defines the integration fields.

The mathematical covers are chosen by users, and consist of finite overlapping covers, which
occupy the whole material volume. The physical mesh includes the boundaries of the material
volume, joints, blocks and the interfaces of different material zones. The physical mesh
represents material conditions, which cannot be chosen artificially. Both mathematical covers
and physical meshes form the physical cover system. If the joints or block boundaries divide a
mathematical cover to two or more completely disconnected domains, those domains are defined
as physical covers. Therefore the physical covers are the subdivision of the mathematical covers
by discontinuities.

For the manifold method, the cover displacement functions are independently defined on
individual physical covers. Local displacement functions can be connected together to form a
global displacement function on the whole material volume. The global displacement function is
general and flexible enough to represent the wide variety of continuous or discontinuous
materials located within moving boundaries.

Even the one-dimensional numerical manifold method can still show the easy way of
approximations to general curves. The cover functions u,;(x) defined on physical cover U,

u,(x)x e U , (1

can be constant, linear, high order polynomials or locally defined series. These cover functions
are connected together by the weight functions w,(x)

w(x)=20xeU,
wi(x)=0x¢U, 2)
with
ZWJ(X)II. (3)

xeU;
The meaning of the weight functions w,(x) is weighted average, which is to take a percentage
from each cover function u,(x) for all physical covers U, containing x
Using the weight functions w,(x) a global function F'(x) on the whole physical cover system is

defined from the cover functions

u(x)= i w, (X)u; (x). 4)

3. MANIFOLD METHOD IN DATA COMPRESSION APPLICATION

To simplify our model, let us discuss single audio channel only here. The wave is discrete
sampled and dynamic range (amplitude) is captured based on DCT, where only cosine is used to
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avoid uncertainty by introducing sine function. To avoid discontinuity MDCT added overlap of
sampling process. Based on this, Manifold Method gives additional flexibility including varying
lengths of frames, and varying sizes of windows. In each physical cover, discrete samples are
recorded and stored. The sound is recreated using interpolation of the resulting discrete digital
data. The above 1-D representation of Manifold Method provides a stable and efficient numerical
method for data capture analysis for sound wave.

For two dimensional manifold computation, the cover displacement functions u,(x,y) and

v.(x,y) defined on the physical cover U,
u(x,y),  (xy)eU, ()

Vl. (xa y)a (x’ y) € Ui (6)
can be constant, linear, high order polynomials or locally defined series (such as Fourier series as
our wave form). These cover displacement functions are connected together by the weight
functions w;(x, )

Wi(xay)zoa (xay)EUi (7)
w(x,y)=0, (x,y)e U,
with
> owi(x,y)=1
(x,y)eU

Using the weight functionw;(x,y), the global displacement functions on the whole physical

cover system are defined from the cover displacement functions. The global displacement
functions u(x, y) and v(x,y) on the whole material body are two global functions:

{u(x,y)}: $ ) {u,-(x, y>}

v(x,y) i=1 v (%, )
S 3 [ron]o)
=Y [re»)iD) ®
tle—l(x’y) tle(x’y) _ di2j—1
[Z‘j(x,y)}:[tzzj_l(x’y) tzzj(x,y)j, {D,j}—kdizj] ©)]
D,
D,
[Lean]=(T, T, - T,), [D}={" (10)
D.

The displacement matrix [7,(x, y)] can be given in the following form:
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[E(x’y)]:(zzl I, .. T;m)
_ 0h(xy) 6,(6y) t(6Y) o G (6Y) f,, (%)) (11)
(%)) (%) 6(xY) o by, (6Y) b, (X))

(13444

where the subscript “i” represents the i-th cover.
Each intersection domain of physical covers is defined as an elemente . If an element e is not in
coverU,, T/(x,y)=0.

T(x,y)#0, ecU,

(12)
T(x, y)=0, gl
Element e is the intersection of coversU,,),U,,),...U,,, » then
T (x,y)#0, ee Ue(r)
(13)
T'(x,y)=0, e¢U,,,
{M(}C, y)} N Zq: (X y) ue(r) ()C, y)
V(.x, y) r=1 e(r) ’ Ve(r) (xﬂ y)
q m
=2.2. [ etn; (% y)] {Demj}
r=1 j=1
q
=2 [T (D | (uy)ee (14)

r=1

In each element, weight function w/(x,y) has an analytical representation, which is either

constant number or a differentiable elementary function. Therefore, global displacement function
(u(x,y),v(x,y)) in the element e often has analytical representation. Very often, cover functions

u(x,y) and v(x,y) are represented as series, the coefficients of each term of the series are the

unknown dij
{uxx,y)} ENEASSU
v, (x,) = 0 Sy (x5 )

(x,y)eU,

On coverU,, (u,(x,y),v,(x,y)) are the displacements of point (x,y) on x any y direction

(15)

dizjl]

respectively, the cover displacement functions (u,(x,y),v,(x,y)) often take one of the following :

The constant function on cover U,
u(x, 1 0)|d,
t(‘x y) — il (16)
v,(x, ) 0 1)\d,

The complete first order approximation on cover U,
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R

w

(17

~

5

u,(x,y) (10 x 0 y O
v.(x,») o1 0 x 0 b%
i6

Here x and y should be represented as cosine function expansion with its coefficients to be
computed by least square method as follows.

N

Denote (u(x, y) v(x, y))T as approximation of any point (x,y) of the elemente. Here e is the

. . T . .
intersection of g coversU,,),U,,,....U,,, - Denote (r(x, y)  s(x, y)) as function of any point

(x,y) of the elemente.

The displacement function is
u(x,y)}
[T, (e, WD, § (18)
{V(X, y) (e) (e)

where
[(e)(an/)]:(Teu) sz) TeG) Te(q)j

™)

(1)

™)

e(2)

(19)
{D<e)}: e(3)

™)

S

e(q)

The least square integration is of element e is

, = If (W n-rten) v(x,y>—s(x,y)){

“(xay)_’”(an’)}dxdy (20)

v(x,y)=s(x, )

1, = If () v y)){ E iz

r(x,y)
(x,)

}dxdy +” u(x y) v(x, y)){E i;

}dxdy 21)

}dx dy

] ) s(xy)){

II [ 4D IT (o Y 1T (x5, )HD, Yy +{D,,,} D [ 17, G0 { E y)}dxdy}

X,Y)
r(x,y)

+— ” r(x y) s(x, y)){( y)}dxdy (22)
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After minimization of the least square integration, the element matrix is

I 11 oV 17, 1 dxdy o3
1e.,
[T(1)]
T b
I, T () (o) ) o (0] dvdy o)
[T(q)]

The free term matrix is

r(x,y)
“ { (x,y)}dxdy

[T(1)]
Lol
_ (x,)
_IL [T(.3)] {S(x’y)}dxdy (25)
[TE(q)]T
Then
[ T oV T eoldedy > (K} 2o
r,s=1,2,3,....q.
[ 1z, )]{( y)}dxdy SR @
e(r) ( y) (r)

r,s=1,2,3,...,q.

Assume the number of physical covers is n, and there are 2m unknowns in each physical cover,
dil
d'Z

l

d.

1

D={d, | i=1,2,..n (28)

1 l

[}

diZm—l
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The least square function has the form

K, K, K, .. K,| D
1 KZI K22 K23 K2n D2
H =5(D1T DZT D:{ D’?] K31 K32 K33 KSn D3
Knl KnZ Kn3 K’m D"
2
F2
+(D] Df DI .. D)F+C. (29)
r,

Because each cover has 2m degrees of freedom, each sub matrix K, in the coefficient matrix
given by equation is a 2mx2m matrix. D, and F, are 2mx1 sub matrices, where D, represents

the displacement variables (d,d,d.,d,, ...d,

i2m

)" of physical cover i. From the formulation of IT,
the previous formula can be written as a symmetric representation,

K, =K, (30)
The equilibrium equations are derived by minimizing the least square functionIT. The i-th row
of following equation consists of 2m linear equations

a—H=0, r=12,3,4,...,2m, (31)

adir
The r-row, s-column element of K i is

gl , r,s=12,3,4,...,2m, (32)
ad,od

The r-row element of F; is the derivative of Il at valueO, namely all variables D,,...,D, equal
to zero.

or1(0)

7%f4qmqwr=Lza¢m@m, (33)

Where d, is the displacement variable of cover i. The matrix of obtained simultaneous

equilibrium equations is same as the matrix of quadratic form

Kll K12 K13 Kln Dl E
K21 K22 K23 K2n D2 FZ
K, K, K, .. K,||D/l=|F (34)
Knl KnZ Kn3 ot Knn Dn F;’l
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For material analysis, F; is the loading on cover i distributed to the 2m displacement variables.
Sub-matrix K, depend on the material properties of cover i and K, , where i # j is defined by
the overlapping or contact between cover i and cover j.

This directly leads 2-D image compression.
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ABSTRACT : Hybrid-type penalty method (HPM) assume the linear displacement field with
rigid displacement, rigid rotation and constant strain in each sub-domain and introduce
subsidiary condition about the continuity of displacement into the framework of the variational
expression with Lagrange multipliers. This compatibility of the displacement on the intersection
boundary is approximately introduced using the penalty as a spring constant which is applied to
the Lagrange multiplier. Present method can be deal with the fracture on the intersection
boundary and yielding in the each element at the same time.

1. INTRODUCTION

This paper presents new approach for the upper and lower bound solution for limit analysis.
Present method ( HPM : Hybrid-type penalty method ) introduce hybrid displacement model
based on the modified principle of virtual work. In this model, subsidiary conditions are
introduced into the framework of the variational expression with Lagrange multipliers. Physical
meaning of the Lagrange multiplier is equal to the surface force on the intersection boundary.
Then, the concept of the spring of RBSM ( Rigid Bodies-Spring Model ) is applied to the
Lagrange multiplier. Compatibility of the displacement on the intersection boundary is
approximately introduced using the penalty as a spring constant. Therefore, the displacement
filed can be assumed for each element without restraining by the condition of compatibility. So
that, we assume the linear displacement field with rigid displacement, rigid rotation and constant
strain in each sub-domain. And it can be introduced the slip by the same algorithm of RBSM
without processing the double node. Because the surface force on the intersection boundary
between two adjacent sub-domains is obtained and displacement field is defined independently
in each sub-domain. Also, present method is satisfied the continuity of surface force and
mechanism. So that, it can be obtained the upper bound solution. And more, present method can
estimate the stiffness in each sub-domain. Namely, we can obtain the lower bound solution to
consider the plasticity condition in each sub-domain. Using by the present method, it is possible
to obtained the upper and lower bound solution for limit analysis.

2. GOVERNING EQUATION AND HYBRID-TYPE PENALTY METHOD

2.1.  Governing equation
We consider the solution of the governing equations of solid mechanics that can be written as

L'co+f=0, o=De, e=Lu inQ (1)
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where, v is the displacement vector, e and o are the stress and strain vectors, respectively. D is
constitutive stress-strain matrix, and f is the vector of constant body force. The matrix L contains
the differential operators. 2 is the domain area or volume with boundaryl’ = ', UT',. Ty is the
boundary where the displacements are given and I'5 is the boundary where the traction forces are
given. In these boundaries, following conditions are satisfied.

T=no=T onT, , u=u onT, (2)
where T the prescribed traction forces at the boundary I',, , @ the prescribed displacement at the
boundary I's, and 7 is the outward unit normal vector on the domain boundary.

By multiplying eq.(1) of infinitesimal virtual displacements 9., it will be integrated as
following:

/ su'(L'oc + f)d2=0 (su=0 onT,) 3)
Q

We should choose the arbitrary set of virtual displacement such that the geometrical boundary
conditions ', are not violated. Integrating by parts the first term in eq.(3) yields the well-known
the principle of virtual work such that

/[L(Fu]ta'dﬂ — / sul £d§ —/ Su! Tdl' =0 4)
Q Q r,

The domain Q will be discretion by the finite number of the sub-domain Q©) as follows (see
Fig.1):

M
Q= U Q) where QO NQM =0 (e r) (5)

e=1

where Mis the total number of sub-domains Q(¢)which will be surrounded in closed boundary 1(¢)

[1] >
[2]  Fig.1. Sub-domain Q) and boundary I'<ab> between sub-domain Q(* and Q)

The discrete counterpart of the principle of virtual work (4) will be given by
M

Z(/me) [Louf od - / ou'f d“) —/r ou'Tdl =0 (6)

e=1 <o>
As shown as Fig.1, the boundary I'<ab> is the intersection between sub-domain Q(*) and Q).
Tegps =0 NT® (7)

In the principle of virtual work of hybrid-type, subsidiary condition on the boundary will be
shown:
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a@=a® O g ®

This subsidiary condition is expressed by the following equation using Lagrange multiplier X :

Hegps =6 / (@@ — a)dr 9)
1_‘<ub>

where @*) and @® are the displacements on the boundary. Substituting (9) into (6), the equation
of virtual work of hybrid-type is expressed by

M

z_: (/Q(e) [Lou) D[Luld2 - /me) du' £ — /Fg 6utTdF)

N (10)

7Z<5/ >‘t('&(a)<'> u<s>)dF>
s=1 Fcs>

where N is the total number of adjacent element boundary.
Lagrange multiplier A is equal to traction force on the intersection boundary I'<as> as follows:

A =T @) = —1® ") (11)
where T(¥) and T'®) are the traction forces on the intersection boundary between Q(*) and Q).

2.2. Independent linear displacement field
In this paper, we assume the following independent linear displacement field u(® with rigid
displacement, rigid rotation and constant strain in each sub-domain.

w® = N,©d© ¢ N_(©elo (12)

Where, d'® is the displacement vector Wthh has the rigid displacement and the rigid rotation at
a tvmcal pomt within the sub-domain, €®is the constant strain vector within the sub-domain and
N and Na'“is a linear interpolation function respectively. And each coefficient is follows:

(10 —(y—u)
N = r , dY = |uy, v,
d I 0 1 (x_mp) L Py ¥pP ;DJ
© T —Tp 0 —y_zyp
Ny = T —Zp , €)= len, ey, vayl*
0 Y= —5

The displacement field (12) expresses by using the displacement at a typical point in each sub-
domain. In RBSM(Rigid Bodies-Spring Model), it is introduced into the concept of spring
between the surface force and the relative displacement on the boundary! <ab>, and estimated to
total energy by using work of surface force with spring. Then, applying Lagrange multipliers A
to the idea of RBSM, the surface force A<ab> of boundary between sub-domain Q(*) and Q©® is
able to express as follow:

Acab> = k- dcap> (13)

where, k is the spring constant matrix, 0 <ab>is relative displacement vector of sub-domain
boundaryl'<as>, A<ab> is Lagrange multiplier vector which has the components corresponding to
the surface force vector. In equation of virtual work of hybrid-type, it is necessary to set a large
number for the spring constants. This will be demanded to approximate the continuity of
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displacement on sub-domain boundary. Therefore, the spring constants will be dealt with the
penalty numbers as follow:

k=p (14)

where, P is a matrix with penalty function.
The virtual displacement 0u is expressed by the following equation.

ou = Ngdd + N e (15)
Eq.(12) and (15) can be replaced by
’U,(e) — N(e)U(e), (S’U,(e) — N(e)éU(e) (16)

Then, (16) gives the following expression.
Lu® = LN©@py — gl (17)

Substituting (12), (13), (14), (16) and (17) into (10), it can be obtained as following final
conclusion of the discretion governing equation for whole domain.

M N M
sU* (ZK(“’) +ZK<S>)U— sU* (Z P<e)) =0 (18)
e=1 s=1 e=1

Namely, eq.(18) is resulted the following simultaneous linear equations. Where, K and P is follows:

M N M
K:Z;K(e)—i—Z;K<S> , P:Z_;P(e) (19)

where, each coefficient is follows:

K© _ / (B<6))tD(€)B(€) dQ
Q)

K<S> = / Bt<s>kB<(Lb> dr
Feos

P — / (N(e))tf dQ—|—/ (N(c))tT dr
Qe) 'y

3. HANDLING OF FRACTURE

3.1. Fracture on the intersection boundary
In case of Mohr-Coulomb’s condition, yield function ./ is expressed by:

f=1%=(c—o,tang)’ (20)

where, ¢, @, 0 and 7 is cohesion, the angle of internal friction, surface force of the tangential and
normal directions, respectively. Yield function / and plasticity potential Q is expressed by:

fA)=0, Q) =0 21)
where, A is the surface force on the intersection boundary. In each intersection boundary, we
assume the relation of the surface force-relative displacement which is the generally law of the
plastic flow. So, the increment of relative displacement A¢ after the plasticity condition is
expressed by:

oQ
P _ 22
AP =p N (22)
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where, A is the quantity of increment and superscript P is the plasticity condition. Expressing the
superscript e before the plasticity condition, relative displacement in the element is follows:

AS® = AS — AP (23)

On the other hand, the relation of surface force-relative displacement before the plasticity
condition is expressed by:

A=k 5° (24)
Substituting (22) and (23) into (24), it can be obtained the increment surface force.

ke of 25
AX=k <A6 ns )\) (25)
and more, plasticity condition is follows:
of B
8—>\A)\ =0 (26)

Arranging the above equation, we obtain the relation of the increment of surface force and
relative displacement as follows:

AX =Kk - AS (27)
where, & is follows:
O0f0Q .
kf——Ek
kP — | ke __OXOX (28)
01 .00
oX O

In the above eq.(28), it obey the associated flow rule if f = (. Following equation is the
plasticity stiffness matrix which concerning Mohr-Coulomb’s condition. When the surface force
extends to the yield surface, it moves on the yield surface using the following equation.

per _ | Fn 0
0 ki

1 k2{(c — Antang)tang}? k. kidi(c — Ay tand)tand) 29
F sym. kZN2
where,
F =k A+ ko {(c—tand - \,) - tang}?
3.2. Yielding in each element
In case of Mohr-Coulomb’s condition, yield function 9 is expressed by:
g=o01—03+2ccosp — (o1 + 03)sin ¢ (30)

where, 01,02, 03 is major, intermediate and minor principal stress, respectively. Yield function 9
and plasticity potential ® is expressed by:

g(a) =0, @(o)=0 (€2))
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where, o is the stress in the element. In each element, we assume the relation of the stress-strain
which is the law of the plastic flow. So, in this study, strain increment Ac after the plasticity
condition is expressed by:

dg

AeP = 29
€ n@a

(32)

where, A is the quantity of increment and superscript P is the plasticity condition. Expressing the
superscript e before the plasticity condition, strain in the element is follows:

Ae® = Ae — AP (33)

On the other hand, the relation of stress-strain before the plasticity condition is expressed by:

o=D°¢€° (34)

Substituting (32) and (33) into (34), it can be obtained the increment stress.

Ao = D* (Ae - n@) (33)
oo

and more, plasticity condition is follows:

LN (36)

oo

Arranging the above equation, we obtain the relation of the increment stress and strain as
follows:

o =D .g° (37)
where, D is follows:
De@a_@De
D = | D¢ — Jo do (38)
99 e 0%
Jo Oo

In the above eq(38), it obey the associated flow rule if ¢ = @. Following equation is the plasticity
stiffness matrix which concerning Mohr-Coulomb’s condition. When the element stress extends
to the yield surface, it moves on the yield surface using the following equation.

[ 1—v 512 v 5152 5153
1-2v S 1-2v S s
D — 1 1—-v 45422 75253
(I+v) 1-2v 8§ s (39)
1-v 532
sym. 21-2v) S

where, each coefficient is follows:

E
e Rt
Sy = b (1—1)S,, +vS
2T W -2 YISy T Voea
E
SB = Try > S:SISTT+SQSyy+SSTTy

2(1+v)
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Namely, in this study, on the intersection boundary, it’s deal with the relation of the surface
force-relative displacement. On the other hand, in each element, it’s deal with the relation of
stress-strain.

4. NUMERICAL EXAMPLE

4.1. Plate with V-notched subjected tensile load

Fig.2 shows the analysis model and mesh division with the V-notch tension specimen. The
considered area is quarter-sized because of symmetry. Boundary conditions are shown in Figure.
It’s analyzed under the condition of plane stress. The material properties are shown in Table 1.

\ 70

40

‘,L,,A,{ (mm)

Fig.2. Analysis model and mesh division

Table 1. Material properties

Young’s Modulus (KN/mm?) | 196.2
Poison’s ratio 0.3
Yield Stress (KN/mm?) 2943
Angle of internal friction 0

Fig.3 shows the slip line and deformation that considered the fracture on the intersection
boundary. It arise the slip line near the V-notch in early stage. And then, it’s broken the boundary
of left side. Finally, slip line arising the V-notch form along the hatched line.

|
Fig.3. Slip line and deformation (6.79KN)
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Fig.4. Yield Area (HPM:7.00KN, FEM:7.01KN)

Fig.4 shows the yield area that considered the yielding in each element. Comparing HPM and
FEM, it shows much the same pattern. Fig.5 shows the slip line and yielding area that considered
the fracture on the intersection boundary and yielding in each element at the same time. As a
result, progress of fracture is seen toward the boundary from the V-notch.

Fig.5. Slip line and Yielding Area (6.79KN)

Fig.6 shows the relation of Load-Displacement. And the collapse load is shown in Table 2. In
this figure, each line is indicated follows. Limit analysis is one point broken line. Fracture of
intersection boundary(Boundary) is interrupted line. Yielding in each element(Element) is
broken line. Fracture of intersection boundary and yielding in each element(Boundary-+element)
is full line. We obtain the similar collapse load in each case. As a reason, this model is broken by
tension fracture.

8

[ Element
A N e e L-.

Limit analysis /’i Element+Boundar)
Y4l

/ Boundary

0:\\\\‘\\\\ e b b e b b b e b e e By
0 002 004 006 008 01 012 014 016 0.18 02

Displacement(mm)

Fig.6. Relation of Load-Displacement

w
T

Load(KN)
S

w
T

S}
T

—_
T

Table 2. Result of Collapse Load (KN)
type | HPM | FEM | Limit
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Analysis
Boundary 6.79 -
Element 7.00 7.01 6.79
Element+Boundary 6.79 -

4.2. Bearing capacity

We try to exam the problem of the bearing capacity. Fig.7 shows the analysis model and mesh
division. The considered area is half-sized because of symmetry. It’s analyzed under the
condition of plane strain. The material properties are shown in Table 3.

i

46m

i <H

| 72m |
I "

Fig.7. Analysis model and mesh division

Table 3. Material properties
Young’s Modulus (KN/mm?) | 98.1

Poison’s ratio 0.3
Shear Stress (KN/mm?) 9.81
Angle of internal friction 30

Specific weight (KN/mm”) 17.16

Fig.8 shows slip line that considered the fracture on the intersection boundary. In the early stage,
it arise the slip line near the loading platform. It shows the tendency to make progress along the
slip surface. Finally, it forms the slip line.

Fig.9 show the yield area that considered the yielding in each element. In this case, it shows
much the same pattern to the model of fracture on intersection boundary.

Fig.10 is the model of considering on the intersection boundary and yielding in each element at
the same time. It shows the slip line and yield area. In the early stage, it seems the progress of
fracture near the loading platform. And in the collapse load, fracture has spread in the whole
region.
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ﬁj
\

Fig.8. Slip line (50.0KN, 195.84KN)

e

Fig.9. Yielding Area (50.17KN, 154.91KN)

h

Fig.10. Slip line and Yielding Area
(50.21KN, 99.87KN)

Fig.11 show the relation of Load-Displacement. And the collapse load is shown in Table 4. In
this figure, each line is indicated follows. The bearing capacity is one point broken line. Fracture
of intersection boundary(Boundary) is interrupted line. Yielding in each element(Element) is
broken line. Fracture of intersection boundary and yielding in each element(Boundary+Element)
is full line. As shown as in figure, model of dealing the fracture on the intersection boundary, this
solution exceed the bearing capacity. And also, model of dealing the fracture on intersection
boundary and yielding in each element at the same time, this solution dip form the limit bearing
capacity. So, it’s obtained the upper and lower bound value. Therefore, true solution exists
between upper bound value and lower bound value(hatching area).
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200 upper bound value
R e 4
180 Boundar)i ,,,,,,
160 F Limit Bearing Capacity Value |- = 1
Zz [0 00000000 3 ’—_u'—-—-—-’—_-’-‘— ----- —_—p——
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=) E " _~~" Element
2 £ R
k3 120 £ e
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g 100 F e v
@} E / lower bound value
o E Element+Boundary
g 80 B
g ok
R 60

0 0.005 0.01 0.015 0.02
Displacement(m)

Fig.11. Relation of Load-Displacement

Table 4. Result of Collapse Load (KN)

type HPM | Bearing Capacity
Boundary 195.84
Element 154.91 147.63
Element+Boundary | 99.87

5. CONCLUSION

This paper presents the new approach for the upper and lower bound solution for limit analysis

by using HPM. Present method is satisfied the continuity of surface force and collapse feature.
So that, it is known to obtain the upper bound solution. And more, present method can estimate
the stiffness matrix in each sub-domain. Namely, we can obtain the upper bound and lower
bound solution considers the plasticity condition in each element.
In this study, we try to apply the plasticity condition in each element and show the two numerical
models. As a result, we obtain the upper and lower bound solution. So, true solution exists the
between upper bound value and lower bound value. Therefore, present method can be deal with
the fracture on the intersection boundary and yielding in the each element at the same time.
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ABSTRACT: We proposed the hybrid type penalty method (HPM) which applied the concept of
the penalty method to the principle of hybrid type virtual work. HPM applies the concept of the
spring of RBSM in Lagrange multiplier and assume independent displacement field to each sub-
domain. In the nonlinear analysis by using HPM, a result equal to FEM is obtained about elastic
deformation, and a result with a collapse pattern and limit load equal to Rigid-Bodies Spring
Model is obtained. This paper reports the analysis for crack initiation problems by using HPM
with the second-order displaced field.

1. INTRODUCTION

We proposed the hybrid type penalty method (HPM) which applied the concept of the penalty
method to the principle of hybrid type virtual work. This model has succeeded the advantage of
RBSM that discrete limit analysis can be performed efficiently and the accuracy of an elastic
solution improves.

In the hybrid displacement model, the compatibility of the displacement is loosened a little
and it introduces into variational formulation, using Lagrange multiplier to the subsidiary
condition. In HPM, the concept of the spring of RBSM (Rigid Bodies-Spring Model) is applied
to the Lagrange multiplier. Compatibility of the displacement on the intersection boundary is
approximately introduced using the penalty function as a spring constant. So that, HPM can
assume a displacement field independent in sub-domain. Therefore, HPM doesn't share degree of
freedom by the node like FEM, and the node is used only to recognize the shape of sub-domain.

We analyzed the crack initiation problems using linear displacement field which has rigid
displacement and strain for arbitrary point in the sub-domain. In this analysis, the displacement
for the elastic problems had the same accuracy as the constant strain element of FEM, and the
collapse load for the elasto-plastic problems had the same accuracy as the limit load of RBSM
existed.

HPM assumes a displacement field independent in sub-domain and because compatibility
requirements of the intersection boundary on adjacent sub-domain are secured by using the
penalty method, the displacement field can be assumed regardless of the shape of sub-domain.
However, excellent accuracy was not obtained when shape other than the triangle were used at
the linear displacement field, and the division of arbitrary shape was difficult. To solve such a
problem, it proposes the method of applying the second-order displacement field where the
inclination of the strain was added to HPM.
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First, the brief formulation of this model is shown. Secondarily, the example of analyzing an
easy state of the stress and the stress concentration problem, etc. is shown.

2. GOVERNING EQUATION AND HYBRID-TYPE VIRTUAL WORK

2.1. Governing equation

Let Q@ cR™= with (1 <naim <3), be the reference configuration of a continuum body with
smooth boundary T := 09 and closure Q := QU Q. Here R"™ is the ng,m dimensional Euclidean
space.

Fig. 1. Reference configuration €2 and smooth boundary 0€2

The local form of the equilibrium equation for a deformable body can be written by
dive+f=0 in Q (1)
oc=o' in Q (2)

where f:Q —R™" jg the body force per unit volume, o:Q— S is the Cauchy stress tensor
respectively. Here S = Ram t1)nan/2 g the vector space of symmetric rank-two tensor and €i is
the standard base vector of R, so that the stress tensor becomes & = %ij€i © €; where ® denotes
a tensor product. u: Q — R™= is a displacement field of particles with reference position = € Q.
We write %(#) and denote the infinitesimal strain tensor by

_ sy, def L t
e=Vu = 2[Vu—|—(Vu)] 3)
where V := (0/9z;)e; is the differential vector operator, V* shows the symmetry part of V.
In what follows, we assume that the boundary I' = I'. U T,
r=r,ul, , I'yNnl', =10 4)
Here I'u := 0.2 C 99 where displacement are prescribed as
ulp, =4 (given) (5)
Where as I's := 9,2 C 9Q where tractions ¢ := on are prescribed as
ol n= t (given) (6)

Here n is the field normal to the boundary I'.. The constitutive equation to the elastic body is
provided as follows by the use of the elasticity tensor C.

c=C:¢ 7

2.2. Virtual work equation (weak forms)
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We let U denote the space of admissible displacement field, define as

U {u: Q- R | ufp, = a) (8)
And, let V" denote the space of admissible virtual displacement field, define as

VE {fu: Q- R | fulp, = 0} 9)
We can now use Equation (1) and integrate volume of the body to give a weak statement of

the static equilibrium of the body as,

oW = di + oudV =0
/Q( o+ f)-ou YSueV (10)

A more common and useful expression can be derived to give the divergence of the vector
odu as,
div(odu) = (dive) - du + o : grad du (11)
Using this equation together with the Gauss theorem enable Equation (10) to be rewritten as,
/ o :graddu dV — / f-oudV — / t-oudS =0
Q Q r, You €V (12)

This equation is virtual work equation. If u is the weighing function, this is a weak forms. It is
UcH(Q) and VCH (2 where denotes the Sobolev space H'(?) of function possessing space
integrable derivatives.

2.3.  Hybrid-type virtual work equation
Let Q consist of M sub-domains Q(® ¢ Q with the closed boundary T'® := 9Q®) as shown in
Figure 2.

r (©
- I'cab>
Fig. 2. Sub-domain Q') Fig. 3. Common boundary I'<ab> of sub-domain Q(* and Q®
That is,
M
Q=J0 here, 2 NQP =0 (r#q)
e=1 (13)

In what follows, we assume that the closure @' := Q(© U 9Q(©).

We let I'<av> denote the common boundary in two sub-domain Q) and Q) adjoined as shown
in Figure 3, define as,
Teaps & T@ N T® (14)
Relative to @* and @'” which are the displacement on the intersection boundary I'<ab> in sub-
domain Q) and Q®),
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2 =a® on T<ab> (15)

This subsidiary condition is introduced into the framework of the variational expression with
Lagrange multipliers A as follows:

Ha <5 A-@ —a®yas
I‘<a,b> (16)
where 6(e) shows the variation of (e).
The hybrid type virtual work equation can be described as follows about N intersection
boundary.

M N

-grad(6u)dV — SudV )— b A-(@@ —g® dS)—/ t-6udS =0
Y- ([, iy [ rouav)3i(sf a@o-ayis)- [ touis=o,

e=1

Physical meaning of the Lagrange multiplier X is equal to the surface force on the intersection
boundary I'<ab>.

A= t(“)(ﬁ( ) = —t(b)(ﬁ(b)) (18)

where ¢ and ¢*) are the surface force on the intersection boundary I'<as> in sub-domain ©*) and
Q)

3. INDEPENDENT SECOND-ORDER DISPLACEMENT FIELD

In the interests of simplicity, we consider the two-dimensional displaced field v € Uwith ngin,
= 2 is considered. Paying attention to a arbitrary domain Q'®, Taylor's expansion of the
displacement «(2) is carried out about Point Zr = (zr,yr) € 2 a5 follows:

u =u” + (¢ —zp)ul + (y - yP)”i-l—%(x —zp)iul + %(y —yp)’u, Hz —p)(y — yp)uL, + - (19)
here ,

a a 2 2 2
(4)e = 55(®) (0= 5.08) (9= 55 (8) (3)ua = 55(8) (W= 55(9)

Here, (o)” indicates the value of the physical quantity in point Zr. The second-order displaced
filed can take even the second-order term of Taylor's expansion, and can set the first degree and
the second degree differentiation of a displacement as a degree of freedom. However, the stress
analysis often needs the check on the strain and stress. It is convenient if the rigid displacement
and the slope of strain in Point P, and the strain express.

Denoting the component of the displacement to the « and ¥ direction by v and v, strain and its
derivative are given by

Uy = Eg 5, Ugy = (Ex)ac y Ugy = (Ex)y . Uy = Ey y Uyy = (Ey)y y Uyz = (ey)x

1 1 1
§(uy +v2) = Yoy s 5(“@/ +v2)e = (Yoy)z §(uy +v2)y = (Yoy)y(ve —uy) =0

So that the second-order displacement field in the arbitrary sub-domain Q(°) becomes

w® = yP _ygP L x(© P 4 %y(ewfy

1 (& 1 €
+5(XOPED)e + (V)¢
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1 (& € €
5 (V) + XY OED), 20)
1
o =P 4 XO9P 4 YO 4 SXOnF,
1 € 1 €
+3 VO, + S (X208,
1 € € e
here ,
X© =g —zp }
(e) — 4 —
Y9 =y—-yp (22)

where v”, v", 0" show the displacement for x, ¥ direction, and the rigid rotation at point zp.
Equation (20) and (21) can be described as follows by the matrix form.

u(c) — N((i(i)d(e) + Ngc)e(e) + N!(](i)eguc) (23)

Here, each coefficient is shown below

d© = |u”, ", 07" € = e ey )t el = LEeD)a (6))ys (€ (6o (1) (i)'

_yle (©) ()
N 10 YO N© [X 0 Y©)2
d 01 X© | 0 Y© Xx(/3
N(C) B (X(())2/2 0 X(e)y(e) _(Y((z))2/2 0 (Y(())2/2
9 0 (Y(())2/2 _(X(()))Q/Q X((z)Y(e) (X(()))Q/Q 0

In the displacement field used with this paper, the degrees of freedom are rigid displacement,
strain and its gradient at the arbitrary point in the sub-domain. The displacement field is
expressed with this model using the parameter in the arbitrary point in each sub-domain, so that
the displacement is not defined by the node such as displacement model of FEM. Therefore, an
arbitrary polygon, a polyhedron, and a curved surface body can be used as sub-domain without
limiting the element shape.

4. DISCRETIZATION EQUATION

4.1. Lagrange multiplier and penalty

Physical meaning of the Lagrange multiplier X is equal to the surface force on the intersection
boundary as described in Chapter 2. Generally, in a hybrid-type variational principle, this
multiplier is dealt with as an unknown parameter.
Since it has the meaning that Lagrange multiplier X is the surface force on the boundary I'<at> in
sub-domain Q@ and Q) the surface force is defined as follows:

Acab> =k - 0<ap> (24)

Here, 9<ab> shows relative displacement on the sub-domain boundary I'<ab>, and it is shown in
two dimensional problem as follows.

{)\n<ab> } - |:kn 0 :| {5n<ab> }

At<ab> 0 K Ot<ab> (25)
where, dn<ab> , di<ab> are relative displacement in the normal and the tangential direction to the
sub-domain boundary I'<as>. Similarly, An<ab> » Adi<ab> are Lagrange multipliers in the normal
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and tangential direction of the surface forces. The hybrid type penalty method can be described
as follows by penalty function P use as coefficient k.

b = ke =p (26)

4.2. Relative displacement and subsidiary condition

The subsidiary condition shown by equation (16) can be described with a local coordinate
system along the sub-domain boundary as follows.
R<ab>a(a) = Rcap> al” on '<ab> (27)

Here, B<ab> is a coordinate transform matrix to change from a global coordinate system to the

) (a) (b) ) . )
local coordinate system. f<av> > F<ar> are the geometric transformation in each area of the

common boundary I'<as> in sub-domain Q(® and Q.
_ (@) _ pb)
R<a,b> - _R<ab> - R<ab> (28)

Therefore, relative displacement is shown as follows:
2

a ~(a b ~(b l
Ocab> = R(<3b>u( '+ R(<¢)1b>u( )= ZR(<211;>

1=1 (29)

Equation (16) can be described as follows by the use of the relation between these and the
relation of equation (24).

a®

Hab = —(S 6t<ab> . k) * 6<ab> dS
Fcab> (30)

4.3. Discretization equation by matrix form
When equation (17) is rewritten by the matrix form to make the discretization equation, it is

possible to describe it as follows:
M

> ( / [Lou)' DLudV — / Sul fdvV — / 5utTdS>
o \Jae Qe Ty
N
+y <5/ 5'kd dS) =0
s=1 Fes>

In a plane stress of two dimensions, each coefficient is as follows:

(1)

9 0 9 g 1 v 0
t | Ox dy _ .
L_lo o J| Pl b0, f:{fz} u{u} M_{au} T_{t}
Oy Oz 002’ fy,_v,_év,_t}

Here, E and v are the elastic coefficient and Poisson ratio. f= and /v show the body force in the
direction of z and ¥, u and v are the displacements of the direction of = and ¥, éu and év are
virtual displacement in the direction of = and ¥, tn , tv are the given surface force in the normal
and tangential direction on the boundary.

The displacement shown by the second order function in Equation (23) is substituted for
Equation(31). Similarly, we assumed virtual displacement as follows:

Ju® = N§d + N95e© + N9 gele) (32)

To make the discretization equation, equation (23) and equation (32) are changed as follows.
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w® = NOU©  su© = NOsy© (33)
here ,

U = [d©, 0,0 |t 50 = 50,56 5l | N = [N NN

Therefore, the following expression is obtained.

Lu® = LN@U = glgle (34)
here ,
B — LN©

When one dimension array that arranges all degree of freedom in the area is assumed to be U,
the degree of freedom U'® concerning the sub-domain Q¢ is shown as follows:

U© — 4Oy (35)

Here, A" is a procession who relates all degree of freedom in the area and degree of freedom
in the attention sub-domain. Similarly, virtual displacement is described as follows:

sU® = AU (36)
On the other hand, the relative displacement 9<as> is described as follows:

d<ab> = Beav>U<ap> (37)
Here, B<abv> , U<ab> are described as follows:

B_ > = LR(<agb>N(a) , Rng(b)J ,Ucar> = e, v
When one dimension array that arranges all degree of freedom in the area is assumed to be U,

the degree of freedom U<av> of the sub-domain boundary I'<as> can be described as well as
equation (35) as follows:

U<ab> = M<ab>U (38)

Here, M<av> is a procession which relates all degree of freedom in the area to degree of
freedom concerning the attention sub-domain boundary. Similarly, virtual displacement is
described as follows:

5U<ab> = M<ab>5U (39)

The following is obtained by substituting these relation for Equation (31).

M N M
sU' (Z K© 43" K<S>> U - sU* (Z P<@>> =0

e=1 s=1 e=1 (40)
here ,
K© — (A(e))t ( ©)DEBE gy A©
Q) (41)
Koo =My [ BL_kBeo dS Moo
s (42)
P = (AL ( / (NO)fav + / (N©)y'T dS)
Qe) T's (43)
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Since Virtual displacement 06U of equation (40) is arbitrary, we obtain the following
discretized equations.

KU =P (44)

Here, K and P are as follows.

M N
K= K94+Y K_,
2 2 K (45)

M
p=) P
e=1 (46)

The discretization equation of this model becomes a simultaneous linear equation shown in
equation (44). Left coefficient matrix K consists of stiffness in the sub domain and subsidiary
condition on the intersection boundary for the adjacent sub-domain. The discontinuous
phenomenon of opening etc. can be expressed without changing degree of freedom by changing
the value of k of equation (42) to zero.

5. NUMERICAL EXAMPLE

5.1.  Thickness hollow circular cylinder subjected internal pressure

First, to verify the accuracy of the elasticity solution, we analyze the thickness hollow circular
cylinder subjected internal pressure (Refer to Figure 4. ) Pressure Po in inside diameter 71 and
externals 72, elastic coefficient £, and Poisson ratio v are as shown in figure. Moreover, the
boundary condition made both ends a roller. We showed the value of the penalty and it was
shown that the error margin became small if 10° times or more the elastic coefficient was used.
In this paper, the penalty used 10° times the elastic coefficient.

B
D> E = 100 kN/m2
VAN
A
B A
\\
SRRSO m$§4
AN NN
R

r,=20m
i
S/

r=10m

Fig. 4. Thickness hollow circular cylinder subjected internal pressure

The influence that the number of partitions and the element shape give the result is examined.
The cylinder 1/4 was taken out as shown in Figure 4. Moreover, the quadrangle was used and
divided so that the direction of the circumference and radial may become 9:5. In addition, one
quadrangle was crossing divided. Figure 5 assumed a horizontal axis and the number of elements
and the spindle were assumed to be a ratio to the elasticity solution concerning displacement. A
quadrangle sign is a result of the linear displacement field in the triangulation division model. A
round sign is a result of the second-order displacement field in the triangulation division model.
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A triangle sign is quadrangle division model and a result of the second-order displacement field.
It agreed when the triangulation division model was used by a result of FEM and very high
accuracy. On the other hand, because the formulation of displacement has not been suited,
quadrangle division model is low some accuracy. However, it settles to the error margin of 0.1%
or less by doing the element division in detail.

Figure 6 is displacement distribution concerning radial of quadrangle division model. A
horizontal axis is assumed to be a radial distance, and the spindle assumes radial to be
displacement. Moreover, the value that is excluded and dimensionless made by inside diameter
71 is indicated. The solid line shows an analytical solution. A round sign shows radial
displacement by HPM. The error margin is 0.5% or less in all parts.

Figure 7 compares radial sub-domain conspiring power 7» and sub-domain stress ¢ in the
direction of the circumference with an analytical solution. A horizontal axis uses the value that is
excluded and dimensionless made by inside diameter 71. The spindle uses the value that is
excluded and dimensionless made by pressure on the inside. The solid line shows an analytical
solution. A round sign shows radial displacement by HPM. It became the error margin of 0.1%
or less in all both stresses, the points.

Figure 8 shows the VonMises stress. As for this model, the expression by the color contour is
also possible as shown in figure because the element conspiring power is requested.

le (x 1074
s F 2
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Q :
% : :
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/ =)
8 3 / S 14 o,
= 3 / : < “\0\0\0%
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Fig. 5. Settling situation of radial displacement Fig. 6. Radial displacement distribution
by area division (quadrangle division)
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5.2.  Plate with round hole subjected tensile load

Secondarily, the pull problem of monotony that has a round hole is analyzed as a stress
concentration problem. Figure 9 shows an analytical model. It analyzed it by 1/4 models. Figure
shows the area division. On the left, it is the quadrangle division model. Upper right is the
triangulation division model. The left under is the subdivided model. Lower right is the Voronoi
division model.

Table 1 is a table where perpendicular displacement of A point and the horizontal
displacement of C point were compared with FEM. A triangulation division model by HPM and
an analytical result by FEM were corresponding. However, some error margins were caused in
the quadrangle division model. This is because the number of partitions is rough compared with
the triangulation division model, and accuracy improves by expanding the number of partitions.

Figure 10 is a displacement mode of the subdivided model and the Voronoi division model.
There is no difference that both are big. However, the gap according to the penalty value is
caused because the displacement between elements is continuously done by using the penalty.

Table 2 shows the result of comparing the stress concentration coefficients. The value with the
largest triangular element is indicated. In the theory solution, FEM is 2.32, and BEM is 2.31. A
triangular element of HPM reached almost the same value. Some accuracy has decreased
because quadrangle division is rough division. However, it agreed almost in the re-mesh model.

Figure 11 is the horizontal stress distribution chart in the A-B section of the subdivided model.
The horizontal stress indicates the value that is excluded and dimensionless made by an nominal
stress. The spindle shows the position, and a horizontal axis is a value of (horizontal stress o= /
nominal stress o»).

Figure 12 is a contour that showed the horizontal stress distribution of the subdivided model
and the Voronoi division model. Both similar distribution tendencies are shown. A similar
tendency is obtained about the triangulation division model and FEM. However, when the
destruction between elements is handled, it is necessary to do by using the surface force
requested by equation (24).

%B t=1mm

»
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2 B 2
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Fig. 9. Plate with round hole subjected tensile load
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(a) Subdivided model (b) Voronoi division model

Fig. 10. Displacement mode

Table 1. Comparison of displacement (mm) Table 2. Stress concentration coefficient
Method Division A point C point Method Division Coefficient
Triangle 0.0895 0.153 Triangle 2.32
drangle 0.0718 0.138 Quadrangle 1.79
HPM Quadrang HPM
Subdivision crack 0.0815 0.147 Subdivision crack 2.17
Voronoi 0.0749 0.141 Voronoi 2.06
FEM Triangle 0.0895 0.153 FEM Triangle 2.31
Quadrangle 2.29
Analytical solution (Howland) 2.16
(A)7
6
R
3. 7
e/
2 3
1/
2
d
(B) 05 1 1.5 2 2.5
oxlon

Fig. 11. Horizontal stress distribution in A-B section (subdivision crack)
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(a) Subdivided model (b) Voronoi division model

Fig. 12. Horizontal stress distribution
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6. CONCLUSION

In this paper, it proposed the second-order displacement field where the gradient of the strain
was assumed to be degree of freedom as a displacement field of HPM. In addition, the piece of
the problem becoming it of types of the same stress field and the stress concentration, etc. was
analyzed. As a result, the triangulation division model of HPM obtained the same level accuracy
as FEM.

HPM divides a whole area into sub-domain, and the displacement field is defined
independently in each sub-domain. At this time, the node of the sub-domain doesn't have degree
of freedom from the use only to recognize shape like FEM. Therefore, the middle node need not
be installed like FEM. In a word, the displacement field of high-order can be applied by the same
number of partitions as the linear displacement field.

Moreover, if the second-order displacement field are used, the Voronoi polygon can be used.
This means an arbitrary area can be subdivided as shown by the example of the numerical
analysis as the node doesn't worry. In the problem that strong non-linear appears locally, it is
thought that the improvement of accuracy can be attempted by divide again partial.

In this paper, only the elasticity problem was taken up as an analysis example. The analysis
that applies this technique to a non-linear problem is scheduled to be done in the future.
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ABSTRACT: Continuous, discontinuous, Continuous—discontinuous medium mechanics
models adopted in the stress analysis are introduced systematically. Various kinds of theory and
numerical methods in the physics of numerical simulation of three models represent the
mainstream and direction of stress analysis nowadays. The appearance of the high, big, precise
and new-type structures shows that this old and brand-new proposition still has wide prospects.
This paper describes its current situation and development of the non-continuous deformation
structure analysis. The contents and methods are introduced overall.

KEYWORDS: continuous medium, numerical simulation, stress analysis, mechanics model

In the field of engineering structural stress analysis, great challenges and development
opportunities exist at the same time. With the development of modern industrial technology and
the effort of challenging the nature, it appears in the area of aviation, astronavigation, navigation,
energy, architecture, water conservation, traffic, and environment, there are a lot of high, large,
precise, and new structures, such as large-scale and high-speed airplanes and ships, spacecrafts,
deep immerged underground engineering, high speed railway and vehicle, TGP hydroelectric
station, frozen ground project for Qing-zang railway, and South-to-North water diversion
hydroelectric and rock project, etc. Because the original theory and method can not meet the
higher technical requirements of strength, rigidity, satiability, reliability and economy to those
new structures, non-continuous deformation structural analysis has been the necessary method to
solve those problems.

1. CONTINUOUS-DISCONTINUOUS DEFORMATION MODEL

Taking subject investigated as calculation model with continuous medium, and studying quantity
relationship of its balance and motion state with analytic method of continuous function (Ewler,
1753), constitute the basic theory of continuous medium mechanics in the physics [12,13]. The
fluid mechanics, solid mechanics and air mechanics developed from this theory took continuous
assumption as their hypothesis, and deepen the mater composition of subject investigated (also
called “material”) and physics character. Therefore, they formed an integrated theory system
respectively, which advanced the progress of engineering technology. This article only discusses
the related issues of deformable solid mechanics.
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A screw and the earth crust are both deformable solid, which is called “structure” in the project.
Structure strength, rigidity, and stability are the common characters of study content. The
abstraction of material physics and structural character derives mechanics branches such as
material mechanics, structural mechanics, elastic mechanics, plastic mechanics, visco-elestic and
visco-plastic mechanics, rheopectic system mechanics, strength theory, and fluid and solid
coupling [1, 2, 3, 10, 11]. The application in metal, concrete, geotechnology, alloy, and rubber
can bring two mechanics models.

Flawless model: macro model for continuous medium. From seventeen century (R.Hooke 1966)
to the Second World War (R.V.Mises, 1913 and T.Von.Karman, 1939), the representation is
elastic theory, plastic theory, stability theory [17, 18, 19, 20];

Defect model: macro model for discontinuous medium. From the World War II to 80's in twenty
century, the representation is fracture mechanics (A.A.Griffith,1921), damage mechanics
(L-M-Kachanov,1958) [32,35,36,37,38,39,44];

Taking the strength problems of concrete material, which is widely employed in the structure
engineering as an example, concrete contains lots of micro-crack, air bubble, pore before
loading, so it isn’t a strict continuous integrity. During construction, the appearance and extend
of yield and crack, the lost bearing capability and deformation of structure can be all defined as
“the damage of concrete”. Treated with continuous macro model, the experiments show that
under the multi-axis load, the strength of concrete does not only have relationship with single
compress, tension, and shearing stress, its strength principal must also consider the influence of
the interrelationship of each stress component to concrete, which should be expressed as stress
condition function. As the practice character of concrete material and strength is a very
complicated problem, it has relationship with factors such as physics mechanics character,
matching ration, load character of aggregate and mortar, which will takes different load
conditions under different load. So, there isn’t a model that can express the strength problems of
real concrete under all conditions now. Even if such a mathematic model is created, it is difficult

to apply it to the real project because of complexities.
Concrete is a mushy medium with defect in natural condition. After loading, it breaks with the
checking-development-expansion of micro-crack until macro-crack appears

[38,39,40,41,45,47,61,62,63,68,69,70,71]. The constitutive model established on the basis of the
stated continuous medium mechanics theory has a widely application value. However, strictly to
say, it can not reflect the breaking fact of concrete material. The damage mechanics and fracture
mechanics established on the basis of discontinuous macro model, on the basis of internal
variable dissipative theory and thermodynamics, changes with method of macroscopic,
microscopic and the combination of macroscopic and microscopic [79,80,83]. With the
development of experiment method and simulation, some theories and works expose the internal
law of damage-break with defect, developing a new situation for research on damage rules and
constitutive relationship in past 30 years. And it brought the damage mechanics and the physics,
mathematics models. There are a lot of numerical articles and research results [40, 45, 48, 49, 50,
56, 57, 58]. However, no result can reflect the character of concrete completely, and the theory is
not mature. This article will not discuss and quote.

In conclusion, there is no theory that can express the character of concrete accurately, but each
theory has its feature and application range. There are a lot of results of values. During the
development of theory, some compound theories appear, for example, elesto-plastic damage
fracture model, plastic fracture model, plastic damage model, and boundary face model, micro-
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face model, neural network material model and so on. The result is that the ideal model is
becoming more complicated that they have little contribution to raise precision and application in
engineering.

2. NUMERICAL ANALYSIS IN PROJECT

2.1. No matter what physical model the practice problems idealized to, the stress analysis for
engineering structure, in mathematics term, can all be concluded in control of differential
equation of engineering science under given boundary conditions, which is called the boundary
value problem of differential equation. The unified mathematic expression is: L¢=q(in the D

domain); ¢S=¢7 (on the S boundary,S e D); q is the function of known or unknown ¢, and L is
linear or nonlinear differential operator.

There are three methods for the answer of boundary value problems, that is, analytic solution,
numerical solution, and experimental solution. Analytic solution is the exact solution of
boundary value problem. Exact solution can be obtained only when the questions of elastic,
plastic and visco static-dynamics mechanics are simple and classic [1, 2, 3, 4]. Before the
computer came into use, for complicated practice boundary problems, we can only simulate its
experiment-analogical answer with physical method such as mechanical, optics. For example,
electrical analogue method, flash spotting, membrane analogy and so on [4, 10, 11]. The
numerical answer of continuous medium can be divided into numerical answer of differential
equation and numerical answer of discrete model. Numerical answer of differential equation is to
discrete the differential equation by mathematic way, change the equation to linear or nonlinear
algebraic equation, and express the infinite degrees of freedom (continuous medium) with finite
degrees of freedom (discrete model), and solve the approximate value on given point (or mesh)
of discrete model which meet boundary condition, for example, numerical integrating, weighting
resident method, finite difference method, Rayleigh-Litz method, calculus of variation, Galerkin
method and so on. Or lower the differential equation to boundary integral equation to solve the
numerical answer of boundary integral equation with immediate integration or indirect
integration method. Numerical solution of discrete model is to divide the calculating model
(solution field) on physics-mathematics, connect the continuous body to discrete aggregate with
finite element on finite nodes (in field or on the boundary), and solve numerical approximate
answer of nodes or equations with algebraic equation [5, 6, 7, 8, 9]. The problem solving process
from accuracy to approximate promoted the development of engineering technology, and it is a
milestone in human history since we start knowing the objective world. On objective meaning, it
is a basic method to evaluate all process of future objective world in quantity. It has a
magnificent meaning to technical economy and society development.

2.2. Numerical answer of discontinuous medium discrete model appears earliest in slicing rigid
body model in rock body engineering, for example rigid body element method (Cundall, 1971),
and block element method (Shi Gen-Hua, 1983), which belong to rigid body without considering
the deformation of element. Based on slicing rigid body model in substance, they can reflect the
displacement of fault, interlayer, crack, joint and no-continuous discontinuity and motion
condition. Discrete element model considering the deformation of element of deformable body,
for example spring element method for rigid body (Kawai,1977) and deformable body element
method (Shi Gen-Hua,1992) are all slicing deformation model [26,27,28]. Rigid spring element
method is to express the deformation of block element with the deformation cumulated on the
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spring. The dominant equation is similar to finite element method, so it is also called rigid
element method. Deformable block element adopts discontinuous deformable block model with
character of finite element method, the motion analysis of block is similar to that of rigid discrete
element, and the solution in each time is similar to that of finite element. On the basis of stated
method, Zhuo Jia-shou advanced the boundary element discrete model on the basis of Kawai
rigid spring element (1993), replace the spring with boundary element to reflect the different
deformation of different kinds of element, and deduced interface stress formula on arbitrary point
on anisotropic body interface, it can solve the numerical analysis problems for isotropy and
anisotropic continuous-discontinuous medium engineering structure [28, 29, 30, 85, 86, 87].
Numerical manifold method (Shi Gen-hua, 1991; Lin De-zhang, 1992), non-element method or
non-mesh method (Belytschko, 1994), unified numerical manifold method (Shi Gen-hua, 1996),
create a new way to solve unified continuous-discontinuous problems.

3. FROM FEM TO EFM

R.W. Clough established the finite element method frame in 1960,then O.C.Zienkiewicz (1965),
E.L.Wilson (1973) and other people established some remarkable works in general field question
and software development aspect [5,6,7,8,9]. K.H.Huebner said, “The finite element method, as
one analytical method, had achieved its top and is impossible to expect other theatrical
development or breaks through. Certainly, the future development will include more widespread
applications in the practical fields, will increase understanding to the special and important
aspects, furthermore will improve and enhance essential skill of finite element method" in his
book “The Finite Element for Engineers" published in 1975. J.H.Argyris[/C.A.Brebbia and Bian
Xuehuang, those scholars’ remarkable contribution in promoting the numerical physical model
and Mathematics theoretical analysis in application aspect and software market development has
proved Huebner’s judgment.

The entire metamorphic solids are non-continuous medium if judged microscopically. The non-
continuity of macroscopic continuous medium contains two kinds of basic questions. First, the
destruction performance and crack in non-continual body with the discontinuity surface
opens! cuts and slips. Second, the produce and expand of crack in continual body.

Along with formation and the development of the diffusion, furcation, muddy and fuzzy theory,
many kinds of numerical analysis in non-continuous medium solid mechanics method have been
developed and then the unified continuous and the non-continuous medium question numerical
method laterally based on the basic thought of finite element in the continuous medium since
early 90’s [30,27,91]. To solve the macroscopic non- continuous problem, there are five
technical methods currently. They are: Elastic-plastic break mechanics model numerical method
(FEM, BEM, WRM, COV and so on); Elastic-plastic damage mechanics model numerical
method (PDM, BEM, WRM, COV and so on); non-continuous block body model numerical
method (DEM, SEM, RSM, DDM, IEM) and so on; Flow shape element method (FEM +
COVER); Element free method (EFM). Among those method, Flow shape element method is the
extension of the finite element method [96, 97], which has introduced mathematical and physical
grids to define the numerical solution precision (for example with triangle unit) and to solve the
territory boundary and the crack surface; which has replaced "the unit" and "the point" with
mathematical and the physical Cover. Using three physical covers to define "the flow shape
unit", that is replaced the pitch point of unit with the physical cover, replaced the unit boundary
with the cover intersection, and replaced the unit with the cover. The manifold unit public space
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which is isolated by the crack, the surface, the boundary and so on may have different pitch
points, therefore may reflect the break and display the non- continuity [279,280,281,282,203].
Thus it has realized the unification of continuity and the non-continuity. But the element free
method does not have the unit and the grid concept.

4. COMPLEX VARIABLES MESHLESS METHOD

EFM has been developed for more than 20 years. Because its flexibility in variable approach,
introduction of border, energy integral, many kinds of meshless method have been presented and
named differently. In the course of its development, most mathematics scholar put forward
approaching function with move least square method. The one that relatively popular is Element
Free Galerkin Method (namely EFGM) nowadays. It constructs inserting value function by
moving least square method [196,197], to solve algebraic equation of question from the principle
of differential equation. The advantages of EFGM are: self-adaptation analysis that does not need
to construct the net again; simple pre-process; smooth calculation result in succession; and more
precise numerical value. As a kind of new numerical analysis technology, it had the initiative in
theory and formed intact framework and system tentatively. But there are also the following
problem exists:

4.1. As the spot integration that does not need the background grid, it still lacks of essential
theory to support and the precision is reduced.

4.2. Each spot needs to be calculated shape function and its derivative in every operation, also
involves the matrix inversion, and must use the higher order Gauss integral in each background
integral grid, which leads to large amount work of calculation and longer time in machine-hour.

4.3. There are many influence factors to solution precision, including pitch point density of
distribution, basis function order, weight function selection and size of its influence territory.
Also the uncertainty of the boundary condition introduction and so on.

With the problems that the distribution nodes are too much with the scalar moving least-square
approximation, the moving least-squares method with complex variables is proposed recently
[131,277]. The advantages of this method are: the number of the undetermined constants in the
trial function is decreased; the two-dimensional problem of Meshless method is possible to take
few pitch points; to each spot, the points contained in its tight territory are greatly reduced. At
the same time the ill-conditioning equation system won’t be formed and the precision gets
improved and less amount work of calculation.

The complex variables meshless method based on complex variable moving-least squares
method will have the following advantages such as less distribution nodes, higher precision as
well as faster calculation. It will also solve the problem with the scalar meshless method. In order
to simulate the localization phenomenon of crack top field, the enriched meshless method with
complex variables is proposed. It could solve the crack problem better, enhanced the precision of
solution of complex variable meshless method [277].

5. THE COUPLING OF NUMERICAL ANALYSIS METHOD

The meshless method has superiority that the finite element method has not, but its shortcomings
happen to be the advantage of finite element method. Therefore, using the coupling of the two
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methods, "makes up for one's deficiency by learning from others' strong points", will broad its
application prospect.

The finite element method in such aspects as the theory, the method, the application, and the
software development is quite consummate. With the development of CAD and its visualization,
multimedia and network technology, and FEM application in the computation analysis, the
visualized analysis software system of FEM occupies the mainstream and leader status in terms
of quantity and the value of application. There is more than 400 international well-known finite
element software of which the more famous are NASTRAN, MARC, ASKA, ADINA,
GTSTRUDL, ANSYS, ABAQUS, and SAP. Their formidable computation character, the design
essence and high visualized degree in the pre and post-processing system, have been approved
by the international engineering projects and taken as the standard [283]. Fully using this market
superiority, maintaining, consummating, enhancing, expanding the functionality and the
application scope of finite element software unceasingly, will have the significant technological
economic value.

The coupling of finite element method either with the weighting remaining method or with the
boundary method has been obtained exciting accomplishment
[209,225,284,285,286,287,288,290]. Belytschko is the first person who proposed coupling
method of meshless method and the finite element method. It divides the solve territory to
meshless and the finite element method subfield, and defines suitable coupling displacement
function to guarantee the continual displacement of contact surfaces between two subfield.
However, Huerta used the conductive coupling way, used the approaches or the interpolating
function iteration approximating function formed by the pitch points in the border area
corresponding to meshless method and the finite element method respectively. Cheng Yumin, Li
Jiuhong proposed coupling of complex variable meshless method and the finite element method,
which divides the solve territory to the complex variable meshless method and the finite element
method subfield. These two subfields will use the complex variable method and the finite
element method to establish fundamental equation separately, and establish hypothesized finite
element in the subfield intersection point, then form the unified solution equation through two
subfields interfaces condition. This method retained advantage of meshless method as it can
match point at random; the interface can be irregular. This method enhances the solution
precision of meshless method, thus increased the solution precision of the whole subject. It
solved the existing problems of Belytschko and the Huerta’s coupling method basically. But the
error is big nearby the interface region [277].

6. CONCLUSION

6.1. The continuous medium numerical method, take the finite element method for example, in
theory, application, software development aspect and so on has reached mature. At present the
important question is to expand its application domain, continually perfect software
functionality, especially strengthen the application visualization and the simulation technology to
make its contact surface friendlier.

6.2. The non- continuous medium numerical method is still pre-mature theoretically. Taking
damaged mechanics and break mechanics for example, the theory and the method of processing
flaw model still need massive experiment to consummate, constitute the unified destruction
numerical model and theory frame.
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6.3. Manifold Method and meshless method lays the foundation for the Continuous and Non-
Continuous unified mathematical model, but only has preliminary achievement on the two-
dimensional problems. It has not been possible to promote the mature software, and the actual
project application has been still in exploration stage. It is far behind finite element method, the
boundary method and other numerical methods in terms of application level.

6.4. The question of how to introduce function of dealing with the non- continual problem in the
rich FEM commercial software to unify continuous and non- continuous should be considered
emphatically in current solid mechanics. From this point of view, the research and the
corresponding software development of the coupling question of manifold method and meshless
method with the FEM has more development value.
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