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Preface 
 

The past few decades have witnessed a boom in the development of rock engineering in China, 
most notably in large-scale efforts such as the Three-Gorges Dam, the South-to-North Water 
Transfer project, and the Jin Ping Hydroelectric Station. Although such projects have boosted the 
studies and development of rock mechanics and rock engineering, they also presented great 
challenges in the analyses of rock masses. One such challenge is how to deal with the 
deformation and mechanical responses along the discontinuities in rock masses. 

The idea of Discontinuous Deformation Analysis (DDA) presented by Dr. Shi’s innovation in 
1988 led us to a new method of treating the deformation of discontinuous media. Since then, 
DDA has been adopted to solve a wide range of complicated engineering problems and spread 
throughout the fields of rock mechanics and engineering. As the papers in these proceedings 
show, these DDA methods have been further developed by my Chinese colleagues to analyze 
some very challenging problems that arose in rock engineering in China. As a result, ICADD-7 
in Hawaii in 2005 decided to move the 8th conference to China to incorporate these recent 
achievements in DDA theory and applications. These proceedings reflect the latest development 
of analysis of discontinuous deformation and engineering applications in the fields of mining and 
civil engineering. 

This conference would not be possible without the untiring efforts of Dr. Gen-hua Shi, Dr. Yang 
Ju, Dr. Xi-sheng Fang, Dr. Jun Yang and all members of the local organizing committee. Their 
hard work in planning and organizing helped to ensure this conference was a success. We thank 
Dr. Mary Maclaughlin, Dr. Man-chu Ronald Yeung and Dr. Yuzo Ohnishi for volunteering to 
instruct a three-day DDA short course that is sure to benefit conference attendees. We would like 
to extend our gratitude to all sponsors for their support, including the Chinese State Key 
Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, 
Beijing Institute of Technology, National Basic Research Project of China (2002CB412700), 
Graduate University of Chinese Academy of Sciences, K. C. Wong Education Foundation Hong 
Kong, Chinese Society for Rock Mechanics and Engineering and American Rock Mechanics 
Association. Finally, we would like to thank the authors of the papers for their contributions and 
participation. 
 

 
Heping Xie 
Chairman, Conference International Advisory Board and Technical Committee 
Academician, Chinese Academy of Engineering 
President, Sichuan University, P. R. China 
August 2007
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Applications of Discontinuous Deformation Analysis (DDA) to rock stability analysis  

 
GEN-HUA SHI 

 

DDA Company, 1746 Terrace Drive, Belmont, CA 94002, USA  
 

 
Limit equilibrium is still the fundamental method for global stability analysis. Reaching limit 
equilibrium requires large displacements, discontinuous contacts, precise friction law, multi-
step computation and stabilized time-step dynamic computation. Therefore three convergences 
are unavoidable: convergence of equilibrium equations, convergence of open-close iterations 
for contacts and convergence of the contact forces of dynamic computations. This paper focuses 
mainly on applications of two dimensional DDA. The applications show DDA has the ability to 
reach limit equilibrium of block systems. For slope stability analysis, this paper works on rock 
block toppling and loosening, where the block rotation is the main issue. For foundation 
stability analysis, this paper presents dam foundation damage computation, where the block 
sliding is a main issue. 

Keywords: DDA; Discontinuous deformation analysis; Contacts; Limit equilibrium; Toppling; 
Stability analysis  

 
 
 
1. Discontinuous Deformation Analysis (DDA) 
  
The computation method used in this paper is mainly 
two dimensional discontinuous deformation analysis or 
2d-DDA. DDA works on block systems. Each block 
has linear displacements and constant stresses and 
strains.  
The current version of 2d-DDA bas 6 unknowns per 
block:  
x direction movement xd ,  

y direction movement yd ,  

rotation xyr ,  

x direction strain xε ,  

y direction strain yε ,  

Shear strain xyτ .   
DDA uses multi-time steps. Both static and dynamic 
cases use dynamic computation. Static computation is 
the stabilized dynamic computation in the natural way. 
Therefore DDA can perform discontinuous and large 
deformation computation for both static and dynamic 
cases.    
For each time steps, DDA usually has several open-
close iterations. DDA readjust open, close or sliding 
modes until every contact position has the same contact 
mode before and after the equation solving then going 
to next time step. Here, for each open-close iteration of 
each time step, DDA solves global equilibrium 
equations. The friction law is ensured in DDA 
computation. The friction law is the principle law of 
stability which is inequality equations in mathematics. 

Every single block of 2-d DDA can be a generally 
shaped convex or concave two dimensional polygon. 
Each block can have any number of edges. Based on 
simplex integration, the stiffness matrices, the inertia 
matrices and all other matrices of DDA are analytical 
solutions.  
DDA has complete linear contact modes. If the time 
step is small enough and the total step number is large 
enough, DDA can simulate any possible complex 
movements of block systems.    
DDA serves as a bridge between FEM and limit 
equilibrium method. DDA has strict equilibrium at each 
time step. After some time steps, the DDA reaches 
dynamic or static limit equilibrium for whole simply 
deformable block systems.  
DDA also served as implicit version of DEM method. 
DDA has all advantages of dynamic relaxation yet the 
convergence is strict and the result is accurate. 
More important, DDA is a very well examined method 
by analytical solutions, physical model tests and large 
engineering projects. For toppling computation DDA 
results are consistent with Prof. Goodman’s analytical 
formulae. 
 
2. Toppling of slopes: foliation planes have 40 
degrees dip angle 
 
The average dip angle of the slope is 43 degrees. The 
physical data of rock mass for this slope are shown in 
Table 1. The ground water surfaces are always input. 
The following table2 includes the geometric data and 
physical data of the joint sets. 
 
  
 

1



 

 

 

 
 
Table 1 Physical data of rock mass  
                                           
Table 2 Geometric and physical data of joint sets 

 
Computation of two dimensional DDA uses 10000 time 
steps, 0.002 second per step. The dynamic ratio is 0.99. 
It means the next time step inherent 0.99 of the velocity 
from the previous time step.  
Figure 1 shows the result of the slope, the dip angle of 
the foliation planes is 40 degrees.  
 

 
 
Figure 1: Toppling of the slope where the dip angle of 
foliation plane is 40 degrees 
 
Figure 2 is the time depending movements of the 
measured points under the anchor block of the slope for 
the previous case of Figure 1.Under the 40 degrees dip 
angle of the foliation planes, the toppling is very small 

and almost invisible. The slope and the anchor block 
are stable under the 40 degrees dip angle of the 
foliation planes.  
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Figure 2: Displacements of points under the slope 
where the dip angle of foliation planes is 40 degrees 
 
3. Toppling of slopes: foliation planes have 50 
degrees dip angle 
 
The dip angle of foliation planes is 50 degrees for the 
slope. The ground water surfaces are always input. The 
geometric data and physical data of the joint sets are 
same as Table2 except the dip angle of foliation planes 
is 50 degrees. 
Computation of two dimensional DDA uses 10000 time 
steps, 0.002 second per step. The dynamic ratio is 0.99. 
It means the next time step inherent 0.99 of the velocity 
from the previous time step. 
  

 
 
Figure 3: Toppling of the slope where the dip angle of 
foliation plane is 50 degrees 
 
Figure 3 shows the result of the slope, the dip angle of 
the foliation planes is 50 degrees. 
From Figure 3 it can be seen that rock blocks of the 
upper left corner have visible gapes. This means slight 
toppling on the upper left corner takes place. The 
opening gapes only appear on this very small local area. 

Location Unit 
Wight 
PSF 

Elastic 
Modulus  

PSF 

Poisson’s 
Ratio 

Regular 
Rocks  

167 720000000 0.35 

Weak 
Zone 

167 72000000 0.35 

Joint Set 1 
(Foliation) 

2 

Dip Angle 
Degree  

40 40 

Average 
Spacing 
Ft 

7 30 

Average Length 
Ft 

2000 200 

Cohesion 
PSF 

0 0 

Friction Angle 
Degree 

10 30 

2



 

 

Still the opening gapes can not be found in other 
locations.  
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Figure 4: Displacements of points under the slope 
  
Figure 4 is the time depending movements of the 
measured points under the anchor block of the slope for 
the previous case of Figure 3. Under the 50 degrees dip 
angle of the foliation planes, the toppling is still small 
and almost invisible. However displacements are larger 
than the combination 1 where the dip angle of foliation 
planes is 40 degrees. 
 
4. Toppling of slopes: foliation planes have 60 
degrees dip angle 
 

 
 
Figure 5: Toppling of the slope where the dip angle of 
foliation plane is 60 degrees 
 
 In this section, the dip angle of foliation planes is 60 
degrees for the slope. The ground water surfaces are 
always input. The geometric data and physical data of 
the joint sets are same as Table2 except the dip angle of 
foliation planes is 60 degrees. 
Computation of two dimensional DDA uses 30000 time 
steps, 0.002 second per step. The dynamic ratio is 0.99. 
It means the next time step inherent 0.99 of the velocity 
from the previous time step.  
Figure 5 shows the result of the slope, the dip angle of 
the foliation planes is 60 degrees.  
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Figure 6: Displacements of points under the slope  
where the dip angle of foliation planes is 60 degrees 
 
Figure 6 is the time depending movements of the 
measured points under the anchor block of the slope for 
the previous case of Figure 5. Under the 60 degrees dip 
angle of the foliation planes, the toppling of the slope is 
in large scale. It can be seen, the slope is a convex slope 
which gives more room for block rotation or toppling. 
 
5. Toppling of slopes: foliation planes have 70 
degrees dip angle 
 
From the drilling data, the original dip angle of the 
foliation planes is about 70 degrees. If after toppling, 
the second joint set has 40 degrees dip angle, the 
original dip angle of the second joint set is about 20 
degrees. The following Table 3 includes the geometric 
data and physical data of the joint sets and rock masses.  
 
Table 3 Geometric and physical data of joint sets 

 
The following computation is to simulate or back 
calculate the past toppling of the slope. 
Figure 7 shows the result of the slope, the dip angle of 
the foliation planes is 70 degrees.  
Figure 8 is the time depending movements of the 
measured points under the anchor block of the slope for 
the previous case of Figure 7. 

Joint Set 1 
(Foliation) 

2 

Dip Angle 
Degree  

70 20 

Average Spacing 
Ft 

7 30 

Average Length 
Ft 

2000 30 

Cohesion 
PSF 

0 0 

Friction Angle 
Degree 

10 30 

3



 

 

 

 
 
Figure 7: Toppling of the slope where the dip angle of 
foliation plane is 70 degrees 
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Figure 8: Displacements of points under the slope 
where the dip angle of foliation planes is 70 degrees 
 
Computation of two dimensional DDA uses 30000 time 
steps, 0.002 second per step. The dynamic ratio is 0.99. 
It means the next time step inherent 0.99 of the velocity 
from the previous time step. Under the 70 degrees dip 
angle of the foliation planes, the toppling of the slope is 
very large. It can be seen, the slope is a convex slope 
which gives more room for block rotation or toppling. 
 
6. Bolting computation of toppling slopes  
 
In this section, three cases of bolting computations are 
made. The three cases are the slope with longer second 
set joints, the slope with shorter second set joints and 
the slope where the second set joints are shorter and 
have 20 degree flat dip angle. The dip angle of foliation 
planes is 60 degrees for all of these three cases. The 
ground water surfaces are always input.  
The following table 4 includes the geometric data and 
physical data of the joint sets and rock masses. 
Computation of two dimensional DDA uses 30000 time 
steps, 0.002 second per step. The dynamic ratio is 1.00. 
 

 
Table 4 Geometric and physical data of joint sets 

 
It means the next time step inherent all of the velocity 
from the previous time step.  The affection of earth 
quake can be presented from this pure dynamic 
computation.   
Figure 9 shows the bolting result of the slope: the dip 
angle of the foliation planes is 60 degrees. 
 

 
 
Figure 9: Bolting of toppling slope where the dip angle 
of foliation plane is 60 degrees 
 
Figure 10 is the time depending forces of the bolt of the 
previous cases of Figure 9. It can be seen from the 
results; the bolts made differences here. Under the 60 
degrees dip angle of the foliation planes, the maximum 
required bolting force is 14 Kips per foot for the whole 
slope section. Therefore, different kinds of 
reinforcements are feasible. 
Since the foliation planes are very dense and the rock 
blocks are very thing, large numbers of blocks are 
needed for this DDA computation. Still there are no 
enough previous experiences for toppling analysis. This 
computation has to cover all possible cases and 
combinations. 
Here, time depending movements are involved. Each 
computation has to reach static state from dynamic state. 
As the time is long enough, no more displacement or 
bolting force change can be seen from the charts. 

Joint Set 1 
(Foliation) 

2 

Dip Angle 
Degree 

60    20-40 

Average Spacing 
Ft 

7 30 

Average Length 
Ft 

2000   30-200 

Cohesion 
PSF 

0 0 

Friction Angle 
Degree 

20 30 

4
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Figure 10: bolt forces of the slope where the dip angle 
of foliation planes is 60 degrees 
 
7. Computation of rock block loosening  
 
In the next 2d-DDA computation, the input data are 
shown by Table 5 which is the real physical data of the 
rock mass.  
 
Table 5 Physical data of rock mass with original 
friction angle 

 
Computation of two dimensional DDA uses 5000 time 
steps, 0.002 second per step. . The dynamic ratio is 1.00. 
It means the next time step inherent all of the velocity 
from the previous time step.   
Figure 11 shows the result under the normal loads. No 
distinct movements or damages can be seen.  
Figure 12 shows the result under reduced friction angle 
by 5 degrees. Still no distinct movements or damages 
can be seen. 
Figure 13 shows the result under reduced friction angle 
by 10 degrees. Partly loosening can be seen with 
unstable large displacements. 
Figure 14 shows the result under reduced friction angle 
by 15 degrees. Global loosening of the whole block 

system can be seen with unstable large displacements. 
The Following figure 15 shows the displacements of 
the given point under different friction angles.   
The real friction angle is rα = 40 degrees. The failure 
friction angle 

f
α = 35 degrees. The factor of safety is 

 tan rα /tan 
f

α = 1.2 

 
 
Figure 11: Case of original friction angle 

 
 
Figure 12: Case with reduced friction angle by 5 
degrees 

  
Figure 13: Case with reduced friction angle by 10 
degrees 

Location  Ultra 
 Mafics 

Shear 
Zone 
Weathered 

Shear 
Zone 
Fresh 

Unit Wight 
PCF 

167 130 130 

Elastic 
Modulus  
PSF 

720000000 150000 500000 

Poisson’s 
Ratio 

0.35 0.25 0.25 

Friction 
Angle 
Degree 

40 35 35 

Cohesion 
PSF 

0 0 0 

5



 

 

 
 
Figure 14: Case with reduced friction angle by 15 
degrees 

 
Figure 15: Horizontal displacements of a point under 
different friction angles 
 
8. Dynamic earth quake load on bolts 
 
The following dynamic earth quake acceleration curves 
are scaled from recorded earth quake curves of San 
Francisco area. The frequency of this earth quake is 
relatively low. Therefore it is easier to make damage 
than the earth quake of higher frequency. Considering 
the eigenvalues of the same area are unchanged, it is  
logical to scale the intensity of the acceleration.   
Figure 16 shows the X and Y components of time-
depending acceleration vectors.  
Figure 17 shows the Z components and the resultant of 
time-depending acceleration vectors.  
    
Table 6 Earth quake data information 
 

Item  
Total number of steps 2000 
Time interval of a step 0.05 Second 
G value as unit 32.2 ft/s² 
Dimension 3 

 
Figure 16: X and Y components of 0.3g earth quake 

 
Figure 17: Z component and resultant of 0.3g earth 
quake 
 
In the next 2-d DDA computation, water pressure is 
applied. The 0.3g dynamic earth quake is applied too.  
                                                                                  

  
Figure 18: Bolting under 0.3g dynamic earth quake 
  
There are 6 bolts on this slope section.  The input data 
are shown also by Table 6 of previous section.  
Computation of two dimensional DDA uses 5000 time 
steps, 0.002 second per step. The dynamic ratio is 1.00. 
It means the next time step inherent all of the velocity 
from the previous time step.  The affection of earth 
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quake can be presented from this pure dynamic 
computation.                                               

 
 
Figure 19: Time-depending bolt loads 
 
Figure 18 shows the bolts hold the rock blocks. Figure 
19 shows the time depending load of each bolt. The 
maximum load of all bolts and for all the time is 64 
kips per bolt.  
 
   
9. Gravity dam foundation stability analysis  
 
The dam foundation computation (Figure 20) of two 
dimensional DDA uses 1000 time steps, 0.05 second 
per step. The dynamic ratio is 0.95. It means the next 
time step inherent 95% of the velocity from the 
previous time step. 
 
Table 7 Physical data of concrete and rock mass of 
gravity dam foundation 

 
The computations of Figure 20 reaches constant factor 
of safety 2.603528 and relative maximum 
displacements 0.0000000 in 300 time steps. This means 
the block system reaches limit equilibrium after 300 
times steps in a very high standard. 
 

  
 

Figure 20: Dam under normal loading 

 
Figure 21: Dam with doubled water pressure and 
reduced friction angle 
 
In order to find the mode of failure, the computation of 
Figure 21 uses double water pressure and reduced rock 
friction angle which is 15 degrees.  
The computation of Figure 21 uses 3000 time steps, 
0.02 second per step. The dynamic ratio is 1.00. It 
means the next time step inherent all of the velocity 
from the previous time step. 
Figure 21 shows the damage which is large movements 
of only three blocks including the dam itself.  
 
10. Arch dam foundation stability analysis  
 
The thin arch dam (Figure 22) is computed by two 
dimensional DDA. 1000 time steps are used, 0.01 
second per step. The dynamic ratio is 0.95. It means the 
next time step inherent 95% of the velocity from the 
previous time step. 
 
 

 
Figure 22: Thin arch Dam with five times water 
pressure  
 
 

Location  Concrete Rock 
Mass 

Unit Wight 
Ton/Cubic 
Meter 

2.5 2.8 

Elastic 
Modulus 
Ton/Square 
Meter 

2400000 2600000

Poisson’s 
Ratio 

0.17 0.30 

Friction Angle 
Degree 

47 26 

Cohesion 
Ton/Square 
Meter 

0 0 
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Figure 23: Thin arch dam with moving abutment and 
water pressure 
 
The physical data of the arch dam of Figure 22 are 
shown on Table 8. The computation of Figure 22 
reaches relative maximum displacements 0.0000000 in 
400 time steps. This means the block system reaches 
limit equilibrium after 400 time steps in a very high 
standard. 
 

Table 8 Physical data of concrete arch 
 

Location  Concrete 
Unit Wight 
Ton/Cubic 
Meter 

2.4 

Elastic 
Modulus 
Ton/Square 
Meter 

2400000 

Poisson’s 
Ratio 

0.17 

Friction Angle 
Degree 

10 

Cohesion 
Ton/Square 
Meter 

0 

 
The failure of thin arch dam (Figure 23) is computed by 
two dimensional DDA. 4000 time steps are used, 0.01 
second per step. The movement of dam abutment is 
applied to cause the failure. 
The physical data of the thin arch dam of Figure 23 are 
shown on Table 8.  
 
 
 

 
 
Figure 24: Arch dam and rock foundation with five 
times water pressure 
 
 
 

 
 
Figure 25: Arch dam and rock foundation with five 
times water pressure and reduced friction angle 
 
The arch dam (Figure 24) is computed by two 
dimensional DDA. Five times of water pressure are 
applied. 1000 time steps are used, 0.01 second per step. 
The dynamic ratio is 0.90. It means the next time step 
inherent 90% of the velocity from the previous time 
step. 
The physical data of the arch dam of Figure 24 are 
shown on Table 9. The computation of Figure 24 
reaches relative maximum displacements 0.0000000 in 
250 time steps. This means the block system reaches 
limit equilibrium after 250 time steps in a very high 
standard. 
 

Table 9 Physical data of concrete and 
rock mass of arch dam foundation 

 
Location  Concrete & 

Rock 
Unit Wight 
Ton/Cubic 
Meter 

2.4 

Elastic 
Modulus 
Ton/Square 
Meter 

2400000 

Poisson’s 
Ratio 

0.17 

Friction Angle 
Degree 

25 

Cohesion 
Ton/Square 
Meter 

0 

 
The failure of arch dam (Figure 25) is computed by two 
dimensional DDA. Five times of water pressure are 
applied. The friction angle is reduced to 5 degrees from 
the data of Table 9. Also 0.85g earth quake is applied. 
4000 time steps are used, 0.01 second per step. The 
physical data of the arch dam of Figure 25 are shown 
on Table 9.  
 
 
11. Buttress dam foundation stability analysis  
 
The dam foundation computation (Figure 26) of two 
dimensional DDA uses 400 time steps. The time 
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interval was automatic chosen and controlled by 
maximum displacement ratio 0.001. The maximum 
displacement ratio is the allowed maximum step 
displacement divided by the half height of the whole 
mesh. The average time interval is 0.06 second per step. 
The dynamic ratio is 0.0. It means the next time step 
start with zero velocity. 
The physical data of the dam of Figure 26 are shown on 
Table 10. The computation of Figure 26 reaches 
relative maximum displacements 0.0000000 in 200 
time steps. This means the block system reaches limit 
equilibrium after 200 time steps in a very high standard. 
 
 

 
 
Figure 26: Buttress dam with water pressure  
 
 

 
 
Figure 27: Buttress dam with water pressure and 
reduced friction angle 
 
Failure computation (Figure 27) of dam foundation uses 
two dimensional DDA. The total time steps are 5000. 
The time interval was automatic chosen and controlled 
by maximum displacement ratio 0.001. The maximum 
displacement ratio is the allowed maximum step 
displacement divided by the half height of the whole 
mesh. The average time interval is 0.08 second per step. 
The dynamic ratio is 0.0. It means the next time step 
start with zero velocity. The physical data of the dam of 
Figure 27 are shown on Table 10. In order to reach 
failure state, the friction angle of horizontal joints 
reduced from 28 degrees to 17 degrees.  
 
 
 

Table 10 Physical data of concrete and rock mass of 
buttress dam foundation 
 

Location  Concrete Rock 
Mass 

Unit Wight 
Kpound/Cubic 
Foot 

0.150 0.135 

Elastic 
Modulus  
Kpound/Square 
Foot 

432000 160000 

Poisson’s 
Ratio 

0.20 0.24 

Friction Angle 
Degree 

28 (of horizontal 
joints) 

29 (of other 
joints) 

Cohesion 
Kpound/Square 
Foot 

0 0 

 

 
 
Figure 28: Buttress dam reinforced by resist block and 
loaded by water pressure  
 

 
 
Figure 29: Buttress dam reinforced by resist block, 
loaded by water pressure and computed under very 
small friction angle 
 
The reinforced dam foundation computation (Figure 28) 
of two dimensional DDA uses 500 time steps. The time 
interval was automatic chosen and controlled by 
maximum displacement ratio 0.0007. The maximum 
displacement ratio is the allowed maximum step 
displacement divided by the half height of the whole 
mesh. The average time interval is 0.044 second per 
step. The dynamic ratio is 0.0. It means the next time 
step start with zero velocity. 
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The physical data of the buttress dam of Figure 28 are 
shown on Table 10. The differences are the friction 
angles of horizontal joints and other joints are 17 
degrees and 45 degrees respectively. The computation 
of Figure 28 reaches relative maximum displacements 
0.0000000 in 200 time steps. This means the block 
system reaches limit equilibrium after 200 time steps in 
a very high standard. 
 
The failure computation of reinforced dam foundation 
(Figure 29) uses two dimensional DDA. Total 5000 
time steps are used. The time interval was automatic 
chosen and controlled by maximum displacement ratio 
0.001. The maximum displacement ratio is the allowed 
maximum step displacement divided by the half height 
of the whole mesh. The average time interval is 0.06 
second per step. The dynamic ratio is 0.0. It means the 
next time step start with zero velocity. 
The physical data of the arch dam of Figure 29 are 
shown on Table 10. The differences are the friction 
angles of horizontal joints and other joints are 17 
degrees and 0 degrees respectively. The 0 degrees of 
friction angle of non-horizontal joints cause the failure. 
 
12. Rock falling and bolt reinforcements of 
underground power chambers  
 
The rock falling computation of underground chamber 
(Figure 30) uses two dimensional DDA. Total 3000 
time steps are used. The time interval was automatic 
chosen and controlled by maximum displacement ratio 
0.001. The maximum displacement ratio is the allowed 
maximum step displacement divided by the half height 
of the whole mesh. The dynamic ratio is 1.0. It means 
in the beginning of the next time step 100% of velocity 
is inherited from the present time step. Therefore rock 
falling computation is fully dynamic without damping. 
The physical data of the rock mass of Figure 30 are 
shown on Table 11.  
The rock bolting computation of underground chamber 
(Figure 31) uses two dimensional DDA. Total 3000 
time steps are used. The time interval was not 
controlled by maximum displacement ratio which is 
0.0005. The step time interval is 0.001 seconds. The 
dynamic ratio is 0.97. It means in the beginning of the 
next time step 97% of velocity is inherited from the 
present time step.  
The physical data of the rock mass of Figure 31 are 
shown on Table 11. To obtain the forces of bolts initial 
stresses are entered.  
 
 

 
 
Figure 30: Rock fall computation of underground 
chamber by 2d DDA  
 
 

 
 
Figure 31: Rock fall and reinforcement computation of 
underground chamber by 2d DDA  
 

Table 11 Physical data of underground 
chamber rock mass 

 
Location  Rock 

Mass 
Unit Wight 
Ton/Cubic 
Meter 

2.7 

Elastic 
Modulus 
Ton/Square 
Meter 

3000000 

Poisson’s 
Ratio 

0.25 

Friction Angle 
Degree 

20 

Cohesion 
Ton/Square 
Meter 

0 
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13. Rock falling and bolt reinforcements of tunnels 
 
In the following, five tunnel sections are analyzed by 
two dimensional DDA. Each tunnel section has two 
cases: without bolt support and with bolt support. All 
five sections and ten cases are based on the same 
geometric data of joint sets shown by Table 12. Figure 
32 to Figure 41 show the very different rock fall in the 
same rock and with different tunnel directions. 
 

Table 12 Geometric data of joint sets of tunnels 
 

Joint  
Set 

1 2 3 

Dip  
Angle 
Degree 

40 70 65 

Dip 
Direction 
Degree 

295 105 150 

Average 
Spacing 
Meter 

0.75 0.45 1.5 

Average 
Length 
Meter 

30 7 10 

Average 
Bridge 
Meter 

0.1 3.0 7.5 

Degree of 
Random 
0.0–1.0 

0.5 0.5 0.5 

 
 

Table 13 Physical data of tunnel rock mass 
 

Location  Rock 
Mass 

Unit Wight 
Ton/Cubic 
Meter 

2.7 

Elastic 
Modulus 
Ton/Square 
Meter 

3000000 

Poisson’s 
Ratio 

0.25 

Friction Angle 
Degree 

25 

Cohesion 
Ton/Square 
Meter 

0 

 
The physical data of tunnel rock mass of all ten cases 
(Figure 32 to Figure 41) are also the same and shown 
by Table 13. 
 

All cases (Figure 32 to Figure 41) are two dimensional 
DDA computations. All ten cases except Figure 35 use 
2000 time steps. Figure 35 uses 6000 time steps. The 
time interval was automatic chosen and controlled by 
maximum displacement ratio 0.001 for all ten cases. 
The maximum displacement ratio is the allowed 
maximum step displacement divided by the half height 
of the whole mesh. 
Figure 32, Figure 34, Figure 36, Figure 38 and Figure 
40 are rock falling cases which use dynamic ratio 1.00. 
It means the next time step inherent 100% of the 
velocity from the present time step. The maximum 
dynamic damage can be estimated by using this fully 
dynamic computation. 
Figure 33, Figure 35, Figure 37, Figure 39 and Figure 
41 are rock reinforcement cases which use dynamic 
ratio 0.98. It means the next time step inherent 98% of 
the velocity from the present time step. The stabilized 
bolt forces can be estimated by using this slight 
damping. 
 
 

 
 
Figure 32: Rock fall computation of a tunnel with 
horizontal axis pointing NW 35 degrees    
 

 
 
Figure 33: Rock fall and bolting computation of a 
tunnel with horizontal axis pointing NW 35 degrees  
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Figure 34: Rock fall computation of a tunnel with 
horizontal axis pointing NE 0 degrees    
 
 
 

 
 
Figure 35: Rock fall and bolting computation of a 
tunnel with horizontal axis pointing NE 0 degrees 
    
 
 

 
 
Figure 36: Rock fall computation of a tunnel with 
horizontal axis pointing NE 36 degrees    
 
 
 
 
 
 

 
 
Figure 37: Rock fall and bolting computation of a 
tunnel with horizontal axis pointing NE 36 degrees    
 
 
 

 
 
Figure 38: Rock fall computation of a tunnel with 
horizontal axis pointing NE 71.5 degrees  
   
 
 

 
 
Figure 39: Rock fall and bolting computation of a 
tunnel with horizontal axis pointing NE 71.5 degrees 
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Figure 40: Rock fall computation of a tunnel with 
horizontal axis pointing SE 76 degrees    
 
 

 
 
Figure 41: Rock fall and bolting computation of a 
tunnel with horizontal axis pointing SE 76 degrees    
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The Japanese research group has been working on studies of discontinuous numerical analysis, 
such as Discontinuous Deformation Method (DDA) and Manifold method (MM). Numerous 
locations in Japan are potentially prone to rock slope failure and rock falls because of the 
commonly found precipitous terrains formed by diastrophism, most of which are weakened by 
alteration, as well as the frequent typhoons and earthquakes or heavy snowfalls. To deal with 
rock slope failure and rock falls, it is crucial to develop failure prevention methods by 
evaluating slope stability and predicting the failure risk, as well as minimizing damage in the 
event of any failure. In this paper, we introduce some applications of discontinuous numerical 
methods to actual engineering problems, for example, in natural disaster prevention measures.  

Keywords: DDA; MM; Rock engineering; Actual engineering problem  
 
 

1. Introduction 
 

The Japanese research group tries to make database 
management of application examples of DDA and MM 
to some actual engineering problems. The reason we try 
to analyze actual engineering problems using DDA and 
MM is that these analytical methods have been proved 
useful for predicting the failure risk and minimizing 
damage in the event of any rock failure. In order to 
spread DDA and MM in the field of engineering, we 
think that it is necessary to make clear how to make 
analytical models and how to input the analytical 
parameters. In this paper, some applications of DDA 
and MM in landslide, rock falling and excavation of 
underground cavern are presented with the analytical 
techniques.    
 
2. Application to landslide 
 
Ishikawa et al. examine the applicability of DDA to 
numerical simulation of slope failure which occurs at 
fragmental rock slope in cold regions. At the fragmental 
volcanic soil ground in the north cold area of Japan, the 
degradation in strength of volcanic coarse-grained soils 
caused by heavy rain-fall and cyclic freeze-thaw action 
often makes the natural disaster such as slope failure at 
embankment and cut slope or landslide at a subsurface 
layer worse. However, the synthetic research on 
disaster preventive measures is behind in examining 
how various factors such as freeze-thaw history, rainfall, 
rise in ground water level at thaw season and 
earthquake have an influence on the mechanism of 
slope failure and landslide at fragmental volcanic soil 
ground individually. They simulate slope failure of 
volcanic soil ground in order to examine the effect of 
element mesh type and input parameters on the slope 
stability. Moreover, the validity of DDA simulations for 
simulating input parameters is examined by comparing 

numerical results with experimental results. The 
schematic section of a DDA model is shown in Fig. 1. 
Then, this study employs several DDA models which 
differ in slope angle (θ) and element mesh type. Fig.2 
shows four kinds of element meshes used in this study.  
 
 

 
 

Fig.1 Simulation model of slope     
 

 
  

Fig.2 Outline of element mesh for simulation 
 
Furthermore, friction angle(φμ) between blocks regards 
as a parameters ranging from 0° to 40°. Simulation 
results shows that slip surface can be roughly identified 
by displacement vectors of each DDA block, and that 
DDA simulation is similar in the shape and location of 
slope failure surface to the model test although there is 
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a difference in volume change of volcanic soil ground 
before and after slope failure as shown in Fig. 3. These 
results indicate the method for modeling a slope 
composed of crushable volcanic coarse-grained soils.  
 

 
 

Fig.3 Result of DDA simulation and model test 
 
Hamasaki et al. apply DDA analysis to examination of  
the factors which cause a landslide in the natural dam. 
When a landslide situated on a valley side slope slides 
downward, the valley is filled up with the debris. As a 
result, the lake which is created by the natural dam 
appears in the upper area of the dam. If the natural dam 
collapses, a debris flow occurs in the downstream and 
damages the downstream area. Therefore, the 
countermeasure to the landslide along a river is very 
important in order to maintain a river system. 
Numerical analysis about the activity conditions of the 
landslide is significant to draw up the plan of the 
countermeasure to the landslide. On the analysis, the 
landslide block was divided using Voronoi-diagram, 
because the analyzed landslide block consists of the 
disordered blocks of rock. As the parameters which the 
landslide begins to slide and the top of the landslide 
debris reaches to the road height (ca. 15 m height) on 
the opposite shore, it became clear that the cohesion of 
the landslide block is 5 kpa or less and the internal 
friction angle is 15 degrees or less shown in Fig. 4. 
Dong & Osada also try to simulate landslide problems. 
When sliding occurs, frictional resistance falls from 
static friction coefficient, μs to a lower dynamic friction 
coefficient, μd. The magnitude of this effect depends on 
the displacement and velocity of displacement. The 
current DDA program detects the sliding condition at 
the contact edge by the Mohr-Coulomb criteria, but the 
coefficient of friction is treated as a constant value. 
DDA controls the calculation by time steps, and 
according to the shear displacement as well as velocity 
after each time of the open-close calculation, the 
coefficient of friction can be updated. They examine the 
validation of DDA program by verifying the 
displacement of a block induced by a sinusoidal motion.  
 

 
 
 
 

 
 
Fig.4 Result of DDA simulation using Voronoi-
diagram 

Displacement-Time

-14

-10

-6

-2

2

6

0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

D
is

pl
ac

em
en

t(m
)

DDA analytical 
DDA analytical
DDA analytical

φ =100

φ =200

φ =300

 
Fig.5a Displacement of block with changing of friction 
when amplitude of acceleration a0 =9.81 m, f = 0.5 Hz, 
friction  
 
An agreement between DDA program and analytical 
solution with changing in friction and frequencies of 
motion ensures the confidence of DDA program shown 
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in Fig.5a and 5b. The next step, as a simple case, a drop 
of static friction to the dynamic friction at the initial 
slip stage (at the surface contact) was assumed shown 
in Fig.6. The displacement of a block is accumulated 
after each step and this result causes the difference as 
an increase of time. The above analysis shows that the 
effect of dynamic friction is significantly influenced in 
case that displacement is large. This weakening of 
sliding resistance may, depending on the stiffness of the 
system, result in a dynamic instability, and the friction-
displacement behaviour. Research on dynamic friction 
will implement in DDA and a possible approach to this 
effect is the constitutive friction laws of dynamics 
friction, in which provides a connection between 
friction and velocity, time dependence. 
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Fig.5b  Effect of frequencies with a0 =9.81 m, Φ=100 
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Fig.6 The displacement of overlaying block with 
changing into dynamic friction when a0 = 9.81 m, f = 
0.5 Hz, Φs =200. 
 
Ma et al. try to foresee collapse of rock slope by DDA 
simulation. They use the actual data which was the 
representative case of our field monitoring studies, 13 

sites in Japan. Fig.7 shows the actual rock slope which 
can be approximated with 4 jointed blocks, the fixed 
blocks (B and D), a large block (A3) and a small block 
(C) at the foot of A3. To investigate the physical 
parameters of the rock mass and joints, several samples 
were obtained from the field. In the laboratory, uniaxial 
compression tests, Brazilian tests, and direct shear tests 
with the natural joints were conducted to study the 
uniaxial compression and tensile strength of the rock 
mass, and the cohesion and frictional angle of the joints. 
Fig.8 shows the modeling of jointed rock mass by DDA. 
In this Figure, (a) was the side view of jointed rock 
mass before collapse, (b) was the Sketch, (c) was the 
numerical model by DDA. Fig.9 shows the image of 
actual collapse and the result calculated by DDA. 
 

 
 

Fig.7  Rock slope that consists of 4 jointed blocks 
 

 
  

Fig.8 Simulation model for DDA analysis 
 
 

 
 

Fig.9 Simulation results of rock slope failure 
 
 

A3        
          D 
C 
B 
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3. Application to rock falling 
 
Hagiwara et al. applied a force of viscosity to the effect 
of vegetation on a falling rock. In the DDA method, a 
simulating object is considered to be a set of polygonal 
elements, and the motions of the elements are expressed 
as follows based on the principle of minimized 
potential energy. 

FKuuCuM =++   (1) 
MC η=    (2) 

where M is mass matrix; C is attenuation matrix; K is 
stiffness matrix; F is force matrix; u  is acceleration 
matrix; u  is velocity matrix; u is displacement matrix; 
and η is coefficient matrix of the viscosity at the 
element center. In Eq. (1), linear and rotational motions 
are considered, and a spring based on a penalty method 
is assumed between elements in contact. The force of 
viscosity represents the resistance force operating in 
aerial positions and is proportional to the velocity of the 
elements. Fig.10 shows the trajectory sketch of a real 
rockfall at a plan view and a cross section along the 
trajectory. The rockfall incident occurred after an 
earthquake, and the rock stopped as it crashed against a 
house. The trajectory was surveyed two days after the 
incident by tracing contact marks on the slope surface 
and trees. 
 

 
 
Fig.10 Trajectory sketch of a fallen rock based on the 
field survey 
 
Fig. 11 shows the geometries of simulating object with 
some trajectory examples from the simulation. In order 
to examine the calculation technique, the rockfall 
behavior during the incident was simulated while 
varying the viscosity coefficient in Eq. (2). In the 
simulation, the physical and geomechanical properties 
of the objects were determined from their field 
characteristics in consideration of experimental data. 
The energy ratio in bouncing, which is defined as the 
energy ratio between ejection and injection in a 
bouncing phase, was determined from the experimental 

data. The object of simulation consisted of two 
elements, with their geometries determined from the 
field data. The viscosity coefficient was varied from 0.0 
to 0.2, and the rotational position of the falling rock at 
the initial point was varied in ten ways in each case to 
investigate the sensitivity of calculation to the geometry. 
In the simulation results, the modes of rockfall motions 
consisted of rolling and bouncing in agreement with the 
field data related to the incident. Differences in the 
trajectory forms, such as the maximum height of 
bouncing, were not distinct throughout all cases, but the 
kinetic energy of the falling rock varied in proportion to 
the viscosity. Fig.12 shows the kinetic energy in each 
case at the lower edge of the slope. When the viscosity 
coefficient is low, the kinetic energy tends to be high 
and widely scattered. Although the rotational behavior 
in the rockfall incident is unknown, the kinetic energy 
of the rockfall at the bottom is estimated to be 141 to 
281kNm on the assumption that the mass is 2371kg and 
the ratio of the rotation energy to the linear-motion 
energy is 10%. When the viscosity coefficient is 0.1, 
the result of the simulation agrees well with the rockfall 
behavior estimated from the field data shown in Fig.12. 
 

 
 
Fig.11 Some trajectory examples from the simulation. 
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Fig.12. Kinetic energies at the lower edge of the slope 
from the rockfall simulations. 

Initial position of the rockfall
Geometry of the 
rockfall.

Trajectory 
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Shimauchi et al. investigated characteristics of input 
parameters through the observations of the motion of 
rockfall and to verify the input parameters by DDA in 
comparison with the observations. The motion of 
rockfall at bounce is shown in schematic diagram as Fig. 
13. In this figure, velocity energy ratio (γ), normal and 
tangential restitution coefficient (Rn, Rt, respectively) 
are defined. 
 

 
 

Fig.13.  Properties of bouncing motion 
 
 

Fig.14 Examples of rockfall simulation by DDA
(a) velocity energy ratio (b) viscosity coefficient

(a) (b)

Fig.14 Examples of rockfall simulation by DDA
(a) velocity energy ratio (b) viscosity coefficient

(a) (b)

 
 
Fig.14 shows that if numerical slope model has a 
significant change of gradient on center of slope around, 
rockfall simulation by DDA is inconsistent with the 
observations by means of the viscosity coefficient and 
velocity energy ratio obtained from the assumption of a 
constant gradient of model slope. It is thus necessary to 
apply to calculations of DDA for their coefficients 
considering impact angle. In conclusion, this provides a 
useful method to decide the design work with slope cut. 
In the near future, if it is to consider the influence of the 
rockfall in size, the velocity of incidence and the shape 

of rockfall, the rockfall simulation by DDA is carried 
out with accuracy. 
 
4. Application to dynamic loading 
 
Friction along the interface between the blocks is 
modeled according to the Mohr-Coulomb failure 
criterion. In DDA the kinematic equations are based on 
Hamilton’s principle expressed by: 

     FKuuCuM =++ &&&                          (3) 

where, M : mass matrix, C : viscosity matrix, K : 
stiffness matrix, F : external force vector, u : 
displacement, u& : velocity, and u&& : acceleration of the 
centroid of a block. The kinematic equation (3) is 
solved by Newmark’s β method and the equation for 
the increase of displacement is solved each time 
increment by the following three equations: 

FuK ~~ =Δ⋅ ,
fe KK

t
M

t
K ++

Δ
+

Δ
=

η22~
2

,

( )fFuM
t

F −Δ+
Δ

= &
2~                      (4)   

where, tΔ : time increment, uΔ : incremental 
displacement, eK : elastic matrix, fK : displacement 

constraint and contact matrix and so on, f : initial 
stress vector, FΔ : body force and point road vector, 
etc. Vibration is expressed by inputting the 
displacement time history to displacement constraint 
point as forced displacement. 
Akao et al. examine the applicability of DDA to 
vibration analysis and its characteristics by simulating 
vibration response of the laminated blocks in the 
shaking table tests. Fig.15 shows the behavior of blocks 
at 5Hz-700gal vibration, the horizontal displacement of 
blocks gradually increased with sliding and rotation 
(locking). 

(1) 0 sec (2) 8.6 sec (3) 10.1 sec

(4) 13.8 sec (6) 17.5 sec(5) 16.4 sec

 
Fig.15 Behaviors of blocks on shaking table 
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They report that the error between DDA results and 
analytical solution of displacement of the block is very 
large and frictional force doesn’t work appropriately, if 
contact spring stiffness is larger than hundredth of the 
Young’s modulus of the blocks (kn=2*105, 2*106, 
2*107kN/m2). On the contrary, if contact spring 
stiffness is lower than thousandth part of the Young’s 
modulus ( kn=2*103, 2*104kN/m2), the error is small. 
And when contact spring stiffness is equal to shear 
spring stiffness (kn/ks=1), DDA results and analytical 
solution are approximately the same value. Generally it 
is suggested that contact springs have stiffness larger 
than the Young’s Modulus of rock masses. However, 
applying DDA to vibration analysis, soft springs is 
needed to be applied so as to make contact force 
(mainly frictional force) work accurately. By using soft 
springs whose stiffness was lower than thousandth part 
of the Young’s Modulus of blocks, DDA can simulate 
well vibration response of the blocks in the experiments 
shown in Fig 16.  

（1) 4.5sec (2) 7.1sec (3) 9.5sec

(4) 16.7sec (5) 18.6sec (6) 18.8sec

 
Fig.16 Simulation results of behaviors of blocks shown 
in Fig.15 
 
Sasaki et al. introduce the potential energy of the 
penetration between blocks considering contact viscous 
damping into DDA shown in Figure 17. The governing 
equation of the potential energy sysΠ for large 
deformations of continuous and discontinuous elastic 
bodies: 
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The first term on the right side of Eq. (1) is the potential 
energy of the continuum part, and the second term is 
the potential energy of the contact between blocks. 
They try to obtain the relations between the natural 
frequencies of elastic block structures and applied 
harmonic accelerations to prepare for the shaking table 
experiments under the centrifugal force of complex 
block structures. In ordered to obtain the influence of 
collisions between the horizontal direction’s blocks, 

they studied five layered staggered model in Fig.18. An 
input acceleration is 2Hz sinusoidal wave and Fig.19 
shows the acceleration response of the base, the middle 
and the top block.  
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Fig.17  Viscose damping on contact system in DDA 
simulation 
 

 
Fig.18 Simulation model 
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Fig.19 Acceleration response of the base, the middle 
and the top block. 
 
In order to avoid a letter of stitch at the change points 
of accelerations directions, acceleration responses are 
calculated by differentiate velocities directly. Fig.20 
shows velocities and displacements response of the 
base, the middle and the top blocks. The amplification 
ratios are same tendencies of the case of accelerations 
and there are no influences of collisions by side blocks. 
The influence of the collisions of the side blocks are 
appeared of a letter of stitch. The amplification ratios 
are same tendencies of the case of accelerations and 
there are no influences of collisions by the side blocks. 
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Fig.20 Displacements response of the base, the middle 
and the top blocks. 
 
Fig.21 shows shaking table experiments of piled twenty 
layers and forty columns. Fig.22 shows acceleration of 
actuator input at base block. The acceleration was 
applied 60Hz and 30gal at first step, 80gal at second 
step, 100gal at third step, 200gal at forth step and 
300gal at fifth step. Fig.23 shows acceleration of 
actuator input at base block. In this case, the base block 
amplification of acceleration ratio is about thirteen 
times of the input acceleration. Fig. 24 shows the 
acceleration of point No.6 as seven layers from the base 
block. The rate of amplitude is decreases 1/15 of base 
block. Fig. 25 shows the acceleration response of point 
No.8. The shape of acceleration mode of the base block 
is disappeared and the most response of accelerations is 
caused by collisions between blocks as pulse shapes. 
 

 
Fig.21 Shaking table experiments model 
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Fig.22 Acceleration of input point 
 
The collisions by contacts between blocks are 
influenced multi columned model in the response of 
accelerations extremely. The unnatural stitch 
accelerations are occurred by collision between blocks 
of the multi columned models of accelerations response 
in small time intervals. This phenomenon can be 
improved to determine differentiate displacement 
results directly by controls time interval. 
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Fig.23 Acceleration response of the base block 
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Fig.24 Acceleration response of point No. 6 
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Fig.25 Acceleration response of point No. 8 

 
5. Application to excavation of underground 
excavation 
 
Miki et al. report that the MM is fitted for practical use, 
and the MM will enable geotechnical engineers to 
perform a step-by-step analysis along the construction 
processes. Fig.26 shows a concept of the excavation in 
MM simulation. The excavation areas are bounded by 
the joints, and the excavation areas are modeled as a 
block in advance. After the excavation, excavated 
blocks can move independently of mother block, and 
excavated surfaces act as free surfaces. Hence, contacts 
and separations between mother block and another 
block are enabled again. Fig.27 shows the underground 
cavern model with 4 joints and 1 material boundary. 
The model geometry was a square 300m long and wide, 
and the dimensions of the cavern, which was located at 
a center of the model, were 50m long and 40m wide. In 
the model, lateral displacements of both sides were 
constrained, and lateral and longitudinal displacements 
were constrained along the bottom line. The excavation 
area was bounded by the joint. The elastic-plastic 
constitutive law based on Drucker-Prager's yield 
criteria for an element. In the analysis, the calculation 
was processed by two stages. Fig.28 shows stress 
distribution and displacements around the cavern. The 
plastic regions appeared along the left and right walls, 
and at the crown. From the right wall to the crown, 
remarkable displacements were calculated. It was 
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considered that the plastic regions and larger 
displacements along right wall were closely related to 
the existence of the two joints. These results agree with 
the physical phenomenon in rock masses.  
 
 

 
 

Fig.26 Concept of the excavation in MM analysis 
 

They conclude that the material boundary is formulated 
as a boundary between the elements, which share 
common cover mesh and the excavation is realized by 
releasing the contacts between surrounding area and 
excavation area which area bounded by joints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.27  Underground cavern model 
 
 
 
 

6. Discussion & Conclusions 
 
Some results of studies on the DDA and MM method in 
Japan are shown in this paper. We introduce the aim 
from now on in term of the application of DDA and 
MM to actual engineering problems in this section.   

Discontinuous analytical methods can handle and 
compute the contact forces when blocks contact each 
other. In DDA and MM method, some specific 
parameters, such as “reference length”, “displacement 
allowed ratio”, “maximum time increment”, and 
“stiffness of normal contact spring” and so on are 
employed to consider the convergence speed for each 
time step and the good performance of contact 
behaviors simultaneously. It is difficult to obtain the 
unknown specific parameters in the in-situ problems. 
The problems with lots of blocks and complicated 
contacts can be very sensitive to these parameters and 

(a) Before excavation 

(b) After excavation 

Joint: J1 Joint: J2 Penalty: kn 

Block: B1 

Block: B2 

Excavated 
block 

Block: B1 

Block: B2 

Joint: J2 Joint: J1 

 J1 

 J2 

 J3 

 S1 

 J4 

 J1 – J4 : Joint 
 S1 : Material boundary 

Excavation 
area 

300m 

300m 

B A 

(a) Stress distribution and plastic regions after excavation 

(b) Displacement vectors of the nodes after excavation 
(multiplied by 200) 

Fig. 28 Stresses and displacements around the cavern 
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parameter selected badly can cause poor computation 
results. Our studies will focus on explaining the 
meaning of these parameters and discussing the setting 
of these parameters and we will make a database of 
these specific parameters in order to apply them to 
actual rock engineering problems. We discuss some 
important parameters that remains unsolved.  

  If the deformation process is slow enough, the effect 
of inertia forces can be neglected. We then have a static 
problem, which demands the solution of a simultaneous 
equation system. DDA is made to analyze quasi-static 
problems by using the so-called dynamic relaxation 
method. DDA introduces the damping effects to the 
analysis by discounting block velocities for each time 
step. Mathematically it can be shown as the following 
equation: 

             )()1( 01 n
f

n
i VkV ⋅=+          

Where, “Vi
(n+1)“ is the initial velocity at time step n+1. 

“k01” is the type of Analysis parameter, and 
“Vf

(n)“ indicates the final velocity at time step n. In the 
dynamic analysis, the initial velocities of blocks at time 
step n+1 accede from the final velocities of step n. In 
DDA, a value of 1 is entered to k01 for a full dynamic 
analysis and a value of 0 for static analysis. The value 
corresponds to different degrees of damping or energy 
dissipation. Some researchers introduced 0.8 as a k01 
value to get better results for dynamic analysis. 
We think it is necessary to get lots of examples in 
dynamic loading problems. 

Next, the contact computations are very important but 
difficult in discontinuous analysis although they can be 
represented by inequality formula in mathematics. The 
contact forces should be considered when two blocks 
get close and contact each other, but the contact forces 
should be deleted when blocks separate. To explain the 
contacts, the vertex of Block 1 and the edge of Block 2 
that make a contact pair can be simplified as point and 
edge showed in Fig.29. The circle presents the vertex of 
Block 1. The hollow circle indicates that the contact 
pair is separating to each other. Hence, no real contact 
happens to the contact pair, and this situation is called 
“Open”. However, solid circle has opposite physical 
meaning and is named “Close”. 

Line (1) is the boundary of Close to Open which 
means the real contact occurs at the beginning of time 
step n, but judged as “Open” at the end of time step n. 
Line (2) is the boundary of the Block 2. Line (3) shows 
the boundary of Open to Close, which means judging 
no contact (Open) at the beginning of time step n and 
contact (Close) at end of time step n. Line (4) is the 
boundary of the deepest contact can occur to the edge. 
If the vertex locates deeper than Line (4), the contact 
happens at another edge. When the vertex of Block 1 
gets close to the edge of Block 2 (Line 2) with “Open” 
at the beginning of time step n, the judgment can be 
“Close” if the vertex penetrates Line (3) at the end of 
time step n shown in Case 1 and Case 2 as Open-Close. 

However, if the vertex still locates above Line (3) at the 
end of time step n, the judgment can be Open-Open 
shown in Case 5-7. If it is “Close” at the beginning of 
time step n, and the vertex moves above Line (1) at the 
end of time step n, the Close-Open judgments are made 
as Case 3 and Case 4. However, if the vertex still 
locates below Line (1) at the end of time step n, the 
Close-Close judgments shown in Case 8-10 is made. To 
solve contact problems with accurate contact forces and 
fast convergence, some contact related parameters are 
necessary in the computations used in DDA that are 
Reference Length, Displacement Allowed Ratio, 
Maximum Time Increment and Stiffness of Contact 
Spring. The stiffness of the contact spring is most 
important parameter that is usually unknown when 
solving many problems because we use open-close 
criteria as the judgment of contact between two blocks. 
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 Fig. 29  Open-Close criteria 
 

The stiffness of a contact spring increases the influence 
of the contact forces in the block system. Too large 
contact forces can be generated by stiff spring. It needs 
more open-close iterations to find the proper contact 
spring arrangements in block system and makes the 
computations hard to converge. In this case, the softer 
normal contact spring has to be applied to the 
computations. On the contrary, soft contact spring can 
not generate enough contact forces to separate contact 
pairs, and the large penetration distances can happen.  
Moreover, it is necessary to consider the open-close 
criteria with the contact spring. The gaps between Line 
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(2)- Line (1), and Line (2)- Line (3) are criteria of 
opening and open-close shown in Fig.29. The gap 
between Line (1) and Line (3) relates to the 
convergence speed of contact computations. With the 
larger gap between Line (1) and Line (3), the 
computations can satisfy the criterion of no-penetration, 
no-tension easily. However, the tensile forces are 
generated when the vertex locates between Line (1) and 
Line (2). In addition, if the gap between Line (2) and 
Line (3) is large with a stiff contact spring, the contact 
forces can be too large and can cause unreal contact 
behaviors. The influence is obvious to the small blocks 
compared to the span of the analysis problem. 
To solve this problem, the stiffer normal contact spring 
should be introduced to avoid the penetration with too 
large value. About the selection of normal contact 
stiffness, the value is generally selected  up to 10 to 
1000 times of block Young’s modulus in order to 
guarantee the very small penetration distances among 
blocks compare to the deformations of blocks. Chen & 
Ohnishi proposed the following equation to estimate 
normal contact stiffness. 

Ekn α=   
where, α is the coefficient of contact distance. E is the 
Young’s Modulus of the block. When the shear force is 
smaller than the shear strength of a discontinuity, a 
shear contact spring is added to prevent relative 
displacements along the displacement. Chen & Ohnishi 
proposed the following equation to estimate shear 
spring stiffness. 

    Gks α=   
where, α is the coefficient of contact distance. G is the 
shear modulus. 

)1(2 υ+
=

EG  

 
Wu et al. proposed the normal contact stiffness is 
determined by the Young’s Modulus of the block and 
the coefficient of penetration. The upper limit of the 
normal contact spring stiffness is considered as the 
Young’s Modulus of the block. The shear spring 
stiffness is determined with the same coefficient of 
penetration used for the normal contact spring. 
We introduce the study of Wu et al. as a good example 
about specific parameters. They study the stress 
distributions of discrete blocks in a box. Fig.30 shows 
simulation geometric model. The stress of each block 
comes only from the overburden. The physical 
parameters used in the simulations are shown in Table 1. 
The proper contact spring stiffness is studied to obtain 
correct stress distributions. In this case, external forces 
come from the overburden and contacts among blocks. 
The vertical stress changes of block 32 and 83 at each 
time step are used as an index to check proper contact 
spring stiffness for the analysis. Fig. 31 presents the 
results with contact spring stiffness up to 2 times of 

block Young’s modulus. From the results, we discuss 
the choice of contact spring stiffness in DDA. 

Fixed Blocks

F ixed BlockBlock32
Block32

Discrete Blocks

 
Fig. 30   Geometric models for discrete blocks 

 
   

Table 1. Parameters for the DDA 

0.0Tensile Strength (MPa)

0.0Cohesion (MPa)

20.0Frictional Angle (°)Discontinuity

62Young’s Modulus (MPa)

0.2Poisson’s Ratio

26.4Unit Weight (kN/m3)Blocks

0.001Maximum Time Increment (sec)

0.01Displacement Allowed RatioDDA Analysis
Parameters

ValueItem

 
 
In the results, blocks’ vertical stresses vibrate between 
50 to –160 kPa (“-“ indicates compression stress). The 
vibration does not converge even after 500 time steps. 
According to the analytical solutions, the vertical 
stresses of block 32 and 83 are -5kPa, however, DDA 
simulation results can be up to -160 kPa. It is 
considered that exceeding contact forces are generated 
in the analysis to cause high block stress. The 
vibrations of blocks during computations are 
considered as the effects of gravity turn-on. The sudden 
turn-on of gravity at the beginning of the first time step 
produces displacements due to elastic deformation of 
the blocks and “seating” of the contacts. Although these 
displacements are very small, they lead to propagation 
of initial block velocities and accelerations and affect 
the generations of initial stress distributions. The static 
analysis is introduced before 100 time steps. The 
analysis returns to full dynamic one after 100 time steps. 
With this method, it is considered that the vibrations of 
stresses in the blocks can be neglected. Fig. 32 shows 
the efficiency of static analysis within 100 time steps. 
However, the stresses of blocks still vibrate after 100 
time steps although the value is smaller than Fig.31. 
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Fig.33 shows the DDA results by using the static 
analysis, k01=0. The results show that although the 
stress vibration is diminished, the precise stress 
distribution can be also obtained hardly with stiff 
contact spring. 
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Fig. 31   Simulation results with high contact  

spring stiffness 
 

To obtain the stable stress distributions of the discrete 
blocks, it is necessary to investigate the reason to cause 
stress vibrations during calculations. It is found that the 
discrete block is relative small compared to the span of 
the model. The contact computations and the model 
span are related. Fig.34 illustrates the reason to cause 
the stress vibrations shown in Fig.31. Supposing the 
locations of Block 1, Block 2, and Block 3 are shown in 
Fig. 34(a). Block 2 and Block 3 are fixed. Block 1 with 
weight “w” moves downward due to the gravity. When 
Block 1 penetrates an edge of Block 2 but locates above 
the boundary of open to close, Line 3(2). The symbol 
“(2)” means Block 2. It is still considered as “Open”. 
No contact spring is added to the computations, and 
Block 1 moves downward continuously as shown in Fig. 
34(b). When Block 1 penetrates Line 3(2) presented in 
Fig. 34(c), the normal contact springs with length “d” 
are employed to generate contact forces, fc, upward. 
When the gap between Line (2) (2) and Line (3) (2) is 
large and the contact spring is stiff, the contact forces 
between Block 1 and Block 2 can be very large. The 
contact forces are larger than the weight of discrete 
block and drive it moving upward if Block 1 is small or 
light. When the vertex moves upward to the position 
between Line (1) (2) and Line (2) (2), the tension can be 
produced to Block 1 shown in Fig. 34(d). After Bock 1 

moves above Line (1) (2), the contact is judged as 
“Open”, and the contact spring is deleted. When Block 
1 moves upward continuously and hits Block 3. The 
contact sequence mentioned above repeats that causes 
the block stresses vibrate as shown in Fig. 31 and 
Fig.32. 
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Fig. 32   Simulation results with diminishing gravity 
turn-On effects 

 
To diminish exceeding contact forces and unwanted 
stress vibrations, lower contact spring stiffness, 620 
kN/m (about 1/100 of block Young’s modulus) is 
introduced. With softer contact spring, Block 1 does not 
rebound after it contact to Block 2. Fig. 35 presents that 
block stresses converge to a constant in the analysis, 
however, some unwanted vibrations are still observed. 
To neglect the effects of unwanted vibrations and make 
it converge faster, the damping effect is introduced to 
the analysis. The damping can be achieved by the 
analysis type index, k01, as 0.99. With these new 
parameters, the stresses tend to converge to -5 
kPa(Fig.36), which is the analytical solution for these 
blocks within 200 time steps. Fig. 37 illustrates the 
stresses change accompany to depth calculated by DDA, 
and the analytical solutions. The results present that 
DDA simulation results have good agreement to 
analytical solutions by introducing appropriate contact 
spring stiffness and damping to the analysis. 
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Fig. 33   Simulation results with static analysis 
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Fig. 34   The reason to cause stress vibration 
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Fig. 35   Simulation results with lower contact  
spring stiffness 

 
 

0 100 200 300 400 500
Step

-10

-8

-6

-4

-2

0

Ve
rt

ica
l S

tr
es

s (
kP

a)

Block 32

0 100 200 300 400 500
Step

-10

-8

-6

-4

-2

0

Ve
rt

ica
l S

tr
es

s (
kP

a)

Block 83

 
Fig. 36   Simulation results with lower contact  

spring stiffness and damping 
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Fig. 37 Illustration of Earth Pressures Change 
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Validation for rock block stability kinematics and its application  
to rock slope stability evaluation using discontinuous deformation analysis 
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This paper firstly introduces the process in calculation of the contact forces between 
blocks, and presents a method about the safety factor calculation in DDA. Based on 
this, the stability validation with a rock block sliding along a double incline has been 
carried out. Two cases, one with the friction angle ( φ ), and the other with the friction 
angle ( φ ) and cohesion (C) together, are considered. At last, as an engineering 
application example, DDA method has been used to analyze the stability of a slope 
with a weak fault controlled in one hytro-project, and it has been shown that as the 
contact force calculation in DDA method is based on the rigorous equilibrium 
equations, DDA method may provides a more reasonable method for stability analysis 
in rock engineering. 
 
Keywords: DDA; Validation for rock block stability; Rock slope; Stability analysis 

 
1. Introduction 
 

DDA method incorporates dynamics, kinematics, 
and elastic deformability of the rock in the equilibrium 
equations of block system. The equilibrium equation is 
based on minimization of potential energy and uses a 
penalty method to prevent penetration of blocks. When 
the geometric contact converges are achieved in total 
block system, the normal and shear contact forces can 
be calculated according to the deformation of springs 
acting at each contact positions. The precision of the 
contact forces is perhaps the most concern issue for 
DDA researchers. If it is true, DDA method can be 
used not only to simulate failure mechanism of block 
system, but also to evaluate the stability status of rock 
mass with great precision. Several researchers have 
studied the kinematical problem about a rock block 
sliding along one or double incline with given friction 
angle. The results show quite good agreement of DDA 
and the theoretical analysis.  As in most cases, the 
parameter cohesion (C) should be considered in 
stability analysis. The validation of block stability 
considering simultaneously the friction angle ( φ ) and 
cohesion (C) is much more challenging.  

This paper firstly introduces the process in 
calculation of the contact forces between blocks, and 
presents a method about the safety factor calculation in 
DDA.  Based on this, the stability validation with a 
rock block sliding along one incline has been carried 
out. Two cases, one with the friction angle (φ), and the 
other with the friction angle (φ) and cohesion (C) 
together, are considered. At last, as an engineering 
application example, DDA method has been used to 
analyze the stability of a weak fault controlled slope in 
one project. It is shown that as the buckling 
deformation of the sliding slices may affect the 

utilization of the shear strength, the limit equilibrium 
method sometimes may provides an over estimation for 
the stability of a rock slope, and on the other hand, as 
the contact force calculation in DDA method is based 
on the rigorous equilibrium equations, DDA method 
may provide a more reasonable method for stability 
analysis in rock engineering.  
 
2. Contact forces and safety factor calculation 
 
2.1 contact and contact forces 
 

In DDA method, the total equilibrium equations 
are derived by minimizing the total potential energy 
done by forces and stresses acting on blocks. After the 
equilibrium equations are solved, the block 
displacement variables are computed. For each contact 
of the system, the conditions of no-penetration and no-
tension are checked and relevant stiff springs are added 
or removed according to the criteria of penetration at 
each contact position.  

There are three types of contacts of block system, 
named contact between a convex angle less than 180° 
and a concave angle great than 180°, contact between 
an edge and a convex angle, and contact between two 
convex angles. For each type of the contact, there are 
corresponding reference lines which can be used to 
check if penetrations or tensions occur between blocks. 
There are two rules consisting the criteria of 
penetration, no inter-penetration between two blocks, 
and no tension forces exist between two sides.  

In the case when inter-penetration occurs at a 
given position, a ‘lock’ is applied, which starts from 
the point and lies at a particular point on the reference 
line. The ‘lock’is to be carried out by adding one or 
two stiff springs with a given deformed status. Fig.1 
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shows a corresponding process of a contact between an 
edge P2P3 of block N and a convex angle P1 of block M 
according to the iteration solutions of the total 
equilibrium equations. After solution of the equations, 
the angle P1 of block M may pass through the reference 
line P2P3, as in Fig. 1(b). But in fact, the inter-
penetration will not occur. Instead, the contact forces 
Rn and Rs( normal and parallel to the reference line 
P2P3) will be induced. The mechanical contribution of 
Rn and Rs to the block system is to be replaced by 
adding relevant stiff springs with given deformation 
distance (dn and ds ) and stiffness coefficient kn and ks 
of springs.  

  Fig.2 shows detailed relative positions of 
reference line P2P3 and an angle before and after the 
deformation of block M and block N. The inter-
penetration between point P1 and line P2P3 can be 
represented by normal inter-penetration dn and the 
possible shear distance ds. We can define the 
components Rn′ and Rs ′as the named contact force at 
the contact position between angle P1 and an edge P2P3 
by following formulas,  

                                         

sss

nnn

dKR
dKR

=
=

'
'

                  (1) 

where the Kn and Ks are stiffness of normal and shear 
springs respectively. 

The distances dn and ds can be calculated 
according to the coordinates (xi,yi) and displacement 
increment (ui,vi)of point Pi, i=1,2,3.   

 
Fig.1. Contact between angle P1 and edge P2P3 
 

 
Fig.2. Relative positions before and after iterations 

As there are three possible states for each contact, 
the named contact forces Rn′and Rs′ have to be 
modified in further to match the corresponding state of 
each contact, and at last the real contact force Rn and Rs 
will be determined as shown by following step (a) to 
(d). 

(a) When the component of the contact force Rn’ 
along the normal of the edge is tensile,  

                                     
0' ≤−= nnn dKR                        (2) 

no lock or stiff spring has been applied. In this case, the 
contact is open, and no contact force exists. The 
components Rn and Rs of contact force are zero. 

(b) When the normal component Rn′ of the 
contact force is compressive and the shear component 
of Rs′ of the contact force along the reference line is 
less than shear strength represented by Coloumb’s law, 

   ClRR ns +≤ )tan('' φ                  (3) 
the contact point is fixed, and two stiff springs 
(perpendicular and parallel to the reference line) will 
be applied. In this case, the components Rn and Rs of 
contact force are the same as calculated by formula (1). 
In formula (3), the parameter φ and C are friction angle 
and cohesion along the reference line, and parameter l 
is the cohesion length.   

(c) When the normal component Rn′ of the 
contact force is compressive and the shear component 
Rs′ of the contact force along the reference line is large 
enough to cause sliding, 

          ClRR ns +≥ )tan('' φ                   (4) 
a stiff spring normal to the reference line is applied to 
allow the sliding to take place. In this case, the 
components Rn is the same as calculated by formula (1), 
but the shear components Rs will be determined by the 
friction force as defined by following, 

           )tan(φns RR =                            (5) 
(d) When criteria of penetration and no tension at 

all contacts are satisfied, the contact force Rn and Rs 
calculated above will become the real contact force at 
the contact positions. 

 
2.2 Safety factor calculation  

 
Assume a potential sliding surface in block system. 

For blocks above the siding surface, the DDA code will 
identify automatically the exact contact states for all 
contacts of blocks above the sliding surface. Assume 
that there are mi contacts which perform the above 
contact state of step (b), and mj contacts which perform 
the above contact states of step (c), then we can define 
safety factor Fs of blocks sliding along a given sliding 
surface as by following, 
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Where, φi, φj, Ci are parameters of friction angle 
and cohesion. Rni, Rnj, Rsi are normal and shear 
components of contact forces, and li is the cohesion 
length of a contact. 
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3. Validation of a single block sliding along incline 
 

In order to evaluate the accuracy for stability 
analysis with DDA method, a simple model is 
established here, which consists a single block and a 
double incline, as shown in fig.3. There are   two 
slopes in the double incline with their dip angles given 
respectively, the upper one, α1=30°, and the lower, 
α2=15°. The dimension of sliding block is 
100cm×50cm (length×height). The distance of the 
upper slope from point A to B is 8m, and the lower one 
10.6m. Different friction angles (φ1, φ2) between the 
sliding block and inclines are used to investigate the 
slope stability kinematics of the block.  In addition, 
different combinations of friction angle φ1 and 
cohesion C are also used as the input strength 
parameters to study the block sliding stability and its 
corresponding value of safety factor.      

 
 

α  =30

α  =15

φ1

φο

ο

 
Fig.3. Single block sliding model 

 
 
3.1 Stability kinematics considering friction angle 
   

 In this case, the parameter of cohesion C is 
assumed to be zero. The calculation here aims purposes 
in two aspects: (a) by changing the fiction angle φ1, the 
critical angle for the sliding block from stable state to 
unstable state is hopeful to be found, and compared to 
the theoretical results; (b) as the dip angle of upper 
incline is deeper than lower one, α1>α2, the proper 
combinations of friction angles φ1 and φ2 have been 
chosen as input parameters to investigate the 
kinematical characteristics of sliding block during its 
whole sliding process, where the friction angle  φ2 of 
lower incline is assumed to be larger than its dip angle. 
Here, φ2=25°.   

  Fig4(a) and (b) show respectively the sliding 
velocity and sliding distance of the block versus sliding 
time. When friction angle φ1 is lower than the dip angle 
α1 of the upper incline, φ1< α1, the block starts to move 
down, accelerates firstly in the upper incline, and 
decelerates in the lower incline, and then stops in some 
place of the lower inline at last.  

Firstly, it is clear to see that there are quite 
different deformation tendencies in the conditions of 
φ1=29.7° and φ1=30.1°. When the friction angle φ1 is 
30.1°, the block is quite stable, but in the condition of 
φ1=29.7°, there is a notable deformation tendency for 
block to move down. It is shown that the accuracy for 
DDA analysis is less then 0.3°.  

Secondly, when giving friction angle φ1 different 
values, such as φ1 =23°, 25°, and 28°, the kinematical 
characters in aspects of the sliding velocity and sliding 
distance versus the sliding time show regular 
kinematical tendencies. The bigger of the friction angle 
φ1 is given, the lower of the maximum velocity, and the 
longer of sliding time and the shorter of sliding 
distance from initiating to stopping. It is shown that 
DDA method can be used to simulate quantitatively the 
whole kinematical process of block sliding problems.  
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(a) Sliding velocity versus time 
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                  (b) Sliding distance versus time 

 
 

Fig.4. Results for single block sliding along  
double incline  

 
3.2 Block stability considering friction and cohesion  
 

The calculation model is shown as in Fig.4. When 
considering the fiction angle and cohesion, the safety 
factor for the block sliding along the incline AB can be 
calculated theoretically. In DDA model, the friction 
angle φ1 and cohesion C are taken as input parameters. 
By   DDA code, the contact forces acting on the sliding 
block can be calculated numerically, and then the 
safety factor Fs is determined.  
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Fig.5 shows the calculation results by theoretical 
analysis and by DDA.  For each curve in fig.6, the 
friction angle φ1 is assumed to be a constant, and the 
cohesion is variable. Here, φ1 is given as 29.7° and 
30.1° respectively,  and C is from 0.0KPa to 500KPa. It 
is shown that the results by theoretical and by DDA are 
nearly the same, and the maximum relative error 
between the theoretical analysis and DDA is no more 
than 1.2%. In the above example, the sensitive analysis 
of the modulus E, stiffness K of springs, and the time 
increment Δt has been carried out, and their effects are 
not remarkable. 
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(a) The case of φ1=29.7° 
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(b)  The case of φ1=30.1° 

Fig.5. Safety factor Fs versus the cohesion C 
 
 

4. Stability analysis to an actual rock slope 
 

4.1 The stability problem of the rock slope 
 

A rock slope, which will be formed by dam 
abutment excavation, is located in right bank of one 
hydro-electric project, the 11th power station in 
schedule by cascade development in Wujiang River. 
There is an unfavorable fault, f1, in the right dam 
abutment. Its strike is nearly parallel to the original 
rock slope. The stability of the rock slope in the right 
dam abutment is controlled absolutely by the fault. As 
the height of the rock slope is more than 100m, and the 
fault f1 lies not very far from the slope surface after the 
dam abutment excavation, great concerns have been 

taken by the designers to the stability evaluation and 
the valid reinforcement designing for the slope. 

Different methods, FLAC-3D and limit 
equilibrium analysis, etc, have been used to analyze the 
stability of the slope. When compared their results to 
that by DDA, it has been shown that DDA method can 
provide a more reasonable results in aspects of 
considering both the deformation mechanism and the 
actual contact forces acting on boundary of slices. 
Furthermore the results obtained by the static limit 
equilibrium methods, Sometimes are less conservative 
as the deformation of slices are not involved during 
stability analysis, and the anti-sliding forces acting on 
the slide surface are sometimes over considered.  
 
4.2 Results by limit equilibrium methods 

 
Fig.6 is one of the failure models used in limit 

equilibrium analysis. For the assumed sliding surface, 
the fault f1 is from point A to point B, and the segment 
from point B to point C, which forms the lower part of 
the sliding surface, is assumed to be produced among 
rock mass. 

Different state limit equilibrium methods, which 
include Sarma method, Residual Thrust Method (RTM), 
and Residual Thrust Method Improved (RTMI), etc, 
have been used to calculate the safety factor. The 
results are listed in the table below. Determined by the 
limit equilibrium methods, it is shown that the slope in 
the condition of the assumed sliding surface still has a 
proper margin for its stability. 

 
Table 1. Results by limit equilibrium methods 

Method sarma RTM RTMI 
Safety factor 1.668 1.512 1.484 

227.5m

257m

Rock mass
(f'=0.75 c'=0.5MPa)

  fault f1 
(f'=0.3, C'=0.05MPa)

320.7m

C

B

A

 
Fig.6. Slices used in limit equilibrium methods 

 
4.3 Results by DDA with no rock bolt 
 

DDA method is used to analyze the stability of the 
slope. The block system is formed by the slices used in 
limit equilibrium methods. The strength parameters 
(friction angle φ and cohesion C) in the sliding surface 
are the same as used in limit equilibrium analysis. The 
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strength parameters in the vertical separating surfaces 
and the deformation modulus of blocks are taken from 
rock mass. 
    Fig.7 is the deformed blocks by DDA. The 
corresponding safety factor Fs is less than 1.0. It is 
shown that the slope is unstable. The failure of the 
slope is aroused firstly by sliding deformation of the 
upper blocks, and then by buckling deformation of 
some blocks with the bottoms separated from the 
sliding surface by crashing deformation. As the 
buckling deformation of the upper part of the slope, the 
shear strength between the blocks and the sliding 
surface is not utilized efficiently; sliding force acting to 
the toe of the slope is increased, and results in unstable 
deformation of the total slope. 

 
Fig. 7. Deformed blocks by DDA  

 
4.4 Results by DDA with rock bolt 
 

In order to validate the conclusions about the 
effects of the utilization of shear strength to the 
stability of the slope, rock bolts, which have been taken 
as the main measures to strengthen the contact of the 
block and the sliding surface, are used in DDA 
calculation. For each block lying on the surface of fault 
f1 (sliding surface from point A to point B), six rock 
bolts with diameter of φ30mm are installed.   

Fig. 8 shows the deformed blocks while the rock 
bolts reinforcement are considered. In this case the 
corresponding safety factor Fs is 1.57.  It is shown that 
the slope is quite stable. When compared to results by 
limit equilibrium methods, the calculated safety factor 
Fs is reasonable. In other words, it is shown that DDA 
method may give the contact forces between 
boundaries of blocks in creditable precision, and in turn 
provides a more reasonable way for stability analysis in 
rock engineering. 

 
 

 
Fig.8. Deformed blocks with rock bolt 

 
5. Conclusions  
 

DDA method incorporates dynamics, kinematics, 
and elastic deformability of the rock in the equilibrium 
equations of block system. In past decades, it has been 
proven that DDA method is a very useful tool 
especially in dealing with large and discontinuous 
deformation mechanism of blocks. Sometimes, it can 
be used to analyze the kinematical simulation problems, 
such as the falling stone problem, etc. For the 
calculation of the contact forces between blocks and its 
further applications for stability analysis with DDA 
method, very less publishes have been found.  

By analyzing a single block sliding along an incline, 
in conditions of considering friction angle only and 
considering the friction angle and cohesion together, it 
has been shown that the accuracy for stability analysis 
with DDA method is quite acceptable. In the case of 
single block sliding analysis, the sensibility for friction 
angle of the sliding surface is no more than 0.3°, and 
the maximum relative error between the theoretical 
analysis and DDA is no more than 1.2% . 

As the buckling deformation of the sliding slices 
may affect the utilization of the shear strength, the limit 
equilibrium method sometimes may provides an over 
estimation for the stability of high rock slopes. In 
otherwise, as the contact force calculation in DDA 
method is based on the rigorous equilibrium equations, 
DDA method may provides a more reasonable method 
for stability analysis in rock engineering. 
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The presence of joints may significantly affect the mechanical behavior of rock masses by reducing 
their capacity to bear shear and tensile loading. Considerable efforts have been contributed to the 
development of accurate rock joint models. In this paper, a numerical investigation of the 
mechanical behavior of initially mated artificial joints with saw-tooth shaped asperities is 
undertaken. Shear response of homogeneous joints is firstly studied. The influences of joint 
roughness and normal stresses are investigated. Numerical results are compared with theoretical 
solutions. Good agreements have been observed. Then, material and geometrical heterogeneities for 
rock joint are incorporated into the manifold method. Numerical results indicate that material 
heterogeneity will reduce the shear strength. However, its effect is very limited, which is within 8%. 
In contrast, the shear strength can be increased significantly when the geometrical heterogeneity is 
introduced. The shear mechanism of rock joint with geometrical heterogeneity is dominated by the 
largest asperity. Based on this observation, a simple model is proposed to predict its shear strength. 
The results from the proposed model match well with the numerical results. 

Keywords: Shear strength; Homogeneous joint; Material heterogeneity; Geometrical heterogeneity; 
Manifold method 

 
1. Introduction 
 
The presence of joints may significantly affect the 
mechanical behavior of rock masses by reducing their 
capacity to bear shear sand tensile loading. 
Considerable efforts have been contributed to the 
development of accurate rock joint models. A lot of 
shear strength criteria have been proposed. The 
Coulomb slip criterion is often used to judge the shear 
failure of a smooth, clean and dry joint: 

tanncτ σ φ= +                              (1) 
where φ is the friction angle, c is the joint cohesion, σn 
is the normal stress. 
      For rough joints, the shear strength increases 
with normal stresses linearly as described by the 
dilatant model (Patton, 1966; Withers, 1964): 

tan( )nτ σ φ α= +                            (2)  
The JRC-JMC model (Barton 1971; Bandis et al 

1983; Barton and Bandis 1990) is the most commonly 
used joint shear criterion, which has the form of  

10tan log ( / )n mob nJRC JCSτ σ σ φ= ⋅ +⎡ ⎤⎣ ⎦          (3) 
in which, JRCmob is the joint roughness coefficient 
which may be mobilized during shearing, JCS is the 
laboratory scale joint wall compressive strength. 

More recently, Zhao (1997a; 1997b) proposed the 
JRC-JMC shear strength criterion by combining the 
joint matching coefficient (JMC) into the JRC-JCS 
model as 

10tan log ( / )n nJRC JMC JCSτ σ σ φ= ⋅ ⋅ ⋅ +⎡ ⎤⎣ ⎦       (4) 

The manifold method (MM) is initially developed 
by Shi in 1991 (Shi, 1991; 1997). The method is 
derived from the finite cover approximation theory and 
gains her name after the mathematical notion of 
manifold. The MM was developed based on 
discontinuous deformation analysis (DDA). It preserves 
all the discrete element modeling characteristics such as 
kinematics constraints, contact detection and modeling 
from DDA. However, it employs a number of covers in 
each block to raise its degrees of freedom (DOFs) to 
improve the accuracy of stress and displacement field. 
The MM demonstrates a good consistency with both 
the conventional finite element method (FEM) and the 
DDA and applicable to both continuous and 
discontinuous problems.  

In the present paper, a numerical investigation of 
the mechanical behavior of initially mated artificial 
joints with tooth shaped asperities is undertaken using 
the MM. The shear response of homogeneous joints is 
firstly studied. The numerical results are compared with 
the theoretical solutions. Then, the material 
heterogeneity effect and geometrical heterogeneity 
effect are implemented into the MM models. Their 
influences on the shear strength of rock joint are 
investigated.  
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2. Shear response of homogeneous joint 
 

0v  

 
Fig. 1 Schematic view of the direct shear test model 

 
Fig. 1 is the schematic view of the direct shear test 
model. The joint surface (marked by the dash line box) 
which consists of 20 asperities divide the model into 
two halves, namely upper half (60cm×10cm) and lower 
half (75cm×20cm). The lower half is fixed. A velocity 
boundary is applied to the left edge of the upper half to 
provide the shearing displacement. Compressive 
loading is applied to the top of the specimen to simulate 
the initial earth stresses. The rock material is assumed 
elastic without damage with the parameters: density = 
2650 kg/m3; Young’s Modulus = 80 GPa; Poisson’s 
Ratio = 0.3. The joint obeys Coulomb slip criterion 
with three parameters: friction angle = 30°; tensile 
strength = 0 MPa; cohesion = 0 MPa. 

 
(a) 

 
(b) 

Fig. 2 Illustration of the analytical model for direct 
shear test: (a) forward shearing; (b) backward shearing 
      The theoretical solutions of this problem can be 
derived using the simplified model shown in Fig. 2. The 
joint surface is inclined at an angle of α to the direction 
of shear force S. 

The shear strength for forward shearing is 

tan( )Fτ σ φ α= ⋅ +                            (5) 
The shear strength for backward shearing is 

tan( )Bτ σ φ α= ⋅ −                            (6)  
The offset, which is defined as the difference 

between the above two shear strengths can be expressed 
as 

( )tan( ) tan( )F B Nτ τ τ φ α φ αΔ = − = ⋅ + − −        (7)  
Joint roughness is a measure of the inherent joint 

surface waviness and unevenness relative to the mean 
plane. It is a very important component of shear 
strength, especially for undislocated and interlocked 
joints. The joint roughness is represented by asperity 
inclination angle in this study. Six cases with various 
asperity angles of 0°, 5°, 10°, 15°, 20°, and 25° (shown 
in Fig. 3) are simulated. The shear strengths from 
numerical modeling are compared with theoretical 
solutions. Good agreement has been observed.  

 
(a) 

 
(b) 

 
(c) 

 
(d)  

 
(e) 

 
(f) 

Fig. 3 Illustration of joints with different roughness: (a) 
0°; (b) 5°; (c) 10°; (d) 15°; (e) 20°; (f) 25° 

 
Fig. 4 Comparison of numerical results and theoretical 
solutions in shear strength for the joint with different 

roughness 

Shear response of rock joint under cyclic loading is 
also studied. The offset value is compared with the 
theoretical solution in Fig. 5.  

Seven cases with various normal stresses of 0.5 
MPa, 1.0 MPa, 2.0 MPa, 3.0 MPa, 4.0 MPa, 5.0 MPa, 
6.0 MPa are studied here to investigate the influences 
of normal stress on the joint shear strength. The 
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numerical result again matches well with the theoretical 
solutions. The shear strength increases linearly with the 
normal stresses.  

 

 
Fig. 5 Comparison of offset value from numerical 

modeling with the theoretical solution for joints with 
different roughness 

 

 
Fig. 6 Comparison of shear strength from numerical 
modeling with the theoretical solution for the cases 

with different normal stresses 
 
3. Shear response of rock joint with material 
heterogeneity 
 
The joint model with 20 geometrically identical 
asperities is shown in Fig. 7. The joint is described by 
Coulomb slip law with three parameters, namely 
friction angle, cohesion and tensile strength. In the 
present study, cohesion and tensile strength are ignored. 
In order to model the material heterogeneity effect, 
each asperity is assigned with different friction angles 
conforming to a Weibull distribution. 
 

 
Fig. 7 Illustration of joint model with material 

heterogeneity 
 

The two-parameter Weibull distribution (Weibull, 
1951) can be expressed as 

1

( ) exp
m m

m T Tf T
μ μ μ

− ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
               (8) 

where T is the rock joint parameter, μ is the mean value 
of T, m is the shape parameter describing the scattering 
of T.  

Here, the friction angles are configured to follow a 

Weibull distribution. The probability density of the 
Weibull distribution is shown in Fig. 8. The shape 
parameter m is a measure of the parameter scattering 
and defined as a heterogeneity index. A larger m 
indicates that the material is more homogeneous. When 
m tends to infinity, the variance tends to zero and an 
ideal homogeneous rock joint is obtained. Because the 
Weibull distribution is non-monotone, the cumulative 
distribution function (shown in Fig. 9) is derived as 

0
( ) ( ) 1 exp

mT TQ T f T dT
μ

⎛ ⎞⎛ ⎞⎜ ⎟= = − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫           (9) 
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Fig. 8 Probability density of Weibull distribution 
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Fig. 9 Cumulative distribution of Weibull distribution 

 
The disorder of the probability distribution for joint 

friction angles can be achieved by the Monte Carlo 
method. One simple way is to generate a series of 
random data which have a uniform distribution between 
0 and 1. Then, a series of desired parameters, which 
conform to Weibull distribution, can be obtained as 

( )1/ln( (0,1)) mT Uμ=                         (10) 
where U(0,1) represents the random data between 0 and 
1 generated by the Monte Carlo method.  

The numerical models with various heterogeneity 
index m of 5, 6, 8, 10, and 15 for four cases with 
various joint inclination angle of 5o, 10o, 15o, 20o are 
simulated. The calculated non-dimensional shear 
strength, which is defined as the shear strength divided 
by that of homogeneous joint, is plotted in Fig. 10. The 
numerical results indicate that shear strength is 
decreased when material heterogeneity is considered. 
However, its effect is limited within 8%. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10 Non-dimensional shear strength vs 
heterogeneity index for four cases with  

various α of 5o, 10o, 15o, 20o 
 
4. Shear response of rock joint with geometrical 
heterogeneity 
 

 
Fig. 11 Illustration of joint surface with geometrical 

heterogeneity 
In order to model geometrical heterogeneity of rock 
joint (shown in Fig. 11), the asperities are configured 
with different inclination angles following Weibull 
distribution. 

The following cases are simulated: 
1) Five specimens with various heterogeneity indices 

of 1.1, 2, 3, 5, 10, the mean inclination angle is 5o;  
2) Five specimens with various heterogeneity indices 

of 1.1, 2, 3, 5, 10, the mean inclination angle is 

10o; 
3) Five specimens with various heterogeneity indices 

of 1.1, 2, 3, 5, 10, the mean inclination angle is 
15o; 

4) Seven specimens with various heterogeneity 
indices of 1.3, 1.4, 1.5, 2, 3, 5, 10, the mean 
inclination angle is 20o. 

In order to save pages, only the configurations of 
rock joints in case 4 is plotted in Fig. 12 as an 
illustration. 

 

1.3m =  
(a) 

1.4m =  
(b) 

1.5m =  
(c) 

2m =

 
(d) 

3m =

 
(e) 

5m =

 
(f) 

10m =

 
(g) 

Fig. 12 Configuration of joint surface with various 
heterogeneity index, mean α = 20o 

 
The non-dimensional shear strength, which is the 

shear strength normalized by that of the homogeneous 
joint with the same joint inclination angle, for the four 
cases are shown in Fig. 13. It can be found that the 
shear strength can be significantly increased when the 
geometrical heterogeneity effect is introduced. With the 
increase of the heterogeneity index, the 
non-dimensional shear strength decreases sharply and 
then becomes a relative flat plateau when m is lager 
than 2.  

For homogeneous joint and joint with material 
heterogeneity, the upper half slides along the surfaces 
of each asperity of the lower half during the shearing 
process. However, the shear mechanism becomes much 
different for the geometrically heterogeneous joint 
model. After a small shearing displacement, the upper 
half of the model slides along the surfaces of a few 
main asperities while most of the asperities will be 
open. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13 Non-dimensional shear strengths of joint with 
various heterogeneity indices: (a) mean α=5°; (b) mean 

α=10°; (c) mean α=15°; (d) mean α=20° 
 
The shear response of the rock joint with 

geometrical heterogeneity is dominated by the largest 
asperity on the joint surface as shown in Fig. 14. Based 
on the numerical simulation results, the following  
shear strength model can be proposed for the rock joint 
with geometrical heterogeneity: 

( )( )1 2 3tan max , , , , nτ σ φ α α α α= ⋅ + K    (11) 
where n is the number of asperities in one joint surface, 

( )1 2 3max , , , , nα α α αK is the inclination angle 
of the largest asperity. 
 

 
(a) Step 0 

 
(b) Step 200 

 
(c) Step 400 

 
(d) Step 500 

Fig. 14 Shearing process of rock joint, α=15°, m=1.1 
 

The shear strengths from the proposed model are 
compared with the numerical results in Table 1. Good 
agreements have been found.  
 

Table 1 Comparison of numerical results with the 
results from the proposed criterion for the rock joint 

with geometrical heterogeneity 
 

 
 
6. Conclusions 
 
In this paper, a numerical investigation of the 
mechanical behavior of initially mated artificial joints 
with saw-tooth shaped asperities is undertaken. Shear 
response of homogeneous joints is firstly simulated. 
The influences of joint roughness and normal stresses 
are investigated. Numerical results are compared with 
theoretical solutions. Good agreements have been 
observed. Then, material and geometrical 
heterogeneities are incorporated into the MM models. 
Numerical results indicate that material heterogeneity 
will reduce the shear strength. However, its effect is 
limited within 8%. In contrast, the shear strength can be 
increased significantly when the geometrical 
heterogeneity is introduced. The shear mechanism of 
rock joint with geometrical heterogeneity is dominated 
by the largest asperity. Based on this observation, a 
joint shear strength model is proposed for the joint with 
geometrical heterogeneity. The shear strengths from the 
proposed model match well with the numerical results. 
      The numerical simulation using the MM shows 
clearly the shear mechanism of heterogeneous rock 
joints. The results agree well with the analytical 
solutions which are derived on the forward and 
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backward shearing model.  
      It should be highlighted that the MM has great 
advantage in simulating heterogeneous rock joints. The 
mathematical cover for different joint roughness is the 
same, while the physical cover by considering the 
material and geometrical heterogeneity can be obtained 
by slightly modifying the homogeneous ones.   
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A two-dimensional DDA method has been employed to analyze the discontinuous 
deformation of upper rock strata during coalmine excavation. A discontinuous block 
system containing statistically distributed joints and faults has been set up to model 
the real rock strata based the geological data acquired at the site of excavation. The 
evolution of stresses in upper rock layers, the movement of immediate roof arched by 
key blocks, the layer-abscise initiation and the subsidence of rock strata during 
excavation were simulated. The comparison of numerical analysis and laboratory test 
shows that the numerical DDA method can effectively model the excavation process 
and deformation of upper rock strata of a coalmine. 

KEYWORDS: discontinuous deformation analysis (DDA); stresses; displacement; 
deformation; rock strata; mine excavation; great depth. 

 
 

1. Introduction 
 
A large amount of coal resources have been excavated 
and utilized to complement the energy supply in China. 
A negative aspect of booming coal exploitation in 
China is that the society has suffered severe environ-
mental problems caused by over-excavation, such as 
environmental pollution, large subsidence and move-
ment of covering surface, the ruin of infields and earth-
quakes, etc. Moreover, as the result of incessant exca-
vation, the coal reserved at shallow has gradually been 
exhausted. A fair proportion of coalmines were forced 
into deep excavation where high earth stresses and high 
permeable hydraulic pressures occur. This makes the 
excavation very difficult to handle as compared to the 
treatment under the shallow conditions. 

To maintain the sustainable utilization of coal 
resources in China and protect the environment, people 
have paid close attention to the technologies for pre-
dicting and controlling deformation and subsidence in 
rock strata surrounding the tunnels. It has become a 
critical problem in the theoretical study of rock-strata 
controlling and mining engineering applications. To 
our knowledge, a great number of pioneering studies 
have been carried out regarding to the deformation 
prediction, numerical simulation for rock strata move-
ment and controlling techniques with the shallow exca-
vation condition [1-12]. However, what we concluded 
from the shallow conditions may not fit to predict the 
deformation or displacement of rock strata at depth if 
accounting the effects of great gravity stress, high 
geological stress and confining pressure. Thus, to 
ensure a safe and environmental-friendly mining, it is 
of great import for us to well understand the properties 
of deformation and movement of rock strata during 
deep excavation processes. 

Our purpose in this paper is that we attempt to 
figure out how the stress and the deformation of upper 
rock strata behave as a deep excavation proceed, using 
numerical discontinuous deformation analysis method. 
The in-situ deep geological condition has been taken 
into account. 

To our knowledge, a few theoretical or analytical 
models have been proposed to quantify the deformation 
and displacement of rock strata during mining [1-2, 7, 
9-12]. However, due to the complicated discontinuity 
and boundary conditions, it is intractable to have an 
exactly analytical solution of stress and deformation 
distribution. From this point, numerical simulation has 
its advantage in solving such problems. Thus, finite 
difference method (FDM), finite element method 
(FEM), boundary element method (BEM), known as 
continuum-based approaches, and discrete element 
method (DEM), known as discontinuum-based method, 
have been adopted to compute the movement of rock 
strata and subsidence of ground surface [1-6, 8]. 
Despite the success that continuum-based approaches 
achieved a weak point arose from that the motion (e.g. 
translation and rotation) of an individual rock block 
along the interfaces with different scales (e.g. faults, 
joints and microcracks) cannot be taken into account, 
since the displacement compatibility between elements 
must be satisfied. Only the deformation (i.e. strains) of 
the continuous system can be analyzed. On the other 
hand, for discontinuum-based approaches (e.g. DEM), 
the deformation of rigid body is generally not included 
since it does not produce strains inside the individual 
rock element. Only the rigid motion of rock elements 
can be computed in this method. Therefore, it is pretty 
hard for either continuum-based approaches or discon-
tinuum-based approach to properly evaluate surface 
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displacement caused by the rock-stratum deformation 
and/or displacement arising in mine excavations. 

Fortunately, based on the consideration of FEM, 
Dr. Shi (1988) developed a so-called Discontinuous 
Deformation Analysis (DDA) method that can be used 
to compute not only the deformation of individual 
elements but also large displacement between elements, 
including sliding, fracturing, and rotation of the 
discontinuous rock system [13-15]. In DDA, elements 
are blocks naturally separated by interfaces existing in 
rock masses. The equilibrium equations of individual 
elements are formulated to minimize the total potential 
energy of system. The static and dynamic equilibrium 
conditions are automatically satisfied. The solutions to 
the strain, displacement, and stress can be obtained by 
solving simultaneous equilibrium equations of the 
whole blocky system. The elements or blocks used by 
DDA can be any convex or concave shape, whereas the 
FEM uses only elements with polygons. Furthermore, 
displacement, strain, and stress of every individual 
element can be calculated by incorporating the initial 
condition and geometric boundary condition of the 
model. Accordingly, the translation, rotation, and open-
close processes of the rock blocks can be simulated. 
The movement and displacement between the rocks 
can be determined and therefore the failure criteria of 
the whole system can be built. DDA method has been 
successfully applied to civil and mining engineering 
problems, including landslide, slope stability, stability 
of dam foundations, tunnel excavation, blasting and 
earthquake response [16-29]. The researches clearly 
demonstrate that DDA method can capture stress and 
large displacement behaviors of discontinuous rock 
masses when excavation is undertaken.  

In this paper we employed DDA to simulate the 
surface movement and displacement of thick rock 
strata above the excavation tunnel of a deep coalmine 
in southern China. The influence of relative motion 
along the existing geological faults and joints, as well 
as the deformation of individual rock blocks on the 
displacement of ground surface has been analyzed. The 
stress field and its evolution in upper rock strata during 
excavation have been computed using DDA. 

2. Computational model 

The outline of geological condition: The coalmines we 
intend to analyze distribute along both sides of the 
Huai River in China and there are 13 to 18 coal seams 
available for mining. The seams are in a monocline 
structure and most are gently inclined, a few of them 
are steep seams. The total thickness of the coalmine is 
about 30 m and the total confirmed reserve of the 
coalmine comes to approximately 1,470 billion tons 
between depths of 1000 m and 1200 m. Currently, most 
of the coalmines in this region have already entered the 
stage of deep exploration and a large proportion of 
mines has been excavated at the level of 700 m under- 

ground. With the increasing of the excavation depth, 
the earth temperature rose rapidly and the movements 
of rock strata became more and more apparent; thus it 
is exceedingly difficult for workers to support the 
fractured rock masses and mine safely. Taking stope 
2171(1), the working face of coal seam 11-2 of one 
coal mine in this region, as an example, the working 
face, which is 1780 m along the line of strike and 206 
m in the width of inclination, has nine normal slip 
faults and is ready for extraction. The thickness of the 
relatively horizontal coal seam is 1.8 m. The roof of the 
excavation is comprised of mudstone and sand-mud 
rock. The ground elevation is between +19 m and +20 
m and the elevation of working face is between –729 m 
and –690 m. The coal was extracted by means of an 
automatic mechanical system. 

DDA model for excavation: Part of the 2171(1) 
working face has been modeled as a representative case 
using two-dimensional DDA method. Based on the 
geological conditions, the practical mining process has 
been simplified as a two-dimensional plane strain case. 
The model, 420 m in length and 200 m in height, was 
fixed along the bottom and lateral boundaries. The 
distance between the top surface of the model and the 
ground surface is 500 m. The averaged bulk density of 
the upper layer rock strata is 33 / 102.6 mkg×=ρ . In 
order to reflect the overburden of the rocks above the 
model surface up to the actual ground surface, a 
uniform load is applied to the top boundary of the 
computation model; that is:  

Hg ⋅⋅= ρσ                              (1) 
where H refers to the depth of rock between the top 
boundary of the model and the ground surface. The 
mechanical parameters of the rock mass adopted in 
DDA model are listed in the Table 1. Three normal slip 
faults in the 2171(1) excavation zone, shown in Fig. 1, 
are included in the DDA computation to analyze the 
influence of the faults on the large displacement and 
the failure mode of the upper rock strata. Properties of 
fault and orientations can be found in Table 2. 

Table 1 Mechanical parameters of rock masses 

Material

Elastic 

Modulus 

(104 MPa)

Poisson 

Ratio 

Density 

(103 kg·m-3) 

Cohesive 

Strength

(MPa) 

Internal 

Friction 

angle 

(°) 

Rock 1.5 0.25 2.6 15 35 
Coal 

(seams) 0.29 0.3 1.4 1.7 42 

 
 Table 2 Geologic properties of working face 2171(1) 

Properties of 
Faults 

Dip Direction 
(degree °) 

Slope 
Angle  

(degree °) 
Property

Drop 
(meter)

Fe 1 142 45 positive 5.0~6.0
Fe 2 124 57 positive 2.0 
Fe 3 139 43 positive 1.7 
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推进方向

(实际开采煤层宽度)

43°°

 
Fig. 1 Two-dimensional DDA model along the tunnel 

direction 

3. Computation results and analyses 

Fig.2 and 3 illustrate the stress distribution, defor-
mation, and movement of the upper layer rock strata 
during mining, respectively. The sequence of coal 
mining in the numerical simulation is based on the 
physical extraction sequence of the working face. The 
real excavation ran 4 meters every day, hence 65 days 
were needed to complete 260 m long excavation. In the 
DDA calculation, 2500 time steps were set up to model 
60 m physical extraction. The DDA computation 
results indicate some interesting phenomena as follows. 

(1) Before excavating the working area 2171(1), 
the stresses of the whole mining field mainly behave in 
the horizontal and vertical direction, due to the uniform 
gravity effect of the rock strata, indicated by the arrows 
in Fig.2. In the vicinity of the faults, however, the 
directions of the principal stresses are altered and 
relatively large stress concentration fields have formed 
in this area, as shown in the Fig. 2a. 

(2) When mining to the station of 52-meters, the 
immediate roof created above the space where the coal 
has been removed is arched by four key blocks, as 
shown in Fig. 2b. The function of the immediate roof is 
similar to a freely supported beam through which the 
load of upper layer rock was passed to the front and 
back walls of the coal mine, and simultaneously, the 
degree of stress concentration is rather high in the walls. 
At this time, the local stress field of the upper rock 
layer resulted from excavation shaped as a half-ellipse 
with small radius. 

(3) When approaching station 104, the upper layer 
rock strata began to fall down. The half elliptical local 
stress field of the upper rock strata, above the 
extraction space, grew smoothly in the horizontal and 
vertical directions. The separation and abscises 
initiated in the rock layers just above the immediate 
roof, as shown in Fig. 2c. The effect of stress softening 
can be found in the front and back walls of the 
coalmine in the working surface at this stage. 

(4) When processed to the point of 156-meters, 
the excavation has passed through the faults. The coal 

walls at the neighborhood of the faults retain compara-
tively low strength and therefore relatively large defor-
mation took place. The rock was not strong enough to 
sustain the freely supported beam; hence the upper 
layer rock strata began to fall down seriously. In the 
meantime, the local stress field of the upper rock strata, 
exiting in the shape of a half-ellipse, was growing step 
by step, and the rock stratum separation became serious, 
as shown in Fig. 2d and 3d. The stress concentration, 
however, is still rather obvious in the wedge created 
below the intersection of faults Fe 2 and Fe 3. 

(5) When reaching the point of 208-meters, the 
rock strata near the faults broke down in significant 
areas. Consequently, the high stress concentration in 
the intersection area of the faults has been lifted. The 
enlargement of the local stress field, in the shape of a 
half-ellipse, has reached its maximum size in the 
vertical direction. The phenomenon of abscises, shown 
in Figures 3e and 4e, have taken place in various rock 
strata above the excavation roof. 

(6) When approaching the end position of 260-
meters, the roof of excavation region has completely 
subsided. The stress distribution in the area beyond the 
half-ellipse local field tends to be uniform. The stress 
concentration still exists in the front of the working 
face and near the faults. With the advancement of the 
extraction region, the half-ellipse stress field of the 
upper layer rock in the horizontal direction continued 
to extend, but the stress field at the vertical direction 
remain unchanged, as illustrated in Fig. 2f and 3f. 

 
a) Principal stresses and stress concentration before 

excavation 

 
b) The immediate roof arched by key blocks, a half 

elliptical local stress field initiation and stress 
concentration when mining to the point of 52-meters 

(operating 500 steps in DDA) 

Fe 1 

Fe 2 

Fe 3 

Excavation width 
Excavation direction 
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c) The growing half elliptical local stress field near the 
fault, global stress distribution and abscises initiating in 
the rock layers when mining to 104-meters (operating 

1000 steps in DDA) 

 
d) The half elliptical local stress field over the faults, rock 
strata abscising and falling down when excavating to the 

point of 156-meters (operating 1500 steps in DDA) 

 
e) The half elliptical local stress field with the 

maximum size in vertical direction, the descending 
stress concentration near the faults and apparent layer 

abscises when mining to the point of 208-meters 
(operating 2000 steps in DDA) 

 
f) The growing local half elliptical stress domain in 
horizontal direction, completely-subsided roof, low 
stress concentration near the fault and uniformly-
distributed global stresses when mining to the end 

(operating 2500 steps in DDA) 
Fig. 2 The stress distribution in upper rock strata 

during excavation 

 
a) Statistically-generated joints, displacement and 

deformation of blocks before excavation 

 
b) The immediate roof arched by key blocks, 

displacement, and deformation of upper rock strata 
when mining to 52 meters (operating 500 steps in DDA) 

 
c) The layer separation and abscise initiation, 

displacement and deformation of blocks when mining 
to 104 meters (operating 1000 steps in DDA) 

 
d) The upper rock strata abscising and falling down when 
excavating to 156 meters (operating 1500 steps in DDA) 

 
e) The abscise developing in various rock strata above 

the excavation roof when mining to 208 meters 
(operating 2000 steps in DDA) 
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f) The completely-subsided roof, displacement, and 
deformation of upper rock strata when excavating to 

260 meters (operating 2500 steps in DDA) 
Fig. 3 The deformation and displacement of upper rock 

strata during excavation 
 
5. Experimental validation 
 

In order to exam the efficiency of simulation, a 
modeling experiment of excavation has been carried 
out. Fig. 4 illustrates the experimental setup. Based on 
the real size of the excavation area, the total height of 
tested rock strata was set up to 164.02 m in the model, 
including 1.8 m coal seam, 8 m rock layer and 156.02 
m upper rock strata in height. There are 48 levels from 
the bottom through the coal seam to the upper board. 
The model scale is 1:100; and therefore the width, 
height, and thickness of the model is 4.2 m, 1.64 m and 
0.25 m, respectively. The gravity of rock layers 
exerting on the model is generated by a few screw 
jacks distributed along the top surface of the model. 
The material used for model is prepared according to 
the density and stress similitude principles. The 
aggregate adopts river sand with grain size less than 
1.5 mm; the cementitious matter is gypsum and lime, 
and the delaminating material used for simulating strata 
structure is mica powder. The time ratio of modeling 
excavation is 1:12; the modeling height of excavation 
is 1.8 cm, the extraction speed is 3.6 cm every two 
hours, and the total length of the modeling excavation 
is 260 cm. Many labels were pasted on the surface of 
each stratum to facilitate the observation of 
deformation of the rock mass. The strain of the rock 
mass was measured by means of a strain gauge and 
displacement of the upper layer rock was recorded by 
an electronic transit instrument. For more details about 
model preparation, refer to reference [30]. 

Fig. 5 shows the deformation and failure pattern 
of the upper layer rock strata during the excavation. It 
implies that these experimental results are in consistent 
with the numerical simulation shown in Figs. 2d~2f 
and Figs. 3d~3f. 

 
Fig. 4 Photographs of experimental setup 

 
Fig. 5 Experimental observation of deformation and 

failure of rock strata 
 

6. Conclusions 
 
Based on the DDA method, a discontinuous block 
system with statistically- generated joints and cracks 
was applied to analyzing the stress distribution and 
displacement of upper rock strata during the excavation 
of a coalmine at 700 meters underneath. The numerical 
results and experimental validation indicate that the 
changes of the stress field in rock strata induced by 
coal extraction, and the displacement, abscises, and 
subsidence of rock strata, while taking the individual 
block translation, rotation, and deformation into 
account, can be efficiently computed by means of DDA 
method. 

It is shown that the half-elliptical stress field of 
the upper layer rock has initiated during exploration. 
With the excavation expansion, the local stress field 
extended in both horizontal and vertical directions. 
However, when excavating over certain distances, the 
extension of the stress field stopped in the vertical 
direction, but successively grew in the horizontal 
direction. The area where the principle stresses altered 
can be used to scale the range of abscises or separation 
of the rock layer during the extraction. The simulation 
and experiments also show that the immediate roof, at 
the beginning of excavation, acted like a ‘keystone’ in 
the discontinuous block system. The effect of 
interlocking prevented the collapse of fractured blocks. 
Throughout the extraction, the rupture consecutively 
happened in different upper rock layers; and, 
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accordingly, the keystone area, i.e. the interlocked 
upper layer that supported the loads, moved upwards 
along with the change of the half-elliptic stress field. 
We feel obligated to note that the work done in this 
paper is just a first attempt to compute the stress and 
deformation of upper rock strata during the excavation 
of a coalmine at depth by DDA method. The semi-
quantitative analyses for the stress domains, abscises, 
and span of failed area of upper rock layer have been 
carried out. Much work related to engineering 
applications, such as predication of parameters of 
excavation sequence and the periodic geologically 
external pressure, needs to be done by DDA. 
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This paper puts forward for the first time the characterization of block with any degree of 
complexity and the description of the system of forces in block system. 
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1. Introduction 
 
There are many methods used in engineering for the 
stability analysis of rock slope and tunnels underground, 
and each has its advantages and shortcomings. At 
present, a common agreement has been reached 
between the field of engineering and field of theory, i.e., 
the stability of rock engineering mainly depends on the 
system of structure planes, which means that the 
stability depends on the physical properties and the 
interdependence between the structure planes. The 
block system cut by various structure planes has static 
balance and are stable in natural stress field. However, 
if the constraint conditions are changed due to external 
disturbance, the shear force and normal force on the 
structure plane will change greatly because of the 
redistribution of internal forces in the block system and 
sometimes the changes of forces are out of the bearing 
capacity of structure planes. Thus, if the block on such 
structure planes is on the boundary and meets the 
conditions of slumping, it will fail. 
 
After the failure of this block, the boundary conditions 
of the block system change which will incur 
redistribution of system of forces of block system and 
may induce another failure. Hence, a series of chain 
reaction may be triggered which will cause instability 
of blocks in large scope. Therefore, if the first patch of 
instable blocks is stabilized, the whole system will be 
stable, which will need the least efforts in engineering. 
What is more, large scale failure or even irreparable 
damage can be avoided. What mentioned above is just 
the “Key Block” theory put forward by Shi & Goodman 
(1989). 
 
Block system bears many loads such as ground stress, 
seepage force of underground water, structural load and 
gravity. Since the shape of block is complex, it is very 
hard to calculate the least supporting force and its 
direction to stabilize key blocks. Therefore, the 
traditional analytical stereographic projection method 
will meet many troubles in its application while solving 
such problems. 

 
Based on the geometric method put forward in Dr. 
Shi’s block theory, this paper develops programs to 
model 3D random structure plane and defined structure 
plane.  
 
2. Modeling of block system 
 
Many block theory programs only define simple convex 
or concave polyhedron. It is because the authors take a 
wrong way in the definition of graph; they always 
divide complex block or loop into many simple convex 
polyhedrons or convex polygons, then make union-
difference calculation of topological graphs, which 
makes the definition of block too complicated to apply 
in real calculation. This paper introduces a very simple 
but effective definition of complex block. 
  Two factors can be used to exactly define one block, 
one is the boundary plane of the block, and the other is 
the normal vector of the plane with direction pointing 
inward. 
 
Therefore, when search is started in the system of 
structure plane, if only one structure plane’s (defined as 
mother plane) normal vector is defined and all the other 
planes connecting with its edges are searched, it can be 
guaranteed that the normal vector of the plane searched 
will not penetrate the mother plane, otherwise, it is not 
the boundary plane of the block searched. 
 
If each plane and its edges are searched without anyone 
omitted, then the block will be defined. Thus, there is 
no need to make convex or concave judgment and what 
we get is a block system with blocks having realistic 
shape. You may be amazed by the masterpiece of 
nature when you see the block system you get. 
 
3. Building of force system of block 
 
Block theory holds that the rock cut by many structure 
planes will form many blocks, each being rigid body 
with no deformation nor failure; all these blocks form a 
block system. The deformation of the system occurs on 
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the structure plane; also, its failure occurs there. The 
inner forces of the system will become balanced 
through the deformation of the structure plane. 
 
In this paper, structure plane is believed to be placed 
with plane springs and all of them have single normal 
and shear stiffness and Mohr-Coulomb Criterion is 
adopted as failure criterion. 
 
In this paper, only small deformation is considered, and 
it is assumed that the block is rigid and cannot deform 
and that the relative displacement and rotation is very 
small. Therefore, the normal displacement of boundary 
planes of each block is very small after the deformation 
of the block system; it can be taken as a constant. 
 
Normal force forms due to the normal dispalcement of 
normal plane spring of the structure plane, and shear 
forces generate because of the displacement of shear 
spring of the structure plane. However, if two structure 
planes have the separating normal displacement, no 
normal tensile stress will generate on the normal spring, 
then the normal force on the structure plane is 0. 
 
The calculation method of normal force and shear force 
of spring is introduced below.  
 
3.1 Sub-matrix of normal spring’s stiffness 
 
Define the normal vector of one boundary plane of 
block is nr )( 321 NNN ， the displacement of 

point iQ  on the side of block i is )( iii wvu ; the 

displacement of corresponding point jQ  on side of 

block j is )( jjj wvu ; see the figure below. 

Qj iQ N( )3NN2,1,N
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Fig. 1 Definition of normal vector and displacement 
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From the figure, it can be seen that, when 0≤Δ , the 
springs between two blocks are compressed; when 

0≥Δ , the springs are in tension. 
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Where, ( )iii zyx 000 ,,  is the coordinates of the 
centroid of block i. 
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Where, ( )jjj zyx 000 ,,  is the coordinates of the 
centroid of block j. 
Suppose the normal stiffness of springs on the structure 
plane is a constant, then the potential energy NΠ of the 
structure plane is, 
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By differentiating NΠ  and minimizing it, four 6× 6 
sub-matrix of stiffness can be got and they can be 
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3.2 Submatrix of  stiffness for shear spring 
 
Suppose plane P(a,b,c) passes the original point of the 
coordinate system, its function is 

ax+by+cz=0                         （1） 
where a2+b2+c2=1 
Suppose one vector is S(s1,s2,s3) , its initial point is the 
original point of the coordinate system. Draw one ray 
perpendicular to plane P while passing point 
（s1,s2,s3）, then the function of the line is 
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                   （2） 

Connecting the cross point of ray and plane P and the 
original point, the project of vector S on plane P can be 
obtained.  
Substitute equation(2) into equation (1), then 

0)()()( 321 =+++++ tcsctbsbtasa  
It can be solved that, 
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Substitute t into equation(2), then the cross point of the 
line and plane P can be obtained and the square of  the 
distance between the cross point and the original point 
is 
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Where, Δ is the project of  S on plane P. 
Suppose the displacement of point Q on side of block i 
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Supppose the normal vector of structure plane is 
),,( 321 NNN , and the shear stiffness is p, then the 

shear potential sΠ  of shear springs is, 
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By differentiating sΠ  and minimizing it, four 

66× submatrix of stiffness can be got. 
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Note: the mechanical meaning of [ ]ijK  in row p 
column q is: the displacement of block j in direction 
p(or rotation around axis p) leads to the loading on 
block i in direction q(or couple around axis q).  
 
3.3 Submatrix of frictional force 
 
The frictional force is: 

cAtgpF N +×= )(ϕ  
As mentioned above, the projection of relative 

displacement δ
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Assemble the stiffness sub-matrix of normal and shear 
spring above into the global stiffness matrix; then 
assemble the external force on each plane to get the 
general external force array. By solving the equilibrium 

equation [ ] { } { }fk =× δ , the displacement of the 
centroid of each block can be obtained. The relative 
displacement of structure planes can be obtained 
according to the displacement of the centroid of two 
adjacent blocks through transition matrix; then, the 
normal force and shear force on the structure plane can 
also be obtained. 
 
The shear force on each structure plane is judged 
according to Mohr-Coulomb criterion. Those shear 
forces not meeting the criterion will be taken as 
external force and be redistributed within the block 
system. That is, these forces will be balanced by 
adjusting normal and shear forces on other structure 
planes. 
 
For the block with external boundary, if the forces on 
structure plane cannot meet Mohr-Coulomb criterion 
and the block is movable in the view of topology 
because of the moving direction caused by shear force 
or couple, then this block is unstable. 
 
4 Conclusions 
 
The author of this paper has successfully applied 3D 
block theory in many analyses of projects. This theory 
can very clearly instruct engineers in taking reinforcing 
measures in engineering, and because of the 3D effect 
and clear expression of complex structure planes, 
engineers can also participate in the analysis and 
judgment whether the final conclusion is correct or not, 
which facilitates better communication between 
researchers and users of the research. 
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The Three-Dimensional Discontinuous Deformation Analysis (3-D DDA) with a first-order 
displacement function was extended by incorporating an eight-node hexahedron mesh into a 3-
D block, to enhance 3-D DDA’s capabilities of modeling deformable blocks. The matrices of 
the equilibrium equations for this new model are given in detail. An illustrative example is 
presented to show the improvement achieved by this model. The calculated results show close 
agreement with the theoretical solutions.   
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1. Introduction 
 
The Discontinuous Deformation Analysis (DDA) is 
well-suited for investigating fractured rock mass 
behavior important to many geotechnical and structural 
problems (Shi 1993). In the original DDA formulation, 
a first-order displacement function was used to model 
block deformations, which does not allow for variable 
stress/strain distribution within a block. This 
approximation precludes the application of the first-
order polynomial function to problems with significant 
stress variations within blocks. This may yield 
unreasonable results when the block deformation is 
large or when the geometry of the block is irregular. In 
two dimensions, to overcome this shortcoming, some 
approaches have been attempted. One approach adopted 
was to glue small blocks together in an artificial manner 
to form a larger block. Ma et al. (1996), Koo et al. 
(1996) and Hsuing (2001) implemented high-order 
displacement functions into the DDA algorithm. Shyu 
(1993), Chang (1994) and Grayeli & Mortazavi (2006) 
implemented finite element mesh into the original DDA 
blocks to account for stress variations within the blocks. 
In 3-D, there have been some published works but they 
use a linear displacement function as in the original 2-D 
DDA, so the stresses and strains within each block are 
constant. This paper presents the implementation of an 
eight-node hexahedron element into the 3-D DDA 
algorithm. The program code has been developed, and 
to demonstrate the capabilities of the modified 3-D 
DDA code a cantilever beam is analyzed. The 
calculated results agree well with theoretical solutions. 
 
2. Coupling of 3-D FEM and 3-D DDA 
 
Since 3-D DDA conforms to the principle of minimum 
 

 
total potential energy, the total potential energy is the 
summation of all potential energy sources for each 
block. The potential energy formulated in the following 
sections includes that from initial and induced stresses, 
point loads, body forces, inertia forces and 
displacement constraints, as well as the potential energy 
from the interaction between two elements such as a 
normal contact. For each of the cases stated above, the 
element or nodal matrices of stiffness and force are 
formed by taking the derivatives with respect to 
displacement variables from the corresponding 
potential energy. Taking the direct summation of these 
individual submatrices to form the global stiffness 
matrix ][K  and force matrix ][F , the simultaneous 
equations of equilibrium are then established. 
The simultaneous equilibrium equations derived by 
minimizing the total potential energy for a system with 
N number of nodes have the following form: 
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(1) 
 
As in the FEM (Zienkiewicz & Taylor 2000), the nodal 
displacements are chosen as unknown variables and 
each node has three degrees-of-freedom for the three-
dimensional case. ][ ijK  in the global stiffness matrix is 

a 33×  submatrix and }{ iD  - the unknown vector, and 

}{ iF  - the force vector, are 13×  submatrices. 
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3. Derivations of Submatrices of Equilibrium 
Equation for Hexahedron Elements 
 
The displacement field Twvu }{  of eight-node 
isoparametric elements can be described as: 
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Where the matrices of shape function and nodal 
displacements, respectively, are: 
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{ } { }TwvuwvuwvuD 888222111 ...=                  (4) 
 
Since it is difficult to establish the shape function 

)],,(~[ zyxN  in a simple form to depict the element with 
a general shape, a transformation from global Cartesian 
to natural coordinates through mapping is necessary. 
The shape functions of natural coordinates ),,( ζηξ  
described in a 222 ××  cube with origin )0,0,0(  at its 
center is used to map the eight-node element shape 
functions of the global Cartesian coordinates.  
The interpolation for the global Cartesian coordinates in 
each element may be expressed in terms of the shape 
functions as: 
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Where 8...,,2,1),,( =lzyx lll  are the values of 
coordinates at the nodes, describing the isoparametric 
elements. 
 
3.1 Stiffness Matrix 
 
At each time step, the elastic strain energy stored by the 
stresses of the elements is: 
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Where 
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and 
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The stress-strain relationship is assumed to be linear at 
each time step. Therefore: 
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In which, E  and ν are the Young’s modulus and 
Poisson’s ratio, respectively.  
Based on the small strain theory: 
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That ][B  is a 246×  matrix for eight-node hexahedron 
elements. 
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As in the FEM, the matrix of the strain shape function 
with respect to the natural coordinates, )],,([ ζηξB , is 
then obtained. Therefore, the strain energy of element i  
is described as: 
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After taking derivatives with respect to displacement 
variables of the strain energy eπ  of element i , the 

2424×  element stiffness matrix ][ iiK  is obtained as: 
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Where ),,( ζηξJ  is the determinant of the Jacobian 
matrix: 
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][ iiK  is then added to the simultaneous equilibrium 

equations. 
 
3.2 Initial Stress 
 
For element i , the potential energy of initial stresses 

}{ o
iσ  is described as: 
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That is described as: 
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                                                                     (14) 
Taking derivatives of the potential energy σπ , a 124 ×  
element force matrix }{ iF  with the following form is 

added to the global force matrix in the simultaneous 
equations: 
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3.3 Point Load 
 
The point loading force T

zyx FFF }{  acts at point 

),,( zyx  of element i , the potential energy due the 
point loading is: 
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For hexahedron isoparametric element i , the potential 
energy is given by: 
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After taking derivatives of the potential energy, the 

124×  element force matrix }{ iF  is obtained for the 
eight-node element: 
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This is added to the global force matrix in the 
simultaneous equilibrium equations. 

 
3.4 Force of Inertia 
 
Denote   Ttwtvtu )}()()({   as    the   time   dependent  
displacements of any point ),,( zyx  of element i . The 
force of inertia per unit volume is: 
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where M  = mass per unit volume. 
The potential energy of the inertia force of element i  is 
in the same form as that of the original 3-D DDA and is 
given by: 
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Where Δ  is the time step, and )}0({ iV  is the element 
velocity accumulated from the previous time step. 
After taking the derivatives with respect to 
displacement variables of the potential energy ][ iiK  
and }{ iF  are then added to the simultaneous 
equilibrium equations: 
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3.5 Fixed Point 
 
When a point (x,y,z) in an element i  is to be fixed, a 
very strong constraint spring with stiffness p  is used at  
this point. The energy of the constraint spring can be 
expressed as: 
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For hexahedron isoparametric element i , the potential 
energy is: 
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The 2424×  element stiffness matrix ][ iiK  is 
obtained after taking the derivatives with respect to 
displacement variables of the potential energy cπ : 
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This matrix is then added to the simultaneous 
equilibrium equations. 
 
4. Verification of the New Modified 3-D DDA 
 
In this section the application of the modified 3-D DDA 
is presented for a typical example of a cantilever beam 
subjected to two concentrated loads at its free end. 
The cantilever beam geometry shown in Fig. 1 was 
analyzed using the original 3-D DDA and the modified 
version with 50 eight-node elements to discretize the 
beam. Dimensions of the beam are 8 m in length and 1 
m in height and width, and the Young’s modulus and 
Poisson’s ratio were PaE 8103×=  and 2.0=ν , 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Cantilever beam subjected to two forces. 
 
The axial deformation along the axis of a beam 
subjected to an axial load is (Popov 1996): 
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where Δ  is the axial deformation; x  is the distance 
from the fixed end; P  is a concentrated load acting at 
the middle point of the free end; A  is the cross-
sectional area; and E  is the Young’s modulus of the 
beam. The closed form solution for the beam deflection 

)(v  along its axis can be written as below (Popov 
1996): 
 

)32(
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323 xxLL
EI
Pv +−=                                        (27)                                                                   

 
where L  is the length of the beam; and I  is the 
moment of inertia of beam cross section. To show the 
capabilities of the modified 3-D DDA, the beam 
deformation was simulated. The results are plotted in 
Figs 2 and 3 for obtained displacements along the X 
and Z directions, respectively.  
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Fig. 2: Axial deformation of the cantilever beam 
calculated by analytical solution and 3-D DDA. 
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Fig. 3: Deflection of the cantilever beam calculated by 

analytical solution and 3-D DDA. 
Figure 2 shows that the 3-D DDA modeling gives more 
accurate results when a finite element meshed block is 
used. As can be seen from Fig. 3, results of the original 
3-D DDA is far from the theoretical solutions. Using 50 

Trilinear elements to discretize the beam, one can 
calculate the deflection at the free end that is about 93% 
of the theoretical value. 
 
5. Conclusions 
 
The main purpose of using a finite element mesh within 
each block is to improve the deformation capability. In 
this study, a more powerful version of 3-D DDA 
method was developed using eight-node hexahedral 
elements. This enhanced the deformation capability of 
3-D DDA significantly, thus making it a more suitable 
tool for accurate calculations and practical applications. 
The matrices of the equilibrium equations for this new 
method were presented. The successful application of 
the modified 3-D DDA to a problem with known 
solutions was demonstrated. The calculated results 
show good agreement with the theoretical solutions; 
however, it is believed that more verification and 
refinement of the new 3-D DDA is required to make it a 
more useful tool for practical applications. 
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In this paper, DDA is used to study the mechanical characteristics of coarse granular materials. In order 
to establish the numerical simulation specimen, 2-D random particle-generating algorithm of granular 
materials is studied. Loose particles are randomly generated according to the gradation curve. Under the 
action of the gravitational load, the packing process of the particles inside a rectangular container is 
simulated by DDA so that a heap of the particles which contact each other is formed. Based upon the 
heap, the specimen is then established. Referring to the loading process of the tri-axial laboratory test, 2-
D numerical simulation on the mechanical characteristics of coarse granular materials is performed also 
by the DDA. The stress-strain curves obtained by the numerical simulation are basically in agreement 
with the results by the tri-axial laboratory test. It indicates the numerical simulation is suitable for the 
mechanical characteristics research of coarse granular materials. In addition, the distribution of several 
fabric elements about interaction between particles is also presented. 

                  
 Keywords: Coarse granular material; Random distribution; Mechanical characteristics; Numerical analysis;  

Discontinuous Deformation Analysis 
 

1. Introduction 
 

The coarse granular material is the chief material 
of rock fill dams. There are three methods for the 
mechanical research of coarse granular materials: 
indoor test, in situ test and numerical simulation. 
Because of the limits of the specimen size and the 
equipment ability, the test can not solve problems such 
as gradation similarity and complicated loading route. 
Numerical simulation does not require much labor or 
many recourses and it is not limited by time and space. 
The most important benefit is that it has no limit to the 
size of particles. Therefore it can be a supplement to the 
indoor test and in situ test. 

Coarse granular material is a discontinuous 
medium. DDA, DEM and PFC, which is based on 
DEM, are the techniques widely used in the numerical 
simulation of discontinuous deformation. PFC 
computation is simple. However, particles are assumed 
circular discs or spherical balls, which are different 
from real granular materials in their shapes. A tri-axial 
test showed the behavior of ball aggregate was 
classically ideal elastico-plastic and was quite different 
from that of general granular materials. Therefore, it 
was undesirable to use circle or ball aggregate to 
reasonably model the mechanical behavior of coarse 
granular materials (Cheng & Ding 2006). 

DDA and DEM can handle arbitrary polygonal 
particles and are suitable for the mechanical analysis of 
coarse granular materials. Liu & Gao (2003) described 
soil particles by a uniform equilateral polygon with 
eleven edges and DDA was applied to simulate soil 
deformation in plane strain. According to the 
comparison between simulating results and the result of 
laboratory test, it has been proved that DDA is a 

powerful tool for analyzing the constitutive relationship 
for soil. 

 In this paper, DDA is also used to study the 
mechanical characteristics of coarse granular materials 
and particles are randomly generated according to the 
gradation curve in order to enhance the reality of the 
numerical simulation.  
 
2 Formation of specimen for numerical simulation 
 

In order to numerically analyze the mechanical 
characteristics of coarse granular materials, the first 
step is to generate a specimen with particles which are 
distributed randomly and contact each other. Random 
particle-generating algorithms have been studied in the 
computer simulation of concrete aggregates (Zhang et 
al 2000; Zhang & Jin 2004; Du & Sun 2006). Concrete 
aggregates are the skeleton of concrete, in which 
particles do not contact each other. Because the 
particles of coarse granular materials contact each other, 
these algorithms are not suitable for generating the 
specimen of coarse granular materials, but for reference 
only. 

In this paper, the algorithm proposed by Zhang et 
al (2000) is used to generate polygonal particles which 
satisfy the gradation curve of coarse granular materials. 
These particles are randomly thrown into a given 
domain, of which the width is same as one of the 
specimen, and a loose particle system is formed, as 
shown in figure 1(a). In the throwing process, the 
intersection between particles is simply judged by the 
boxes enclosing particles.  
     The loose particles do not yet meet the requirement 
of the mechanical simulation. Therefore, it is required 
to use the loose particles as the initial stage, and then 
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use DDA to simulate the packing process of particles in 
the given domain with rigid boundaries. After that, a 
heap, in which the particles contact each other, is 
formed, as shown in figure 1(b). After the packing 
process, the particles below the top boundary of the 
specimen are selected to form the specimen for the 
numerical simulation. If a particle intersects with the 
boundary, its area above the boundary is cut off. 

Referring to the tri-axial laboratory test, flexible 
material is added on the both sides of the specimen and 
divided into blocks, rigid blocks on the top and the 
bottom, as shown in figure 2. That two rigid blocks 
with smooth surfaces are placed on the both sides of the 
top block is to keep the axial pressure vertical. 
Applying the side pressure σ3 on the both sides and the 
axial pressure σ1 on the top, the numerical simulation 
on the deformation of coarse granular materials can be 
carried out by using DDA.  

 
            

 
(a) Loose particles            （b）heap 

   Fig. 1 Loose particles and heap  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Numerical simulation model 

 

In figure 1 and figure 2, the particle size is 10mm 
to 20mm. The width of the specimen is 300mm and the 
height is 600mm. The particle parameters for the 
numerical simulation are as follows: E=20GPa, μ=0.2 
and δ =25°, C= 0 between particles. 

 
3 Results of numerical simulation 
 
3.1 Stress vs. strain curves 

The stress vs. strain curves are shown in figure 3, 
where we can see that the curves obtained by the 
numerical simulation are basically approximate to the 
ones by the tri-axial test (Wu 2007).  
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Fig. 3 Stress vs. strain curves 
 
3.2 Fabric elements   

Fabric describes comprehensive characteristics of 
particle system. It mainly includes space arrangement 
and interaction of the particles. Fabric elements about 
the interaction include follows: 

Coordination number Nt: the number of particles 
contacting some particle, an index of the density of 
material. 

Contact normal n~ : the cosine of the normal on 
contact face. For a contact point, there is a pair of n~  
whose directions are opposite. For a particle system, the 
orientation of n~  is described by the distribution of its 
spherical coordinate, α and β. 

Contact force f~ : the interaction forces between 
particles. As a statistics description, the distribution of 
their quantity is given. 

Branch vector l~ : the lines linking the centers of 
particles which contact each other. For a particle system, 
the synthesis effect is described by the distribution, 
orientation and length of branch vectors. 

The coordination number, branch vector and 
interaction force are shown in figure 4 to 6. From these 
figures, the changes of the interaction of particles can 
be seen clearly. With the increasing of the axial 
pressure, the coordination numbers in the center area 
decrease distinctly, the branch vectors change little at 
two ends and become sparse in the center area, the 
direction of the contact forces tends to vertical and it 
appears force chains clearly. 

 
3.2 Particle motion 

Figure 7 to 9 are the displacements at the center of 
the particles. The movement of the particles is in 
agreement with that of the tri-axial test with 
computerized tomography (CT) (Wu 2007). Because of 
the affect of constraints of the top and bottom blocks, 
the horizontal displacement of the particles in the upper 
and lower triangular areas is small. At higher axial 
pressure, the horizontal displacement in the middle area 
of two sides is large and symmetrically distributed, the 

vertical displacement distributes levelly and with 
maximum at the top, the rotation is small in the upper 
and lower areas and large in the diagonal areas. 

 

 
σ1=σ3=0.4MPa            σ1=1.68MPa, σ3=0.4MPa 

Fig.4 Coordination number 
 
 

              
σ1=σ3=0.4MPa          σ1=1.68MPa, σ3=0.4MPa 

Fig.5 Branch vector  

            
σ1=σ3=0.4MPa           σ1=1.68MPa, σ3=0.4MPa 

Fig.6 Contact force 
 

The movement of the particles represents the 
particularity of granular materials and is hardly 
explained by the continuous mechanics. The study on 
the fabric elements may provide a new approach for the 
research of the mechanical characteristics of coarse 
granular materials. 
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σ1=σ3=0.4MPa            σ1=1.68MPa, σ3=0.4MPa 

Fig.7 Horizontal displacement (mm) 
 

 
σ1=σ3=0.4MPa            σ1=1.68MPa, σ3=0.4MPa 

Fig.8 Vertical displacement (mm) 
 

 
σ1=σ3=0.4MPa            σ1=1.68MPa, σ3=0.4MPa 

Fig.9 Rotation angle of particle ( ° ) 
 
4 Conclusions  
 

This paper provides an effective method for 
establishment of the mechanical simulation model of 
coarse granular materials. In the model the particles 
satisfy the gradation curve and have random shapes and 
positions. The results of numerical simulation are in 
agreement with that of tri-axial test. It shows that DDA is 
suitable for the mechanical characteristic research of coarse 
granular materials. The statistics and analysis of fabric 
elements is been doing. The relationship between fabric 
elements and macro behaviors of coarse granular 
materials is to be studied. 
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This paper focuses on how to simulate the slope failure of volcanic soil ground with DDA. 
DDA simulations of model tests for slope failure of volcanic soil ground are performed to 
examine the effect of element mesh type and input parameters on the slope stability. Moreover, 
the validity of DDA simulations for simulating input parameters is examined by comparing 
numerical results with experimental results. As the results, it is revealed that slip surface can be 
roughly identified by displacement vectors of each DDA block, and that DDA simulation is 
similar in the shape and location of slope failure surface to the model test. However, there is a 
remarkable difference in volume change of volcanic soil ground before and after slope failure. 
These results indicate that DDA is an effective method to simulate a slope failure of volcanic 
soil ground, though there is room for further investigation on the modeling method. 

Keywords: Slope failure; Volcanic coarse-grained soil; Numerical modeling; DDA 
 
 

1. Introduction 
 
At the fragmental volcanic soil ground in cold regions 
like Hokkaido, the north area of Japan, the degradation 
in the static and dynamic strength of volcanic coarse-
grained soils caused by heavy rainfall and cyclic freeze-
thaw action often makes the natural disaster such as 
slope failure at embankment and cut slope or landslide 
at a subsurface layer worse. However, the synthetic 
research on disaster preventive measures in Hokkaido is 
behind in examining how various factors such as 
freeze-thaw history, rainfall, rise in ground water level 
at thaw season and earthquake have an influence on the 
mechanism of slope failure and landslide at fragmental 
volcanic soil ground individually. 
The objective of the research is to examine the 
applicability of discontinuous analysis to numerical 
simulation of slope failure which occurs at fragmental 
rock slope in cold regions and to identify a cause of the 
slope failure based on the result of numerical 
experiments. As the fundamental study, this paper 
focuses on how to simulate the slope failure of volcanic 
soil ground with DDA (Discontinuous Deformation 
Analysis, Shi and Goodman (1985)). In this paper, 
DDA simulations of model tests for slope failure of 
volcanic soil ground are performed in order to examine 
the effect of element mesh type and input parameters on 
the slope stability. Moreover, the validity of DDA 
simulations for simulating input parameters is 
examined by comparing numerical results with 
experimental results. 
 

 
2. Model rainfall tests of volcanic soil slope 
 
2.1 Experimental conditions 
 
In order to examine the feature of rainfall-induced slope 
failure for volcanic soil ground, a series of model 
rainfall tests are performed (Kawamura et al 2007). 
Here, a model rainfall test was performed until 3 hours 
or the occurrence of slope failure, and rainfall 
intensities were 60 or 100mm/hr, which were simulated 
by using spray-nozzles. During the rainfall tests, the 
change in pore water pressure, deformation and 
saturation degree was monitored using pore water 
pressure transducers and soil moisture meters, 
especially the deformation behavior was estimated 
using the Particle Image Velocimetry (PIV) analysis 
(White et al 2003). 
 

Pore w ater pressure transducer：pw
Soil-m oisture m eter：sm

unit：m m

150
300150 150 131
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sm 3
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Fig. 1: Typical slope shapes in rainfall test. 
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Fig. 1 shows a typical shape of model slopes adopted in 
this study. The soil container was 2,000mm in length, 
700mm in depth and 600mm in width, and its front wall 
was made of a reinforced glass to observe deformation 
with failure of model slopes. The model slope is in the 
plane strain state. Each model slope was constructed in 
a soil container by pluviating Kashiwabara volcanic soil 
into the soil container and tamping it on an acrylic 
impermeable layer (foundation) so as to be the desired 
dry density (ρd=0.48g/cm3) with the variation in the 
density within ±5%. Additionally, in order to examine 
the effect of slope angle on the deformation behavior of 
model slope, slope angle (θ) was set to θ=45°, 50° and 
55°. This paper supposes that the friction between 
volcanic soil slope and foundation can neglect because 
the original foundation surface is smooth. Furthermore, 
in some test cases, to increase the surface-roughness, 
No. 120 sandpapers were glued on the surface. It is 
called “rough” condition in contrast to the 
abovementioned “smooth” condition. 
Kashiwabara volcanic soil (ρs=2.34g/cm3, ρdmax=0.623 
g/cm3, ρdmin=0.462g/cm3 and D50=1.25mm) is a primary 
deposition of pyroclasic fall deposit, which originated 
from the eruption of Shikotsu caldera, and then it is a 
crushable coarse-grained soil. The details of mechanical 
behavior of Kashiwabara volcanic soil have been 
reported by Miura et al (1996). 

2.2 Experimental results 
 
Figs. 2 show the deformation after the test of model 
slopes, which differ in the slope angle. As can be seen 
in Figs. 2, slope failure occurs with large deformation. 
In previous study, it was found that large deformation 
was induced around 10sec after the peak of saturation 
degree (Kawamura et al 2007). Here, the mechanical 
behavior on the time at which the shear strain of 4-6% 
was caused was tentatively regarded as that at failure, 
because shear strain of 4-6% in the slope occurred at 
the peak of saturation degree. Comparing Fig.2a 
(θ=45°) with Fig. 2b (θ=50°), the failure modes of 
model slopes are different as to the slope angle. For 
example, a slip failure like circular slip with the 
settlement of slope crest was observed in case of θ=50°, 
while a plane failure which compressed model volcanic 
soil slope in the direction parallel to the foundation 
surface was observed in case of θ=45°.The scale of 
slope failure at the former case (θ=50°) was larger than 
that at the latter case (θ=45°). Figs. 3 show shear strain 
distributions at the peak of saturation degree (just 
before failure) obtained from PIV analysis. In Fig. 3a 
(θ=45°), the shear strain was mainly less than 4-5%, 
except for some areas of 8-30%, whereas in Fig. 3b 
(θ=50°), the shear stain more than 30% was confirmed 
in the large area around the slope surface. 

 

Initial slope

Slope shape after failure 

Settlem ent

      

Initial slope

Slope shape after failure 

Slip line

Settlem ent

 
Fig. 2a: Observed deformation after failure at θ=45°.        Fig. 2b: Observed deformation after failure at θ=50°. 

 
a) θ=45°   b) θ=50° 

Fig. 3: Shear strain distribution by PIV. 
 

Table 1: Test conditions and slope failure modes. 
Slope 
angle

Rainfall 
intensity 

Base 
friction 

Elapsed 
time 

Failure 
mode 

45° 60mm/h Smooth 385s Plane failure 
45° 100mm/h Smooth 258s Plane failure 
45° 60mm/h Rough − No failure 
45° 100mm/h Rough − No failure 
50° 60mm/h Smooth 465s Slip failure 
50° 100mm/h Smooth 496s Slip failure 
50° 60mm/h Rough − No failure 
50° 100mm/h Rough 283s Slip failure 
55° 60mm/h Smooth 385s No experiment
55° 100mm/h Smooth 258s No experiment
55° 60mm/h Rough 208s Slip failure 
55° 100mm/h Rough 213s Slip failure 
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Table 1 summarizes the relationships between failure 
modes of model slopes and experimental conditions to 
examine the effect of experimental conditions on the 
deformation behavior of model slope. Firstly, as for the 
effect of slope angle, it is revealed that the failure mode 
of model volcanic soil slope varies depending on the 
slope angle. According to Table 1, the slip failure was 
observed in case of a steep slope angle more than θ=50°, 
and the plane failure was occurred in case of θ=45° as 
mentioned above, irrespective of the difference in the 
friction of foundation surface or the rainfall intensity. 
Secondly, as for the effect of the friction of foundation 
surface, though the friction of foundation surface has 
important effects on the occurrence of slope failure and 
the feasibility of model tests, it has little effect on the 
failure mode. Thirdly, as for the effect of the rainfall 
intensity, it hardly affects the failure mode, though 
there is a difference in the time at which the model 
slope fails. These results indicate that the slope angle of 
model volcanic soil ground influences the behavior of 
slope failure strongly. 
 
 
3. Analytical conditions of DDA simulations 
 
3.1 Numerical modeling 
 
A series of numerical simulations for rainfall tests of 
volcanic soil slope were performed with two-
dimensional DDA models. Fig. 4 shows the size, 
dimension and boundary condition of typical DDA 
model, which simulates the above-mentioned model 

volcanic soil slope. The DDA model is composed of 
two types of blocks, that is a large polygon block 
named “foundation block”, which represents the 
impermeable layer of model slope, and many small 
blocks named “volcanic blocks,” which represent the 
volcanic soil ground of model slope. Here, the 
foundation block is fixed. Also, DDA models which 
slope angle (θ) was set to θ=45°, 50° and 55° were 
employed, respectively. In DDA simulations, a stability 
analysis was performed by applying gravity force of 
9.8m/s2 to each DDA model.  
A method for modeling volcanic soil ground seems to 
influence the behavior of slope failure strongly in DDA 
simulation. Then, this study employs several DDA 
models which differ in element mesh type. Fig. 5 shows 
four kinds of element meshes before loading gravity 
force used in this study, namely a) Random mesh using 
large DDA blocks (model A), b) Random mesh using 
small DDA blocks (model B), c) Regular mesh using 
large DDA blocks with joints parallel to the slope 
surface and vertical direction (model C), d) Regular 
mesh using large DDA blocks with joints both parallel 
and perpendicular to the slope surface (model D). Table 
2 shows the feature of DDA models. Table 3 
summarizes the analytical conditions of all DDA 
simulations performed in this paper. 
 
3.2 Input parameters 
 
All DDA blocks are linear elastic blocks under plane-
strain condition. In this study, when two DDA blocks 
come in contact, springs and a slider are created at 

10cm 

θ 

60cm 

10cm 

80cm 

Volcan ic blocks 10cm 

10cm 

Foundat ion  
block (fixed) 

Fig. 4: Schematic diagram of DDA model.                           Fig. 5: Schematic diagram of DDA model.
 

Table 2: Features of DDA models.                       Table 3: Analytical conditions of DDA simulations. 
 
 

Mesh 
name 

Block 
number 

Average 
diameter 

Model A 728 5.6mm 
Model B 1424 4.1mm 
Model C 677 6.1mm 
Model D 635 6.3mm 

Name Slope Mesh type Base friction Friction angle Failure mode
Case 1 50° Model A Smooth φ μ=  0° Slip failure 
Case 2 50° Model A Smooth φ μ=40° Slip failure 
Case 3 50° Model A Rough φ μ=40° Slip failure 
Case 4 45° Model A Smooth φ μ=40° Plane failure
Case 5 55° Model A Smooth φ μ=40° Slip failure 
Case 6 50° Model B Smooth φ μ=40° Slip failure 
Case 7 50° Model C Smooth φ μ=40° Plane failure
Case 8 50° Model D Smooth φ μ=40° Plane failure

a) Model A   b) Model B  c) Model C   d) Model D
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contact points as shown in Fig. 6. Accordingly, the 
analytical input parameters of DDA blocks are 
characterized by the material properties of a block, 
namely unit mass (γ), Young’s modulus (E) and 
Poisson’s ratio (ν), and the interface properties of block 
edges, namely block friction angle (φ μ) and cohesion of 
surface (Cμ). Table 4 shows the material properties of 
blocks and the interface properties of block edges. 
As for the material properties, the parameters were set 
by referring to the experimental conditions of model 
rainfall tests and element test results of Tomikawa 
volcanic soil (Ishikawa et al 2007), which mechanical 
characteristics is similar to Kashiwabara volcanic soil. 
Here, unit mass (γ) of a volcanic block is set to wet 
density considering the degree of saturation at failure of 
volcanic soil slope in model rainfall tests. On the other 
hand, the interface properties were set by referring to 
the element test results as follows. The block friction 
angle (φ μ) between volcanic blocks regards as a 
parameters ranging from 0° to 40° to examine the effect 
on the slope stability of DDA models. As for φ μ 
between a volcanic block and a foundation block, the 
value was set equal to 0º (smooth) and 40° (rough) to 
examine the effect. Besides, as for Cμ between all 
materials, the value was set equal to zero by 
considering that Kashiwabara volcanic soil is a coarse 
granular material. 
 
 
4. Results of DDA simulations 
 
4.1 Effects of analytical conditions 
 
Fig. 7 shows the distribution of displacement vectors 
for DDA blocks under various analytical conditions. 
Here, a displacement vector which color is dark shows 
that a movement of the block is large. In Fig. 7, a slip 
line for each DDA simulations can be roughly 
identified by the distribution of displacement vectors. 
For example, a border of displacement vectors around 
2cm may be regarded as a slip line. Then, based on the 
distribution of displacement vectors, the effect of 
numerical modeling and input parameters on the 
deformation behavior of model slope is examined as 
follows. 
First, the effect of analytical conditions except for slope 
angle on the numerical results is examined under the 

constant slope angle of θ=50°. As for the effect of 
element mesh type, in case of regular meshes (case 7 & 
8) a slip line parallel to the slope surface, that is the 
joint direction of model C and D, was observed at the 
depth of around a one-third of the volcanic soil ground 
thickness from slope surface, while in case of random 
mesh (case 2) a slip line reaches the surface at a lower 
part of model slope, and the shape looks like a circular 
arc. However, a difference in the deformation behavior 
of model slope due to the variation in the size of DDA 
blocks was hardly confirmed. 
Furthermore, comparing two results (case 1 & 2) which 
differ in the block friction angle between volcanic 
blocks, it is recognized that although the deformation 
behavior of model slope is not altered regardless of the 
block friction angle, a location of slip line deepens with 
an decrease in the block friction angle and under φ μ=0° 
the whole slope tends to slide down. However, the 
block friction angle between a volcanic block and a 
foundation block has little effect on the deformation 
behavior of model slope in DDA simulations. These 
results indicate that as for DDA simulations performed 
in this paper, under the constant slope angle, the failure 
mode of model volcanic soil slope varies mainly 
depending on the element mesh type. 
Next, the effect of slope angle on the numerical results 
is examined under keeping the other analytical 
conditions constant. From Fig. 7, it is confirmed that a 
location of slip line deepens with an increase in the 
slope angle, and that the failure mode of model 
volcanic soil slope seems to be the slip failure in case of 
a steep slope angle more than θ=50°, while the plane 
failure can be observed in case of θ=45°. These results 
indicate that the deformation behavior of model 
volcanic soil slope varies considerably with the slope 
angle even if the other analytical conditions are 
constant. 
 
4.2 Applicability of DDA simulations 
 
The applicability of DDA to the slope failure 
simulation was examined in terms of the failure mode 
of volcanic soil slope. Comparing DDA simulations 
(Fig. 7) with test results under the same experimental  
 
 
 

block 1 block 2

Tangential
contact spring

Normal contact spring  
Fig. 6: Contact mechanism of DDA. 

 

Table 4: Material properties of DDA model. 
Material property Volcanic block Foundation block 

Unit mass γ 0.81 g/cm3 0.81 g/cm3 
Young’s modulus E 2.25 GPa 22.5 GPa 

Poisson’s ratio ν 0.343 0.343 
Friction angle φμ 0º, 40º 0º, 40º 

Cohesion Cμ 0 kPa 0 kPa 
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Fig. 7: Distribution of displacement vectors for DDA blocks. 
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conditions (Fig.2), it is revealed that DDA simulations 
employing random meshes are qualitatively similar in 
the shape and location of slope failure surface to the 
test results, in comparison with DDA simulations 
employing regular meshes, and the tendency can be 
confirmed irrespective of the slope angle. These results 
suggest that DDA is an effective method to simulate a 
slope failure of volcanic soil ground. 
However, there is room for further investigation on the 
method for modeling a slope composed of crushable 
volcanic coarse-grained soils. For example, Fig. 8 
compares the deformation behavior of DDA model with 
the deformation of model volcanic soil slope after the 
rainfall test under the same experimental conditions. 
There is a remarkable difference in volume change of 
volcanic soil ground before and after slope failure 
between DDA simulations and test results in case of 
θ=50°, whereas a difference in the volume change 
between both is hardly confirmed in case of θ=45°. The 
reason may safely be supposed as follows. The mobility 
of DDA blocks had been restrained due to too strong 
interlocking between volcanic blocks in DDA models 
employed in this paper, and as the result, the scale of 
slope failure in DDA simulation at θ=50° became small 
compared with the test result. This caused that a 
remarkable dilatancy behavior of volcanic soil ground 
with slope failure observed in model rainfall tests could 
not be simulated by DDA models well. 
 
 
5. Conclusions 
 
The following conclusions can be obtained; 
1. According to rainfall test results, the slope angle 

of model volcanic soil ground influences the 
behavior of slope failure strongly. 

2. In DDA simulation for slope failure, a slip surface 
can be roughly identified by displacement vectors 
of each DDA block. 

3. DDA simulation is similar in the shape and 
location of slope failure surface to the experiment, 
though there is a remarkable difference in volume 
change of volcanic soil ground before and after 
slope failure. 

From the above-mentioned results, it can be pointed out 
that as for DDA simulation performed in this paper, 
DDA is an effective method to simulate a slope failure 
of volcanic soil ground, though there is room for further 
investigation on the method for modeling a slope 
composed of crushable volcanic coarse-grained soils. 
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Fig. 8a: Comparison in deformation behavior at θ=45°.    Fig. 8b: Comparison in deformation behavior at θ=50°.   
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This paper reports results from a study of toppling as a truly three-dimensional (3D) problem 
using physical models and 3D Discontinuous Deformation Analysis (3D DDA). It also presents 
a field case study in which 3D DDA is used to obtain the factor of safety of a toppling rock 
slope. For the cases studied, 3D DDA results agree well with the physical modeling results not 
only in terms of the effective failure mode but also in terms of the displacement histories of the 
blocks in the model. The field case study shows that 3D DDA can be applied in practice to 
analyze truly 3D behavior of jointed rock masses and to obtain the safety factor of a toppling 
rock slope through repeated analyses using the shear strength reduction method. 

Keywords: Toppling; Three-dimensional Discontinuous Deformation Analysis; 3D DDA; Shear 
strength reduction method 

 
 

1. Introduction 
 
A jointed rock slope is susceptible to toppling if the 
joints dip steeply into the slope.  For toppling to be 
kinematically feasible, it is usually assumed that the 
strike of the steeply dipping joint set is roughly the 
same as that of the slope face.  With this assumption, 
the problem can be reduced to a two-dimensional one 
that can be analyzed by considering a section 
perpendicular to the slope face.  Existing kinematic 
tests for toppling usually allow for some deviation from 
the condition that the strike of the joint set is the same 
as that of the slope face, but the maximum allowable 
deviation for toppling to be considered kinematically 
feasible appears to be based on judgment and 
experience.  This paper presents some results from 
studying toppling as a three-dimensional (3D) problem 
using physical models and 3D Discontinuous 
Deformation Analysis (3D DDA).  It also presents a 
field case study in which 3D DDA, along with the shear 
strength reduction method, is used to calculate the 
factor of safety of a toppling rock slope. 

When viewed as a general 3D problem, the 
variables that determine whether a jointed rock slope 
will topple include (1) the geometry of the ground 
surface including the slope face, which may be 
characterized by the slope height, slope angle, and the 
slope length; (2) rock mass characteristics, including 
the number of joint sets, joint set orientations, joint 
spacings, joint friction angles, and the intact rock 
strength; and (3) the lateral confinement in the direction 
parallel to the length of the slope.  In this study, the 
effects of some of these variables were investigated 
using physical models and 3D DDA, a numerical model 
for blocky systems. 

 

 
2. Physical modeling 
 
A jointed rock slope was modeled as a prismatic 
rectangular block (the “slope block”), with a height of 
H, a length of L, and a depth of D, as shown in Figure 1.  
This slope block rested on an inclined base plane 
having an inclination angle of α.  The slope block was 
cut by only one joint set that was perpendicular to the 
top surface of the block.  The joint spacing was 2.5 cm, 
and the friction angle was φ. The angle between the 
strike of the top surface and the trace of a joint on the 
top surface was defined as the angle δ. 

 

 
 

Fig. 1: Configuration of model. 
 
A series of physical models with different 

combinations of H, L, D, α, φ, and δ, as listed in Table 
1, was built to study the effects of these variables.  The 
physical models were made of wood.  To obtain the 
three different joint friction angles, the wood surfaces 
were polished, which gave the lowest φ value, and also 
covered with two different grades of sand paper, giving 
the two higher φ values. 

 

δδ 

αα
LL

DD  

HH 

67



 

 
Table 1 Summary of physical modeling cases. 
H 
(cm) 

L 
(cm) 

D 
(cm) 

α 
(o) 

φ 
(o) 

δ 
(o) 

9.7 20 10 10,20,30, 
40,50,60 

30,45,65 0,10,20,30, 
40,50,60, 
70,80,90 

5 20 10 10,20,30, 
40,50,60 

30,45,65 30 

9.7 10 10 10,20,30, 
40,50,60 

30,45,65 30 

 
To perform a physical model test, the slope block 

was placed on a tilt table set at the desired inclination 
angle and held in place by a plastic bar across and 
against the downslope plane of the slope block.  The 
plastic bar was then lifted quickly out of the way of the 
slope block, and the behavior of the slope block 
observed.  Each physical model was tested twice and 
video-taped digitally for later analysis. 
 
3. Three-Dimensional DDA 
 
The original DDA developed by Shi and Goodman 
(1985) is a 2D numerical model for the statics and 
dynamics of discontinuous block systems. Significant 
recent development of DDA has been focused on 
extending the model to 3D (Jiang and Yeung 2004; 
Yeung et al. 2007). 

A 3D DDA computer program was used to analyze 
all the cases studied using physical models.  In addition, 
to study the effect of lateral confinement parallel to the 
length of the slope, for each of the cases studied using 
physical models, the same case is re-analyzed using 3D 
DDA with the slope block confined on the sides by two 
fixed blocks, as shown in Figure 2. 
 

 
 

Fig. 2: 3D DDA model confined by two fixed blocks. 
 
4. Summary of physical modeling and 3D DDA 
results 
 
From the physical model tests, four different failure 
modes were observed: stability, toppling, toppling and 

sliding simultaneously (toppling/sliding), and sliding. 
Figure 3 shows a toppling case from a physical model 
test.  Figure 4 shows the corresponding 3D DDA 
graphic output for the same case at the same elapsed 
time. 
 

 
 

Fig. 3: Toppling in a physical model test. 
 

 
 

Fig. 4: 3D DDA graphic output for the case shown in 
Figure 3. 

 
The physical modeling and 3D DDA results show 

that the tendency for toppling becomes larger if the 
slope block is taller for the same base width; if the 
friction angle of all joints is larger; if the base 
inclination is larger; and if there is no lateral 
confinement. Furthermore, as the angle δ changes for 
different cases, there exists a transition δ value that 
separates the pure toppling cases from other cases 
(stable, sliding, or toppling/sliding). 

For the cases studied, 3D DDA results agree well 
with the physical modeling results not only in terms of 
the effective failure mode but also in terms of the 
displacement histories of the blocks in the model. 
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5. Field toppling case study 
 
Three-dimensional DDA was used to analyze the 
stability of a toppling rock slope observed in the field.  
Shown in Figure 5, this slope was located at Shek O 
Beach in Hong Kong, P.R. China.  Figures 6 and 7 
show close-ups of the toppling rock blocks on the slope. 
 
 

 
 

Fig. 5: A toppling rock slope at Shek O Beach, Hong 
Kong. 

 
 

 
 

Fig. 6: Front view of toppling rock blocks. 
 
 

 
 

Fig. 7: Back view of toppling rock blocks. 
 
The factor of safety of this toppling rock slope was 

obtained using the shear strength reduction method, i.e. 
by analyzing the same slope repeatedly with different 
joint friction angle values to find the friction angle 
required for limiting equilibrium, φrequired. 

Based on field measurements, the dimensions of the 
rock blocks and their arrangement are shown in Figure 
8.  The intact rock was slightly weathered granite.  
Intact rock properties assumed in the 3D DDA analyses 
are as follows: Young’s modulus is 50 GPa; Poisson’s 
ratio is 0.25; and the unit weight is 2700 kg/m3.  Joint 
cohesion and friction angle were assumed to be 0 and 
40o, respectively.  For static stability, the blocks were 
loaded by gravity only. 

 

 
 

Fig. 8: Dimensions of toppling rock blocks and their 
arrangement (distances in meters). 

 
The behavior of the rock slope was obtained by 3D 

DDA and is shown in Figure 9. It can be seen that the 
behavior obtained by 3D DDA agrees with the 
observed toppling behavior of the rock slope in the field. 

The stability of the rock slope was evaluated by 
analyzing the slope repeatedly with different friction 
angles smaller than the available friction angle, φavailable, 
decreasing the friction angle from 40o by 1o from 
analysis to analysis.  In this way, the slope was found to  

1.4 1.4 1.4 

0.5

2.5

5.5

1.42.5

2
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Fig. 9: 3D DDA results for field case with a joint 
friction angle of 40o. 

 
fail when the friction angle was equal to 26o.  The 3D 
DDA results for this case with a friction angle of 26o is 
shown in Figure 10. Therefore, the static factor of 
safety of the slope can be calculated to be the ratio of  

 

 

 
Fig. 10: 3D DDA results for field case with a joint 

friction angle of 26o. 
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the tangent of φavailable to the tangent of φrequired, or 1.72.  
This agrees with the observation that the slope is stable 
under static conditions. 

 
 

6. Conclusions 
 
This paper reports some results from a study of toppling 
as a truly 3D problem using physical models and 3D 
DDA. It also presents a field case study in which 3D 
DDA is used to obtain the factor of safety of a toppling 
rock slope. 

The physical modeling and 3D DDA results show 
that the tendency for toppling becomes larger if the 
slope block is taller for the same base width; if the 
friction angle of all joints is larger; if the base 
inclination is larger; and if there is no lateral 
confinement. Furthermore, as the angle δ changes for 
different cases, there exists a transition δ value that 
separates the pure toppling cases from other cases 
(stable, sliding, or toppling/sliding). 

For the cases studied, 3D DDA results agree well 
with the physical modeling results not only in terms of 
the effective failure mode but also in terms of the 
displacement histories of the blocks in the model. 

The field case study shows that 3D DDA can be 
applied in practice to analyze truly 3D behavior of 
jointed rock masses and to obtain the safety factor of a 
toppling rock slope through repeated analyses using the 
shear strength reduction method. 
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The Shield Tunnel is adopted in many cases in order to cope with soft ground at urban 
areas in spite of high cost of using segments. Since the cost of segment takes from 20 
to 40% of the whole cost of construction, efforts of cost reduction are required. 
First, we explain some conventional design methods of a shield tunnel. Then, we 
propose application of the Manifold Method(MM) as the rational design method. The 
MM may be able to treat the rigid body action in the weak foundation appropriately 
by analyzing segments as blocks.  
We also show a plan of examination for actual deformation of tunnel segment by 
using precise photogrammetry method at the Fushimi Tunnel which is now under 
construction, which is expected to be used for verification of the MM analysis result. 

Keywords: Deformation of Shield Tunnel with segments; Photogrammetry 
measurement; MM 

 
 

1. Introduction 
 
The shield driving method is applied to tunnel 
construction in urban area as a very leading 
construction for quick accomplishing and because of 
soft ground. When we compare with the tunnel 
construction methods, the shield driving method tends 
to take high cost. Moreover, it is adopted in many cases 
in order to cope with soft ground of urban areas in spite 
of high cost caused by using segments. Therefore, 
efforts of cost reduction are required as urgent necessity. 
Since the cost of segment takes from 20 to 40% of the 
whole cost of construction. The rational segment design 
is required.  
The present design remains only in consideration of the 
action in a tunnel cross section. The possible three-
dimensional analysis of taking into consideration not 
only the inside of a tunnel cross section but the action 
about the direction of a tunnel axis from now on is 
needed. For that purpose, we have to build the three-
dimensional analysis method and effective observation 
of segment rings.  
As shown in Figure 1, the Fushimi Tunnel is now under 
construction in the very complex geological condition 
and two tunnels are passing each other very closely. 
The authority wants to know what may happen when 
two tunnel crosses by. The Fushimi Tunnel uses 
composite segments which have combined advantages 
of compact, lightweight steel and rigid concrete. No 
bolts are needed, allowing efficient construction of the 
large-diameter of l0.82 m tunnel. 

The reflective targets for precision photogrammetry 
was stuck on segment wall, by taking a photograph, the 
3-dimensional coordinates of a target were acquired and 
deformation of tunnel wall was visualized. In 
comparison with these actual deformation data as 
shown in Figure 2, stress and strain back analysis with 
MM are used to evaluate surrounding external pressures 
to tunnel segment and tunnel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1 Observation site 
of the shield tunnel

Fig.2 Concept of detection of 
deformation at each segment  
by digital camera method 
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2. Outline of the Fushimi Tunnel 
 
2.1 Tunnel planning 
 
As shown in Figure 3, Fushimi Tunnel is a pair of the 
two-lane traffic road tunnel being constructed by slurry 
shield method. The length of the tunnel is 855m each. 
This tunnel should be constructed in soil and rock 
geology, cross very busy major railway and water 
supply canal with very thin cover depth, and excavated 
under high density residential area. The slurry shield 
starts to excavate from the Fushimi launching shaft in 
east direction, turns around at the huge underground 
yard in rock site which was already constructed by 
NATM, and comes back to the arriving shaft where the 
machine started. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The cover depth is only 4.3m at the water supply canal 
and about 12m at the two railways. 
And the tunnel is planned under high density residential 
area so that the partial ownership was established and 
more careful excavation is needed to avoid the 
settlement the ground above.  
 
2.2 Slurry shield machine 
 
The photo of the machine is shown in Figure 4. 
The geological condition varies from soil to 
intermediate hard rock including crashing zone. 
Therefore, the machine should be designed to excavate 
in soil as a slurry shield machine and to excavate in 
rock like as a TBM.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Segment 
In order to reduce the cost of construction and to 
enhance the reliability of water resistance of the tunnel, 
composite segments named “NM segment” are adopted 
for this tunnel. Figure 5 shows the photo of NM 
segments. NM segment is a composite segment of steel 
beam and high strength concrete slabs and it has high 
strength and high stiffness. The features of NM 
segment are the followings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this study, we have equipped the MM with 
excavation process and material boundaries. Material 
boundaries, which are the boundary between different 
material property areas in the same block, have to set 
without losing easiness of mesh making. In realizing 
excavation process, it is essential that excavation 
surfaces work as free surfaces, and contacts and 
separations between blocks are enabled on the 
excavation surfaces. This report outlines the excavation 
process and the material boundary in the MM, and 
present analysis examples and applications. 
 
 
3. Deformation analysis using Manifold Method 
(MM)  for shield segment 
 
3.1 The present design method of segments    
 
Shield tunnel consists of segment ring by connecting 
with bolts etc. and uniting the segment used as a tunnel 
wall component. For this reason, the rigidity of the 
joint portion of a segment decreases compared with 
material itself. Moreover, depending on the way of 
assembling which shifted the joint position called the 
Chidorigumi, rings are constructed so that a strong 
mutual portion may assist the weak portion of a joint 
where the rigid decrease.  
Thus, it becomes most important when designing a 
segment how the rigid decrease of a joint part is 
evaluated. Therefore, the structural model of the 
following segment rings is proposed by the valuation 
method of this joint until now. 
 

 

Fig.3  Cross section of Fushimi tunnel 

Fig.4 Photo of the slurry shield machine 

Joint

Seals

Steel
Concrete

Joint

Seals

Steel
Concrete

Fig.5 NM segment 
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Fig. 6 The concept of a segment design method 

 
(1) Consider structure to be a flexural rigidity uniform 
ring without a segment joint 
a) This is a method which is called a conventional 
method, was proposed around 1960 and has been used 
widely till the present. 
b) Although it is called a correction conventional 
method and the structural model of a segment ring uses 
the same model as a conventional method. In order to 
evaluate the rigid decrease of a joint part, it is the 
method which introduced the effectiveness rate η of 
flexural rigidity, and introduced the concept of the 
premium rate ζ of a moment.  
 
(2) A segment joint is considered to be a multi-hinge 
system ring.  
The model by a multi-hinge system ring is a method 
used when the circumference of a tunnel is a good 
condition in many foreign countries, and is calculated 
by making a segment joint portion into hinge structure. 
If this method is used, the moment to generate will 
become quite small and the economical design will be 
attained. However, the influence of the surround ground 
around a tunnel is very great, and dangerous for 
applying to soft ground like Japan. 
 
(3) The ring which has a rotation spring in a segment 
joint and has a shearing spring in a ring joint 
It is called a beam-spring model and evaluated by using 
a segment main part as a beam by bending in a segment 
joint part and preparing the rotation spring to a moment 
in it. Moreover, in order to evaluate the alongside 
effect by the Chidorigumi, a shearing spring is arranged 
in a ring joint part. 
 
In this research, it made to model a segment ring in a 
simple form as actually as possible closely into the plan. 
By a new method, it enables to analyze the action of the 
segment, and aims to reduce construction costs. 
 

 

 

 

 

 

 

 

 

 

 

 
3.2 Manifold Method 
 
The Manifold Method (MM) (Shi 1991), as well as 
Discontinuous Deformation Analysis (DDA) (Shi 1988), 
is a powerful numerical analysis method to simulate 
displacement and deformation of rock mass including 
discontinuous planes such as joint, faults and so on. 
MM also has an advantage that mathematical meshes 
(cover) are independent of physical meshes or block 
boundaries, and mesh making for the analysis became 
easy. 
 
3.3 Result of analysis in case of Fushimi Tunnel site 
 
As shown as Fig.6, Tunnels comes closer at the end of 
west side each other. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Fushimi Tunnel Plan (Shield Method area) 

Examination 
section 

Fig.7  Tunnel arrangement and foundation composition 

70.00m 

35.00m 
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(1) Examination section 
 As shown in Fig.7, analysis was carried out in 
neighborhood construction case In addition, the size 
and soil composition of an analysis section are shown 
in Figure 8. The composition of analysis -- an analysis 
position (SEC-1 : STA 120), section width(70.00m), 
section height(35.00m) number of number6194, cover 
nodes 339. 
 
(2) Modeling of the shield tunnel 
The shield tunnel was approximated by right 12 square 
shapes, and was made into the outer diameter of 10.6m, 
and the inside diameter of 10.1m. Moreover, the shield 
segment was taken as equal 6 division. The shield 
segment was modeled as a block divided by the 
discontinuities. 
 
(3) Analysis conditions 
- Element conditions 
 Each element analyzed as a elastic element. 
- Boundary conditions 

Making the boundary condition of right-and-left both 
the sides of a section into the roller boundary which 
fixes displacement of the direction of X, the cross-
sectional bottom fixed displacement of the direction of 
X, and the direction of Y. 
- Physical properties value 
 The material properties of each soil layer supposes 
that it is the same as prior subsidence FEM analysis 
also as it is shown in a table.1. In addition, since 
convergence became slow when it being thought 
excessive to make the Young’s modulus of a segment 
into the Young’s modulus of steel materials, the 
physical-properties value of the segment was performed 
as follows. 
 Young’s Modulus：3.33×109（0.01 times of FEM 
analysis） 
 Poisson’s ratio：0.3 Unit weight：2700kN/m3 
 About the physical-properties value of joint, all 
cohesion set to 0.0 N/m2, and the internal friction angle  
was performed as follows. 
Between the soil and shield segment : The internal 
friction angle of soil  
Between shield segments    :  50 degrees 
・Parameter for analysis model 
 The main analysis parameters were set up as follows. 
 Normal Penalty Stiffness：1.0×108N/m，Shear 
Penalty Stiffness ： 1.0 × 106N/m ， Fix Penalty 
Stiffness：1.0×1010N/m 
 Time Step ： 0.01sec ， Maximum displacement 
ratio：0.0001，0pen-close Reference：0.000001 
 Iteration：1500 steps 
・Stage of analysis  
The analysis flow to iteration 1500 times was 
performed as follows. 
1～500 steps：gravity analysis 
500 steps：Excavation of Westbound tunnel 
600 steps：Introduce of Segment(The stress of the 

element of shield segment relevance part is set to 0.0, 
and material properties is changed into the value of 
segment)    
1000 steps：Excavation of Eastbound tunnel 
1100 steps：Introduce of Segment(The stress of the 

element of shield segment relevance part is set to 0.0, 
and material properties is changed into the value of 
segment)    
1500 steps：End of Analysis 

 
 
 
 
 
 
 
 
 
 

Fig.8    Digging of Eastbound tunnel is carried out 
first and Westbound tunnel after that. 
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Os1 8.000E+04 0.30 20.0 0.00 40
Oc1 3.000E+04 0.40 20.0 280.00 0
Oc2 3.000E+04 0.40 20.0 280.00 0
Os2 8.000E+04 0.30 20.0 0.00 40
Oc3 3.000E+04 0.40 20.0 280.00 0

Segment 33.3+e7 0.30 2516-e3 0.50

γ

(kN/m
3)

C

(kN/m2)
φ
(°)

Color Material
E

(kN/m2)
ν

Table.1  Material properties 
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It is required to verify the function of the designed 
segment in addition to the rational design method of the 
segment by the MM method as shown in Fig.10 and 11. 
Since the three-dimensional arrangement based on 
Chidorigumi of segment is adopted in many cases, the 
interaction between segments works in three 
dimensions.  
For this reason, we decided to propose digital 
photogrammetry as the technique of the ability to 
observe three-dimensional modification of a segment.  
 
4. Measurement using photogrammetry for shield 
segment 
 
4.1 Digital photogrammetry 
 
In order to measure the displacements, we need to 
install the targets that can reflect the flashlight of 
camera. The fundamental mathematical model of digital 

photogrammetry is an optical triangulation that 
describes the perspective transformation from two 
dimensional image coordinates into three dimensional 
object space coordinates. The ultimate extension of the 
principles is to adjust many photogrammetric 
measurements to ground control values in a single 
solution known as a bundle adjustment. The analytical 
process is so named because of the many lights rays 
that pass through each lens position constituting a 
bundle of rays. Any object point can be determined as 
the intersection of the corresponding rays from each of 
many images. 

All parameters describing the perspective 
transformation process can be also determined without 
prior knowledge of camera positions and calibration 
parameters. 

The computational model of the bundle adjustment 
is based on the well-known collinearity equations as 
shown in Figure 12.: 

( ) ( ) ( )
( ) ( ) ( )033032031

013012011

ZZaYYaXXa
ZZaYYaXXacΔxx

−+−+−
−+−+−

−=      

( ) ( ) ( )
( ) ( ) ( )033032031

023022021

ZZaYYaXXa
ZZaYYaXXacΔyy

−+−+−
−+−+−

−=       (1)  

                                                                 
where x and y are the observed image coordinates; 
X0,Y0,Z0  and X,Y,Z are the object space coordinates of 
the camera positions and object points, respectively; the 
a’s are functions of three rotation angles of each 
image; yx ΔΔ , and c are the interior orientation 
elements; xΔ  and yΔ  are perturbation parameters 
which describe departures from collinearity due to lens 
distortion and in-plane and out-of-plane image 
distortion, c being the focal length. This model 
including the interior orientation elements is known as 
a self-calibrating bundle adjustment. This method has 
the advantage of obtaining high photogrammetric 
accuracies with cameras having unknown calibration 
parameters.  
The collinearity equations can be recast into the 
following observation equations by linearization:  

Δ+ΧΑ+ΧΑ= 2211v                      (2)                                
where A1,A2 are the design matrices of the unknown 

exterior orientation elements, vector X1, and object 
point coordinates, X2; Δ is the discrepancy vector, νis 
the vector of image coordinate residuals. Solution for 
X1 and X2 is according to the method of least-squares.    

Fig.9  Displacement at the time of the 1500 
steps on the basis of 500 steps 

Eastbound Westbound

Fig.10    Deformation of Segment  Displacement at the 
time of the 1500 steps on the basis of 500 steps   
Displacement arrow is expanded by 10 times. 

Fig.11   Displacement vector of Westbound tunnel
Displacement at the time of the 1500 steps on the basis of 
500 steps  Displacement arrow is expanded by 50 times. 

77



 

 
Figure 12. The concept of collinearity equations 
 
4.2 How to apply the method at shield tunnel segment 
measurement 
 
As seen in the part of analysis, there is difficulty in 
solving strictly the action between the segments of the 
structure and the hinge portion of the rigid, very big 
segment in contact with soft ground, and the direction 
of an axis. In order to solve these problems, it is 
necessary to observe the actual action of segments, and 
it needs to feed it back to the analysis method. 
In order to observe deformation, it supposes that each 
segment is regarded as a rigid body which exercises as 
a block, and a target is arranged so that the form of a 
segment can be expressed. 
We suggest to apply digital precision photogrammetry 
so that the monitor of the deformation of the segment 
ring of the tunnel wall can be carried out in detail. With 
regard to the unstable segments identified in the MM 
analysis and the segment borders, displacements of 
segments along tunnel ring were monitored by 
photogrammetry right below the observational zone 
like as nieghboring construction, i.e. crossing Lake 
Biwa water supply canal and railway crossings of 
Keihan line and JR Nara line.    
During the observation procedure, we plan to install 
more than 300 targets placed tunnel wall were 
photographed by the digital photogrammetry 
technology, at first stage photography will carry out 
when the Shield machine go through the place and 2nd 
stage is when the machine come back to the observation 
zone. 
 
 (1)Photographing Equipment 
Nikon D80 camera and a 18mm lens of the same 
manufacturer are selected. Nikon SB-600 Speedlight 
Flash is used inside the tunnel wall.  
 
(2)Targets 
After selecting the camera and lens, the diameter of 
targets is determined according to the measured 

distance to ensure the images of the targets could come 
out in 5 pixel or larger in diameter. The diameter is set 
at 30mm here. An example of target layout is shown in 
Figure.13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure.13 Target Layout (colored lines present boundary of 
each segment) 
 
(3)Installation of Scales 
At the Fushimi Tunnel, it is planned to install scale bars 
for external measurement. Six to ten 1m-long fiducial 
scale bars are prepared and installed.  
 
(4)Photographing Conditions 
The lens stop was set at F22 at maximum. The infinite 
focus was selected. The shutter speed and ISO 
sensitivity were set at 1/250 and 200, respectively. 
Photographs were taken for every 6m at 3 points each 
at both upper and lower locations for each transversal 
direction. 
 
5. Conclusions 
We carried out a basic examination to propose the 
shield tunnel segment design method using MM. As a 
result, we recognized that the MM can treat segments 
as rigid blocks in soil ground appropriately. In 
examination, we also recognized the necessity to 
examine the stiffness value between segments.  
In order to verify the applicability of the MM, we 
planned the in-site observation by a photogrammetry 
method at Fushimi Tunnel, which is now under 
construction. By comparing the result of MM with 
actual data of displacement at Fushimi Tunnel, we 
expect that the result will be fed back to the 
determination of MM parameters such as Penalty 
Stiffness. 
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The forward discontinuous deformation analysis method (DDA) adopts complete first order 
displacement approximations, so it has a simple form of block stiffness sub-matrices and high 
efficiency. However this displacement function can only describe constant stress or stain within 
each block, and fails to model complex deformation patterns such as bending or twisting. Some 
usual improvements include: series of higher order, or sub-blocks meshing, or coupling the 
DDA method with the Finite Element Method (FEM) or finite difference method. A complete 
new way of approximating block displacements is suggested here, namely the Moving Least-
squares (MLS) approximation. To do so, interpolative nodes should firstly be scattered into 
blocks or along their borders, it can be looked as coupling DDA with Element Free Galerkin 
(EFG) method. The advantage of adopting this new displacement approximation mode is 
mainly that all advantages of Meshfree Methods over meshing methods can be used directly by 
DDA, such as crack propagation within blocks, block breakage, etc. 

Keywords: Discontinuous Deformation Analysis (DDA); Element Free Galerkin (EFG); 
Meshfree Methods; displacement approximate mode; Move least square (MLS) 

 
 

1. Introduction 
 
Numerical modeling of geological discontinuities has a 
long history, the development of the joint element by 
Goodman et al is a traditional way (Goodman et al 
1968), and the complete discrete element methods are 
created thereafter, e.g. the earlier Discrete Element 
Method (DEM) by Cundall and the latter DDA by Shi. 
DDA is comparatively an efficient method based on 
rigorous mathematical and mechanical theory, and till 
now, applied to more and more engineering problems, 
such as underground tunnels and caverns, foundations, 
slopes, groundwork, as well as earthquakes, demolition 
impact, particles’ motion, etc. 

DDA originally adopts first order series as block 
displacement function, so it has a simpler matrix form 
compared with finite element method, which makes it 
very efficient. But it can only describe constant stress 
or strain within each block, fails to model block 
bending or twisting or complicated stress fields, even 
only three constraint points (not along one line) can fix 
one block. A general series approximation is originally 
proposed by Shi (1988), different blocks can have 
different order series as displacement functions (Koo 
and Chern 1996; Max 1996). Actually series with too 
high order (≥ 4) leads to numerical vibration (namely 
Runge phenomenon) and is also difficult to implement, 
so the order is usually restrict to be not above 3, which 
can meet the demand for describing block bending, but 
might has difficulty in analyzing block fracture etc. To 
investigate block material nonlinear mechanical 
response, coupling with FEM has been tried by 
meshing DDA block into finite elements (Chang 1994; 
Lee 2002). However, this meshing method has 

difficulties in itself while treating with crack 
propagation or large deformation. Sub-block meshing 
of original large blocks has been tried to investigate 
crack propagation, see Amendei and Lin (1996) and etc.  

A totally new displacement approximate mode is 
proposed here, which never re-mesh large blocks but 
uses meshfree interpolative nodes scattered into blocks 
or along the borders, then the MLS approximation 
procedure is used to evaluate the approximate 
displacement value at any point of the blocks. This can 
be looked as coupling the EFG method (Belytschko et 
al 1994), a thriving numerical method that overcomes 
the shortages of meshing methods. By this way, DDA 
can easily treat with block breakage, crack propagation, 
large deformation, material nonlinear mechanics 
response etc. 

Like FEM, DDA is a typical displacement method 
with implicit solution of equilibrium equations, block 
stiffness sub-matrices and force variables are derived 
by minimizing the total potential energy. For different 
displacement approximate modes this procedure is 
similar, but might be different in formula forms. So, in 
this article, this procedure is repeated while using this 
new mode, the corresponding formulae are list in 
section 3. Some numerical examples are tested in 
section 4, which demonstrate this new method is 
feasible. 
 
2. The complete first order displacement approximation 
DDA displacement function is the complete first order 
displacement approximation of block displacements. As 
far as two-dimension is concerned ,each block has six 
degrees of freedom including translation variables of 
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rigid body 0u 、 0v , rotation angle 0r  and deformation 

variables of block(normal strain xε 、 yε  and 

tangential strain xyγ ), as shown below: 

( )xyyxrvu γεε000=d                                (1) 
The shape matrix is presented as the formula (2): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−
−−−−

=
2/)()(0)(10
2/)(0)()(01

000

000

xxyyxx
yyxxyy

T              (2) 

The displacement ( )Tvu=u  of any point ( )yxx  
of the block could be denoted as product of 
displacement variables as the formula (1) mentioned 
and the shape matrix (2), shown as the following 
formula (3): 

TdTu ⋅=                                                                   (3) 
The aboveu is easily proved to be equivalent to the 

complete first order approximation of block 
displacements as the following form (4), where ia  and 

ib ( 321 ,,i = ) are known constants, so the first 
derivatives of displacements are constant, then block 
stress and strain are constants. 

⎩
⎨
⎧

++=
++=

321

321

bybxbv
ayaxau

                                              (4) 

 
3. The scheme of DDA with the MLS approximation 
 
3.1 Introduction of the MLS approximation 
 
The MLS approximation proposed by Lancaster and 
Salkauskas (1981) is used for smoothing and 
interpolating data, and is latterly adopted by the EFG 
method to construct trial function and test functions. 
Suppose a smooth function )(xu  defined on domain 

Ω , with N interpolative nodes, each node ix valued 

)( ixu ( Ni ,,L1= ), then a local approximation at 

evaluation point x is )xx(u ,h : 

)x(a)x(p)xx(u ⋅= Th ,                  (5) 
Where x  is the position of the local nodes nearby, the 
vector )x(p is complete polynomial basis with 
consistency m , the unknown coefficient vector )x(a  
is selected by minimizing the following weighted least-
squares discrete L2 error norm, shown in the formula 
(6), )xx()x( ii ww −= is the weighting function: 

∑
=

−=
N

i
i

h
iw

1

2)]x(u)xx(u)[x(J ,                    (6) 

Substitute function (5) to (6), and minimize J  by 
setting the derivative of J  with respect to )(xa  equal 

to zero, i.e. 0=
∂
∂

)x(a
J

, then )(xa is obtained by: 

dxBxAxa ⋅⋅= )()()( -1                  (7) 

Where d represents the node displacements )( iu x , 

( Ni ,,L1= ). The matrix )x(A  called moment 
matrix, is of size m × m , and has to be inverted, ,see 
formula (8); The matrix )x(B  is of size m × N ,see 
formula (9): 

∑
=

=
N

i
i

T
iiw

1
)x(p)x(p)x()x(A                              (8) 

)]()(,)()(,)()([)( 2211 NNwww xpxxpxxpxxB K=
                                                                                      (9) 

In order to extend this local approximation to the 
whole domain, the so-called moving-procedure is 
introduced to achieve a global approximation, usually 
controlled by the weighting function )x(iw . 

( )
xx

xxu)x(u)x(u
=

=≈ ,hh                       (10) 

Then the shape functions can be presented as: 
)x(B)x(A)x(p)x(N 1−= T               (11) 

The first order partial derivative of shape 
function )x(N  is k,N  ( 21,k = ): 

)]x(B)x(A)[x(pN 1−= k
T

k ,,

)]x(B)x(A)x(B)x(AAA)[-x(p kk
T

,,
111 −−− ++  

           (12) 
The MLS approximation has high accuracy and 

good consistency, as well as smoothness of any order, 
but the shape function is not interpolating and the 
calculation task is heavy. In this article, the MLS 
approximation is adopted as the displacement 
approximation mode for DDA, of course other similar 
approximation modes of Meshfree Methods are 
adoptable. 
 
3.2 The global equations 
 
In this section, the scheme of DDA coupling with a 
general Meshfree displacement approximation mode is 
discussed. Firstly, interpolative nodes should be 
arranged according to each block’s geometry, and the 
nodal displacements are taken as the unknown variables 
to be solved; so the approximate displacement at any 
evaluation point can be constructed by the Meshfree 
displacement approximation mode adopted by DDA, 
e.g. the MLS approximation. Then according to the 
procedure of minimizing potential energy, stiffness 
matrices and force variables are deduced, the unknown 
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nodal displacements are obtained by solving the 
established linear algebra equations. This procedure is 
repeated for each contact open-close iteration step. 
Finally, after reaching a converged contact status, block 
displacements, stresses or strains are solved again using 
the MLS approximation or other similar ones. The 
above procedures should be repeated at each time step 
until all the time steps finish. The MLS approximation 
is adopted in this scheme, to other displacement 
approximation mode it is similar. 

Simultaneous equations system is established as 
below for a two-dimensional block system. Suppose 
there are in discrete nodes in block i , the unknown 

displacement sub-vector of node j is ( )j
i

j
i dd 21 , , and 

the force sub-vector of node j is ( )j
i

j
i pp 21 , , so the 

displacement sub-vector id  and load sub-vector iF  of 
block i  can be denoted as formula (13) and (14): 
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For a block system composed of m blocks, the 
simultaneous equilibrium equations can be established 
as formula (15). 
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Where iiK  is the matrix ( ii nn 22 × ) representing the 

sum of contributing sub-matrices for the block i, ijK  is 

the matrix ( ji nn 22 × ) representing the sum of 
contributing sub-matrices of contacts between blocks i 
and j or other inter-block actions like bolting etc, the 
global coefficient matrices are positive and symmetrical 
along the diagonal. iF  is the matrix of resultant 
equivalent forces acting on the block i. Π  represents 
the potential energy, according to the minimum 
potential energy principle, we have: 

iiK = 2

2

id∂
Π∂

; ijK =
ji dd ∂∂

Π∂ 2
; 

iF =
id∂

Π∂
−

)0(
; jF =

jd∂
Π∂

−
)0(

                                (16) 

 
3.3 Extremum of the total potential energy 
 
DDA, as an implicit displacement method, is similar to 
FEM, which deduces the stiffness matrix and force 
vector according to the extremum principle of the total 
potential energy. The variation process is similar for 

different displacement modes but different in 
expression form. In this section, many influencing 
factors are discussed, which contribute to stiffness sub-
matrices and force vectors, and include: elastic strain 
energy, initial stress and strain, inertia, external loads, 
contact forces and friction forces between blocks, 
restraint displacements, etc. 
 
3.3.1 Elastic strain energy 
The stiffness sub-matrix by minimizing elastic strain 
energy of the block i can be expressed in the general 
form shown as the right part of the following formula 
(17) and contribute to sub-matrix iiK . Here the symbol 
‘⇐ ‘ represents that the right part is added to the left. 

∫⇐
Ω

Ωdii DBBK T                           (17) 

Where D , called the Young’s module matrix, has the 
same expression as in FEM, and the matrix B  is 
shown as below: 

[ ]NBBBB ,,, K21= ;
⎥
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N
N

N

N 0
0B ;  

N,...,l 1= ; 
N is the number of nodes for the block i, k,lN  is the 
first order derivative of the shape function, as shown in 
formula (12), y,xk = . 
 
3.3.2 Initial stress and strain 
Suppose the block i has the initial stress 0σ  and the 

initial strain 0ε' , the equivalent load sub-matrix can be 
expressed as: 

∫∫ +−⇐ ΩΩ
Ω

ddi 0
TDεBCF '                             (18) 

Where ][ N21 C,,C,CC K= , 

[ ]0000
xyx,lyy,lxyy,lxx,ll NNNN τστσ ++=C , N,...,l 1= . 

 
3.3.3 Inertia force 
Denote ρ  as the block density, t  the time step of this 

iteration, 0v  the nodal initial velocity. Then the inertia 
force’s contribution to the global equations can be 
listed as formula (19)- (20). 

Ω⇐ ∫Ω d
tii NNK T

2

ρ                                      (19) 

0
T VNNF ⋅Ω⇐ ∫Ω d

ti
ρ                                  (20) 

 
3.3.4 Displacement constraints 
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Because the MLS shape functions are not interpolative, 

the penalty method is preserved to impose the essential 

boundary conditions. The penalty spring stiffness 

k should be chosen beforehand (usually 40-100 times 

material Young’s modulus). Suppose a constraint 

displacement 
⎭
⎬
⎫

⎩
⎨
⎧

=
m

m
c v

u
u at the point 0x , we have: 

iiK ⇐ )()( 00 xNxN Tk ； 

iF ⇐ c
Tk uxN ⋅)( 0                                        (21) 

 
3.3.5 External loads 
Generally external loads include fixed loads, distributed 
loads or volume loads (e.g. gravity), etc. For fixed load 

0f , the equivalent load to the global equations is 
denoted as the following expression (22). 

NfF ⋅⇐ 0i                                                    (22) 

For distributed load 0f  along the border Γ , see the 
formula (23). 

Γdi ∫ ⋅⇐ NfF 0                                            (23) 

The volume load (such as gravity) 0g  has the 
equivalent load contribution as the formula (24). 

0gNF ⋅⇐ ∫ Ωdi                                           (24) 

 
 
3.3.6 Contacts analysis 
The DDA employs so-called point-face contact model 

suitable for treating with large sliding of blocks or 

departments between blocks, contacts constraints are 

‘no tension between blocks and no penetration of one 

block into another’ usually imposed by the penalty 

spring method (Goodman et al 1968). While this 

method is adopted again in DDA with this new 

displacement mode, additionally the nodes on the edges 

need to be handled as well as block vertices. For the 

block displacement is nonlinear, overlapping between 

curve edges is possible and should be avoided, e.g. in 

Fig 1, the blocks A and B have border nodes possibly 

intruding into each other block. 

Suppose the block i  has iN  nodes, the block j  

has jN  nodes and the spring stiffness p , there is a 

contact between point 1p  and edge 32 pp (the 

coordinates of point kp denoted as ( )kk yx , 

321 ,,k = ). The area of triangle composed of the three 
points kp  is s0, the edge length l . Then the 
contributions to the global equations can be denoted as 
the following formulae (25)- (27): 

eeK T
ii p⇐ ， ggK T

jj p⇐                             (25) 

geK T
ji p⇐ ， egK T

ji p⇐                            (26) 

l
ps T

i
eF 0−⇐ ，

l
ps T

j
gF 0−⇐                       (27) 

Where components of e  and g  are listed as the 
following (28)- (29): 

( )21 II ee=Ie ; ( )N1 eee L= ; 
iN,...,I 1=                                                               (28) 

( )21 II gg=Ig ; ( )N1 ggg L= ; 
jN,...,I 1=                                                              (29) 

But components of Ie  or Ig  are different from 
that with linear displacement mode, for normal spring, 
the components are listed as: 

lyxNyye II ),()( 11321
i−= ; 

lyxNxxe II ),()( 11232
i−= ; 

lyxNyyyxNyyg III )],()(),()[( 332122131
jj −+−= ; 

lyxNxxyxNxxg III )],()(),()[( 331222312
jj −+−= ;(30) 

Similarly, for tangential spring, the components are 
as: 

lyxNxxe II ),()( 11231
i−= ; 

lyxNyye II ),()( 11232
i−= ; 

lyxNxxg II ),()( 00321
j−= ; 

lyxNyyg II ),()( 00322
j−= ;                             (31) 

In function (30)- (31), )(xk
IN  is the shape function; 

the superscript j,ik =  represents the block number. 
 
 
3.3.7 Friction forces 
Suppose a contact between point 1p  of the block i and 
the edge 32 pp  of the block j (the coordinate of 

Fig 1 the blocks with possibly intruding 
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point kp denoted as ( )kk yx , 321 ,,k = ), the edge 
length l . The vertical projection of point 1p  to the 
edge is 0p  (x0, y0), the friction force is denoted as f . 
Then the equivalent loads to the block i contributed by 
the friction force can be expressed as: 

HF ⋅−⇐ fi                                                 (32) 

Where [ ]TNN HHHHHH 2122211211 ,,,,,H L= , and the 

components of H  are as following: 
lxxyxNH II ))(,( 231111 −= i ; 

lyyyxNH II ))(,( 231122 −= i ;                          (33) 
The equivalent loads to the block j : 

HF ⋅⇐ fj                                                   (34) 

The components of H are listed as: 
lxxyxNH II ))(,( 230011 −= j ; 

lyyyxNH II ))(,( 230022 −= j                               (35) 
 
3.4 output of block stress fields 
 
The block stresses at the end of certain time step are 
accumulated by all the increments of the time steps 
before, and are also the initial stresses of the next step, 
as shown in the following formula (36): 

∑Δ= σσ                                                                (36) 
In DDA with linear displacement mode, the stress 

increment σΔ  is the even value of the whole block, 
obtained by the product of the solved strain increment 
εΔ  with D (the Young modulus matrix), namely σΔ = 

εΔ ×D. As for the Meshfree displacement approximate 
mode, the stress increment ( )xσΔ  at certain point x in 
the block should be computed as following: 

( ) ( ) dNDxεDxσ '⋅=Δ⋅=Δ                                (37) 
Where 'N is the derivative of the shape function. 

The total stress iσ  of the interpolative node i  can 
be accumulated according to the formulae (36)-(37); 
while for certain evaluation point x , the stress ( )xσ  
should be calculated as the function (38), which 
corresponds to implement a MLS fit according to the 
stresses at the influent nodes around. 

( ) ( )∑
=

⋅=
n

i
ii

1
σxNxσ                                                  (38) 

Here n represents number of the influent nodes around 
point x  in the block, ( )xN i  is the shape function 
components of one of the influent node i . 
 
4. Numerical examples 
 

4.1 Example 1. The overlapped beams under point 
load 
 
Fig 2 shows two overlapped beams fixed on the left 
side, and the subjacent one suffers a point load P 
upward (at the right-bottom angle point A) (Zheng et al 
2002). The size of each beam is 10m×1m×1m, no 
friction between the beams, Young modulus 
1500MPa,and Poisson’s ratio 0.25. Suppose case 1: 
P=1.5KN corresponds to small deformation problem; 
and Case 2: P=1.5MN which corresponds to large 
deformation problem. 

 
In case 1, the y displacement of the reference point 

is about 2.02569mm after 50 steps, identical with that 
in Zheng et al (2002), as shown Fig 3. The stress xσ  
field is shown at Fig 4; the max stress value is about 

± 45Kpa, lies on the left-hand of the beams. 
In case 2, large displacements of the two beams 

occur since the point load P is large, the maximum 
displacement at A is 1.94913m. The stress field xσ  
and the deformed configurations are shown in Fig 5, the 
max stress value is about ± 45Mpa, on the left-hand of 
the beams, which sounds reasonable. 
 
 
 
 
 
 
 
 

Fig 2 overlapped beams problem 

Fig 3 y displacement of point A vs time of case 1 
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4.2 Example 2. A slope sliding along the circular 
failure surface 
 
Suppose a slope sliding along a potential circular 
sliding surface shown in Fig 6, with height 10m, 
sloping at angle α=45º, the friction angle Ф=20º, weight 
ν=20KN/m3, Poisson ratio μ=0.35,no cohesion force. 
The slope is separated into several blocks with 
interpolative nodes scatted shown in Fig 6. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The displacement ratio is set 0.001, time-step is 
automatically set by the DDA program. Fig 7 shows the 
max principal stress result of the 1st iteration time-step, 
which indicates that the stress, caused mainly by 
gravity, increases with the depth and the stress level of 
small blocks above the sliding surface is relatively 
lower, from -10KPa to -35KPa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For DDA with two different displacement modes, 
the deformed block configurations (shown in Fig 8-9) 
at the 100th time step seem to be similar. In Fig 9 the 
maximal principal stress field is also displayed, which 
is calculated by DDA with the Meshfree displacement 
mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4 x normal stress and the deformed 
configuration of case 1 

Fig 5 x normal stress and the deformed  
Configuration in case 2 

Fig 6 the numerical model of the slope with a 
circular Sliding surface 

Fig 7 the max principle stress of the 1st iteration time step 

Fig 8 the result of linear mode DDA  

Fig 9 the result of DDA with MLS mode  
(With maximal principle stress) 
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4.3 Example 3. An arc beam under fixed load 
 
The numeric model of the arc beam under a fixed load 
is shown in Fig 10, which is composed by 7 discrete 
blocks (each forms an isosceles trapezoid 
0.42m×0.28m×0.5m×0.5m), the const fixed load -
0.05T , Young’s modulus 200T/m2; Poisson ratio μ=0.2, 
Density ρ=0.1T/m3,Gravity -1.0T,no friction between 
blocks. 
 
 
 
 
 
 
 
 
 
 
 

The block configuration results calculated by DDA 
with different displacement modes at the 30th time step 
are very similar shown in Fig 11 and Fig 12. In Fig 12, 
the block stresses xσ  calculated by DDA with MLS 
approximate mode are also displayed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The linear mode DDA can get good results of 
block configurations and displacements, in an other 
word, blocks with simple geometry and possible simple 
stresses need not be modeled by displacement 
approximation functions of high orders. 
 

4.4 Example 4. A collapsing roof 
 
The size of roof is 270m×180m, the bottom blocks 
(40m×20m) on the left and right side are fixed, the 
Young’s modulus 5000Pa, Poisson ratio 0.3, the density 
0.1N/m3, gravity -0.5N/m2, and no friction between 
blocks. Fig 13 shows the result of the linear mode DDA 
at the 500th iteration time step; and Fig 14 shows the 
result of the new mode DDA as well as the maximal 
principal stress field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On comparing the above Fig 13 with Fig 14, it is 
found that there is some slight difference between 
deformed block configurations, no block bending 
phenomena occur in Fig 13, but obvious in Fig 14.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10 the numeric model of the arc beam model

Fig 11 Result of the linear mode DDA 

Fig 13 the result of the linear mode DDA  

Fig 14 the result of the new mode DDA 
(With the principal stress field) 

Fig 15 Contrast of displacement sedimentation vs. 
time at the middle position of the roof’s top 

Fig 12 Result of the new mode DDA
 (With xσ  normal stress) 
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Fig 15 shows displacement sedimentation vs. time 
at the middle position of the roof’s top, Obviously the 
roof sedimentation obtained by the new mode DDA is a 
little bigger than the solution obtained by DDA with the 
linear mode, which we call ‘block bending effect’. 
 
5. Conclusions 
 
In the original DDA method, a simple linear 
displacement mode is adopted, which is very suitable 
for simple block geometry or simple and low stress 
levels. For complicated block geometries and stresses 
and deformations (e.g. block bending), displacement 
functions of high order should be implemented. 

In this article, a meshfree displacement 
approximation mode is adopted, namely the MLS 
approximation. The application to numerical examples 
in section 4 shows that the scheme of DDA with the 
MLS approximation is feasible; contrasts of numerical 
results of DDA with linear displacement mode and that 
with MLS approximation show that, except when block 
bending is not ignorable, the deformed block 
configurations are very similar for both displacement 
approximation modes; much more accurate stresses are 
of course obtained by MLS approximation of block 
displacement, but much heavier task of calculation is 
taken too since the MLS shape function is not simple in 
form. 

Strict post error evaluation of strains or stresses 
should be done but eliminated in this article, for 
research on this branch in Meshfree Methods seems to 
be not enough mature before adopted into DDA as a 
dynamic numerical method. 

Further investigations of DDA with this new 
approximation mode can include several branches, e.g. 
nonlinear mechanics response of block materials, crack 
propagation inside the blocks etc. 
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DDA with higher order polynomial displacement functions for 

large elastic deformation problems  
 

WANG XIAO-BO, DING XIU-LI, LU BO, WU AIQING  
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The original formulation of DDA (Discontinuous Deformation Analysis) suggests that a higher 
polynomial displacement function could be used to describe the movement of any point in a 
two-dimensional (2D) domain. By using series as the displacement approximation, a single 
block can admit highly sophisticated deformation ability. However, in the higher order case, the 
large displacement and large deformation are more important in discontinuous cases. As the 
blocks move or deform, the updating block shapes and positions will produce different block 
contacts and different interactive forces, which will change the whole block structure and affect 
the modes of failure in a way more sensitive than in a problem in the continuum mechanics. 
Therefore, there are two main problems to solve for large deformations. Firstly, when large 
deformation is involved, even the originally straight edged block will deform to one with curved 
edges, so the contacts judge among blocks becomes more complex. Secondly, the initial stress 
of each step starts with the deformed block shape and position resulting from the previous step, 
the integration domain of initial stress has changed and the initial stress redistributes in the 
block area, so the integration domain of initial stress for the previous step must be translated to 
the last step by coordinate translation, moreover, the initial stress functions become more and 
more complex with the step increasing. For the first problem, the boundary dividing method is 
adopted. For the later one, the first method is to simply accumulate the coefficients of initial 
stress functions without considering the changed integration domain, it is easy to do but not 
always valid for large deformations; The second method is coordinate translation approximation 
method; this approximation can not only improve the integration accuracy of initial stress, but 
also enable the initial stress functions to retain the polynomial form and be integrated by 
Simplex Integration Method. The program was used in an example of a cantilever beam and a 
comparison was made between results obtained using these proposed methods and other 
methods in order to demonstrate excellent accuracy and efficiency. 
 

Keywords: DDA; Contacts judge; Integration of initial stress; Coordinate translation; Simplex 
Integration Method 

 
 

1. Introduction 
 
The numerical method of Discontinuous Deformation 
Analysis (DDA) was originally proposed by Dr. Gen-
hua Shi in 1980s. This method directly simulates the 
behavior of interaction between block joints instead of 
using the traditional method by decreasing the material 
strength. It uses the displacements as unknowns and 
solves the equilibrium equations in the same manner as 
the matrix analysis of structures in the finite element 
method. This method is mainly used for large 
displacements and deformations problems. 
In the original formulation (Shi, 1993; 1996), it was 
suggested that a polynomial displacement function 
could be used to describe the movement of any point in 
a two-dimensional (2D) domain. In developing the 
computer code for DDA, the first order polynomial 
displacement function approximation was assumed, so 
that the stress and strain within a block in the model are 
constant. This approximation limits somewhat the 
application of DDA in areas where stress 
concentrations are significant. For example, when 

computing coal mine excavations, the block bending 
has to be modeled. While modeling earthquakes, the 
waves appear in soil or rock layers, which are 
considered as blocks. The movement of earth crust 
shows more complex deformation patterns, which 
include bending and twisting. 
By using series as the displacement approximation, a 
single block can admit highly sophisticated deformation 
ability. However, in the higher order case, the large 
displacement and large deformation are more important 
in discontinuous case. As the blocks move or deform, 
the updating block shapes and positions will produce 
different block contacts and different interactive forces, 
which will change the whole block structure and affect 
the modes of failure in a way more sensitive than in a 
problem in the continuum mechanics. Toward this end, 
an attempt is made to develop a more general approach 
such that the DDA computer code has the capacity to 
accept an n-order polynomial displacement function. 
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2. Displacements and deformations of blocks 
 
The large displacements and deformations are the 
accumulation of the small displacements and 
deformations of steps. Within each step, the 
displacements of all points are small and the 
displacement functions can be described by series 
approximation.  
 
2.1 Higher order displacement formulation and series 
displacement approximation 
 
The displacement function for each block can be 
generalized in the series form; the displacements of any 
point (x, y) can be represented in general a two 
dimensional series approximation.  
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where the functions fj(x, y) are series, and d2j-1 , d2j are 
the coefficients of the series representation. The 
functions fj(x, y) are linearly independent, which can be 
defined as a (j-1)th order polynomial. Let q = 2m, 
formula (1.1) can be written in matrix form: 
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where the subscript “i” represents the ith block, (u, v) 
are the displacements of point (x, y), [Ti] is a 2×q 
matrix and [Di] is a q×1 matrix.  
[Ti] represents the displacement functions 
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[Di] represents the deformation variables 
( )Tqiiqiiii dddddD )1(321][ −=   

For example, a complete 2-dimensional first order 
Taylor series expansions about the point (x0, y0) can be 
written in matrix form: 
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where (x0, y0) is the coordinates of the gravity center of 
each block. The series expansions about the point (x0, y0) 
will be more accuracy than ones about the point (0, 0). 
 

2.2 Simultaneous equations with series as 
displacement function 
For the discontinuous deformation analysis, the 

equilibrium equations are established by 
minimizing the total potential energy and solved 

directly. The jth order approximation requires 
q=(j+1)*(j+2) equilibrium equations per block. Also 
the external forces and internal stresses (σx , σy , τxy ) 
reach equilibrium. Individual blocks are connected and 
form a block system by contacts between blocks and by 
displacement constraints on single blocks. Assuming 
there are n blocks in the defined block system, the 
simultaneous equilibrium equations have the form: 

[K][D] = [F] or 
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Because each block has q degrees of freedom, each 
element [Kij] in the coefficient matrix given by equation 
(1.4) is a q×q submatrix. [Di] and [Fi] are q×1 
submatrices where [Di] represents the deformation 
variables of block i, [Fi] is the loading on block i 
distributed to the deformation variables [Di]. Submatrix 
[Kii] depends on the material properties of block i and 
[Kij ] , where i ≠ j is defined by the contacts between 
block i and block j.  
These equilibrium equations are derived by minimizing 
the total potential energy ∏ done by the forces and 
stresses. The following parts are the main formulas of 
the forward model with series as the block 
displacement function.  
 
3. Sub matrices of stress, strain of a single block 
 
3.1 Elastic sub matrices 
 
For each displacement step, assume the blocks are 
linearly elastic, then for conditions of plane stress: 
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where E and ν are for plain stress or plain strain as 
appropriate. 
For the higher order displacement functions, the plane 
strain is: 
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The strain energy ∏e done by the elastic stresses of 
block i is: 
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where the integration is over the entire area of the ith 
block.  
The derivatives are computed to minimize the strain 
energy ∏e : 
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[krs] forms a q×q submatrix: 
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The matrix of (1.8) is added to the submatrix [Kii] in the 
global equation (1.4).  
 
3.2 Sub matrices of initial stress 
 
For the ith block, the potential energy of the initial stress 
(σ0

x , σ0
y , τ0

xy ) is: 
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where the integration is over the entire area of the ith 
block, (σ0

x , σ0
y , τ0

xy ) represents the initial stress 
functions. 
The derivatives are computed to minimize the strain 
energy ∏σ: 
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which forms a q×1 sub matrix 
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which is added to [Fi] in the global equations (1.4).  
In the series cases the initial stresses (σ0

x , σ0
y , τ0

xy ) 
are not necessarily constants, so, the integration of the 

initial stress is discussed here. 
 
4. Integration of initial stress 
 
In the higher order series cases, the large displacement 
and large deformation are more important in 
discontinuous case. As the blocks move or deform, the 
updating block shapes and positions will make the 
initial stress redistribute on the block area. So, the 
initial stress functions will become more and more 
complex with the step increasing. Because the initial 
stress of each step starts with the deformed block shape 
and position resulting from the previous step, then, the 
integration domain of initial stress will change with the 
step, therefore, the integration domain of initial stress 
for the last step must be converted from the previous 
step by coordinate translation. 
 
4.1 Coordinate translation 
 
Assume that (x, y) is any point of block i for the 
previous step, (x’, y’) is the same point of the block for 
the last step (see Fig. 1). As the block moves or 
deforms, the integration domain of initial stress changes, 
the domain for the previous step will convert into the 
one for the previous step.  

 
Fig. 1: The movement of a block from the previous step 
(solid line) to the last step (dash line). 
From the previous step to the last step, we have 
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where (u, v) is the displacement of point (x, y), it can be 
obtained from (1.4). 
For obtaining the coordinate translation from the last 
step to the previous step, we must solve the formula 
(1.11). Assume we can solve formula (1.11), the 
coordinate translation will be the following form 
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To integrate the initial stress for the last step, from 
formula (1.10), we have 
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which is added to [Fi] in the global equations (1.4), 
where (σ0

x , σ0
y , τ0

xy ) is the initial stress for the 
previous step.  
Obviously, the integrand of formula (1.14) will be more 
and more complex with the step increasing; therefore, 
finding the coordinate translation approximation is the 
way. 
4.2 Coordinate translation approximation method 
 
From formula (1.11) to formula (1.14), it suggests that 
the key issue will be how to deal with coordinate 
translation (1.11) and (1.12). 
The first method is to accumulate the coefficients of 
initial stress functions without considering the changed 
integration domain. In this case, we can easily obtain 
the initial functions and its integrals, but the 
computation accuracy is not very good. 
Another method is the triangle dividing integration 
method, which is to choose the gravity center of a block, 
then connect each oriented edge to the gravity center of 
the block to form a set of triangles. For each triangle of 
the block, its coordinate translation from the previous 
step to the next step can be approximately replaced with 
the linear polynomial functions. The integrals of 
formula (1.14) on these triangles are computed. The 
sum of the computed integrals together with their 
orientation sign will be the correct integral over the 
whole block. This method can not only improve the 
integration accuracy of initial stress, but also simplify 
the initial stress functions and make the integration of 
initial stress easy to deal with. 
Assume (x0, y0) is the gravity center of a block for the 
previous, (x1, y1) and (x2, y2) are the vertex coordinates 
of a single triangle. (x0

’, y0
’) (x’1, y’1) and (x’2, y’2) are 

the same points for the last step (see Fig.1). Then, the 
coordinate translation of the triangle is 
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where (x’, y’)  can be obtained from formula (1.11), four 
parameters (a1, a2, b1, b2) are defined by the following 
equations: 
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Solve the formula (1.16), we can obtain the coefficients 
of the coordinate translation of each triangle over a 
block. Then the integrals of formula (1.14) on these 
triangles can be computed. 
 
 

5 Contacts judge and block integrations 
 
For block system movements, no tension and no 
penetration can be allowed between blocks, it is 
necessary to connect the individual blocks into a block 
system. When the block system moves or deforms, the 
blocks are in contact only along the boundary and the 
non-penetration inequalities can be transformed into the 
equations when two blocks are in contact.  
 
5.1 Contacts judge of blocks with curved boundary 
 
Assume P1 is a point before deformation which moves 
to point P1 after deformation; P2P3 is the reference line 
and (xi, yi) and (ui, vi) are the coordinates and 
displacement increment of Pi, i = 1, 2, 3 respectively.  

 
Fig. 2: Criteria where point P1 passes edge P2P3 by 
rotation direction 
If points P1, P2 and P3 rotate in the same sense as the 
rotation of ox to oy (see Fig. 2), then P1 has passed line 
P2P3 and is stated by the inequality:  
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The determinant calculates twice the area of the triangle 
(P1 P2 P3) which becomes negative when P1 is located 
past P2P3. The distance d from P1 to P2P3 is 
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Two rules must be observed when contacts are involved: 
1. No inter-penetration occurs between the two sides. 
2. No tension force exists between the two sides. 
In the case when inter-penetration occurs at a given 
position, a “lock” is applied, which starts from the 
point and lies along the direction normal to the 
reference line. 
The original contacts judge of DDA is based on that the 
boundary of a block is straight edges. However, in the 
case of series displacement approximations (more than 
one order), the originally straight edged block will 
deform to one with curved edges, so, the contact judge 
among blocks becomes more complex. To solve the 
problem, the simplest way is to substitute the divided 
edges for the curved edges, which is a good method to 
judge the contacts of the curved boundary.  
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5.2 Integrations on a curved block 

In the processing of DDA computation, the blocks have 
general shapes, which can be a block with curved 
boundary. When large deformation is involved, even 
the originally straight edged block will deform to one 
with curved edges. The computations of geological 
movement require curved edge blocks.  

 
Fig. 3: Integration over a block with m vertices 
Assume this block has ordered vertices (see Fig. 3). 

)( 1111321 PPPPPPPP mmmm =++−  
where the inside area is always in the left side of the 
advance direction of the ordered vertices or boundary 
loop.  
For the more general nth order functions such as 
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Considering the integral term of  xi yj , its integration 
over the block is 
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From formula (1.20), its integrals are additive 
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then, the analytic solution of the block integration can 
be derived in the same way with more computations. 
The analytic solution can also be applied to the blocks 
with curved edges. 
 
6 An example of a cantilever beam 
 
The following is an example of a cantilever beam, the 
vertical displacement at the free end of the cantilever 
beam is discussed, and a comparison is made between 
results obtained using these proposed methods and 
other methods. 
 
6.1 Parameters of the cantilever 

Assume there is a cantilever, one end is fixed on a big 
rigid object, and the other end is free, which is 

subjected to a vertical force P (see Fig.4).  

 
Fig. 4: A cantilever subjected to a vertical force at the 
mid-point of the free end. 
The parameters of the cantilever are 
length: 10m, 
cross section: 1m× 1m, 
material constants: E=3×105 kN/m2, ν=0.2, 
loading: P=125kN, 250kN, 500kN, respectively. 
boundary condition: three fixed points at the fixed end 
of the cantilever (two ends and a mid-point). 
divided edge: 46 
step: 100 
 
6.2 Computation results 

The following is the result by the method that simply 
accumulates the coefficients of initial stress functions 
without considering the changed integration domain 
(see Tab. 1). 
 
Tab. 1: The mid-point displacement at the free end of 
the cantilever beam (unit: m). 

 Solution of DDA Theoretical 
Solution P 

(kN) 
 1st 2nd 3rd  
u 0.000 0.083 0.188 0.16 125 v 0.009 1.164 1.667 1.62 
u 0.000 0.229 0.556 0.56 250 v 0.017 1.894 2.833 3.02 
u 0.000 0.511 1.308 1.60 500 v 0.033 2.776 4.275 4.94 

Notes: u represents the horizontal displacement, v 
represents the vertical displacement, 1st 2nd 3rd represent 
the order of the polynomial displacement functions. 

The following is the result by the coordinate translation 
Approximation method which replaces coordinate 
translation with the linear polynomial functions (see 
Tab. 2). 
 
Tab. 2: The mid-point displacement at the free end of 
the cantilever beam (unit: m). 

 DDA Theoretical 
Solution P 

(kN) 
 1st 2nd 3rd  
u 0.000 0.100 0.180 0.16 125 v 0.009 1.213 1.713 1.62 
u 0.000 0.298 0.611 0.56 250 v 0.017 2.061 3.069 3.02 
u 0.000 0.702 1.712 1.60 500 v 0.033 3.112 4.870 4.94 

Notes: see the notes of table 1. 
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The deformations of the cantilever beam are shown in 
Fig. 5  
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Fig. 5: The deformations of the cantilever beam 
(P=125kN, 3rd order displacement functions, step:100) 
 
7. Conclusions 
 
From Tab. 1, when the loading is lower, the solution of 
DDA is close to the theoretical solution with higher 
order. However, when the loading is larger, the result is 
not very good even if the order is higher. The reason is 
that we ignore the updated geometry of the block when 
we integrate the initial stress over the block, the shape 
of the block changes a lot under the larger loading. 
From Tab. 2, the solution of DDA is also close to the 
theoretical solution with the order increasing. However, 
in the case of lower loading, the result by the coordinate 
translation approximations method is not better than  
the one by the method which accumulates the 
coefficients of initial stress functions. The reason is that 
the triangle dividing integration makes the initial 
integration large than the theoretical value. 
So, for obtaining a better result, it is necessary to find a 
better way to integrate the initial stress of the block. 
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Collision detection (CD) is wildly used in Physics-based animation, CAD/CAM, etc., and CD 
often becomes the bottleneck. The DDA, which is a numerical simulation technique, can 
analyze discontinuous rock mass behavior. This paper simulates a car bumps the wall and cars 
collide with each other based on DDA. The simulation results indicate that DDA can 
successfully detect the contact of the cars under different conditions in narrow-phase collision 
detection. 
 
Keywords: DDA; Collision detection: Physics-based animation; Car collision. 

 
 

1. Introduction 
 
Collision Detection (CD) is a highly-interdisciplinary 
field, in Physics-based animation, CAD/CAM, 
computing geometry, VR, robotics, and so on. But what 
is Collision Detection? When considering collisions 
with respect to our everyday perception a concise 
answer would be the task of  determining over a given 
time interval whether any points of the two objects 
occupy the same location in space simultaneous.  
In physics based animation, it tries to benefit from 
physics by applying physical laws in a simulator in 
order to animate the movement of objects in a realistic 
plausible manner. During the course of physics-based 
animation, objects come in contact with each other. The 
contact region must be resolved so that objects bounce 
or slide off each other or come to rest upon each other 
(Kenny 2005). In order to simulate these effects it is 
necessary to infer details about the shape of the contact 
regions. This is the aim of collision detection in 
physics-based animation. In 1993, Hubbard was the 
first to introduce the concepts of broad-phase and 
narrow-phase collision detection in computer graphics 
area (Hubbard 1993). Since then, a wealth of literature 
on broad-phase, narrow-phase algorithms and different 
approaches have been investigated. Broad-phase 
collision detection lists pairs of potential colliding 
objects, and the narrow-phase collision detection 
examines each of these pairs in detail. For each pair of 
objects, the narrow-phase collision detection 
determines whether the objects are separated, touching, 
or penetrating. Narrow-phase collision detection 
algorithms are naturally divided into four main groups: 
Spatial Data Structures such as spatial subdivisions and 
bounding volume hierarchies (Melax 2001), feature-
based (Ehmann 2001), simplex-based (Bergen 2001), 
volume-based (Guendelman 2003), and the major 
challenges for narrow-phase collision detection are 

deforming geometry, self-intersections, and penetration 
depths. The DDA (discontinuous deformation analysis) 
(Shi 1997) is a numerical simulation technique used to 
model the motions of rock masses under a wide range 
of conditions which was originally proposed by Dr. Shi 
Gen-hua. This paper applied DDA to solve the 
problems of collision detection in Physics-based 
animation. 
 
2. The theory of contact in DDA 
 
DDA allows the user to construct models of blocky 
materials that recognize different loading conditions 
and interactions between blocks, accounting for friction 
along block surfaces. 
 
2.1 The summary of DDA 
 
The discontinuous deformation analysis method (DDA) 
parallels finite element method. It solves a finite 
element type of mesh where all the elements are real 
isolated blocks, bounded by preexisting discontinuities. 
However, it is more general. Whereas, the elements or 
blocks used by the DDA method can be of any convex 
or concave shape or even multi-connected polygons 
with holes, the finite element method encompasses only 
elements of standard shape. Furthermore, in the DDA 
method, when block are in contact, Coloumb’s law 
applies to the contact interface, and the simultaneous 
equilibrium equations are selected and solved for each 
loading or time increment. In the case of the finite 
element method the number of unknowns is the sum of 
the degrees of freedom of all nodes. In the case of DDA 
method the number of unknowns is the sum of degrees 
of freedom of all the blocks. 
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2.2 The theory of contact in discontinuous 
deformation analysis. 
 
DDA solves a finite element type of mesh where all the 
elements are real isolated blocks, bounded by 
preexisting discontinuities, so we have to deal with the 
discontinuities problem of the boundaries of the blocks. 
For the movements of discontinuous boundaries, no 
tension and no penetration must be satisfied between 
two contact sides. Finding the contacts in each time 
step, applying stiff springs on contacts, and the 
discontinuous displacements can be computed (SHI G 
H. 1988). 
Based on the small step displacements, the contacts are 
defined in the beginning of each time step. Each contact 
is formed with two sides. All of the pair of two sides 
that are possible to contact, penetrate or entrance from 
one to another at the end of time step are defined as 
contacts. Since practically there are no penetrations on 
the two sides are allowed on the contacts, so the 
contacts are merely the entrance positions. 
There are two kinds of contacts: angle to edge and 
angle to angle. The edge to edge contacts can be 
transferred to angle to edge contact. Assume the 
maximum step edge rotation is δ. There are the criteria 
for the contacts: 
(1) for angle to edge contact, the minimum distance of 

the angle vertex to the edge of the contacts is less 
than 2ρ, 

(2) for angle to angle contact, the minimum distance of 
two angle vertices of the contacts is less than 2ρ, 

(3) for angle to edge contact, when the angle vertex 
translates to the edge without rotation, the 
maximum overlapping angle of the angle and the 
edge is less than 2δ, 

(4) for angle to angle contact, when the angle vertex 
translates to the vertex of other angle without 
rotation, the maximum overlapping angle of the 
two angles is less than 2δ, 

The common sense requirements of no penetration and 
no tension indeed are inequalities. Coulomb’s friction 
law and limited tension are also inequalities, and 
inequalities can be simplified to linear inequalities. 
There are three kinds of linear inequalities:  
(1) no penetrations in contacts, 
(2) tension force less than tension strength in contacts, 
(3) Coulomb’s friction law in contacts. 
In the computation, an angle to angle contact will be 
transferred to one or two angle to edge contacts. The 
theory of contact in DDA can be divided into three 
parts: 
 
2.2.1 The determinant of contact 
 
In the DDA theory, there are three kinds of contact: 
angle to angle, angle to edge, edge to edge. They 
contain one situation that the edge to edge contact can 
change into two angles to edge contacts. When the 

minimum distance of two angle vertices of the contacts 
is less than the given value a and when the angle vertex 
translates to the vertex of other angle without rotation, 
the maximum overlapping angle of the two angles is 
less than a given value b, so we determine the contact 
belong to angle to angle contact. When the minimum 
distance of the angle vertex to edge of the contact is 
less than the given value a and when the angle vertex 
translates to the edge without rotation, the maximum 
overlapping angle of the angle and the edge is less than 
the given value b, so we determine the contact belong 
to angle to edge contact. The Fig.1 (a), (b) are contacts 
between two convex angles. The Fig.1 (c) describes a 
contact between a convex angle less than 180ο and a 
concave angle greater than 180ο. 
 

         (a)                     (b)                             (c) 
Fig.1: Three kind of contact situation 

 
 
2.2.2 The computation of the contact force 
 
In the DDA theory, contact force is simulated by spring, 
there is normal spring and shear spring, when 
Coulomb’s law allows sliding between two sides of 
boundary contacts, there exist friction forces in two 
sliding sides if the friction angle is not zero. Contact 
forces between blocks are made up by these forces. In 
every time step, we have to choose the lock position 
(the position of the spring to put), and we have to 
iterate repeatedly. The iterate process is also the 
adding-removing process of the stiff spring. There are 
three modes of contact: open, sliding and lock. If a 
contact has a tensile contact force from the normal 
spring, the mode of the contact is open. If the vertical 
component of the contact force is press and the 
horizontal component is greater than the critical friction, 
the mode of contact is sliding. If the vertical component 
of the contact force is press and the horizontal 
component is less than the critical friction, the mode of 
contact is lock. In the sliding state, we need a normal 
spring and a pair of friction, and in the lock state, we 
need a normal spring and a shear spring. In the open 
state, we do not need the contact force. The open-close 
iterations have to ensure no-penetrations in the open 
contacts, and no-tensions in the contacts with normal 
springs. The contact force can be added to the general 
equation by normal contact matrices, shear contact 
matrices and friction matrices. 
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2.2.3 Contact transfer  
 
DDA is computed by time step, all the geometric and 
physical parameters have to be transferred from the end 
of the previous time step to the beginning of the next 
time step. The following items are to be transferred: 
stresses of each element, strains of each element 
velocities of each element, geometry of the joint 
boundaries and elements, all closed contacts. The 
position and state parameters of the closed contacts 
have to go to the next step. The geometric parameters 
and physical parameters of contacts will be transferred: 
the contact vertex and edge, the position of contact 
point, the normal displacement and normal force, the 
shear displacement and shear force, locking or sliding 
as contact state. 
 
3. Simulation of cars collision 
 
After the heavy traffic accident happened, we have to 
collect every kinds of data information, in order to 
analyze and compute the process of the accident 
(including computer simulation), it so called 
reappearance of the accident, it can provide the gist to 
relative department to judge the reason of accident, 
went behind criminal and civil duty. What’s more it can 
provide the gist to insurance company to determine the 
compensation. 
This paper applies DDA to solve the collision detection 
problems in Physics-Based animation. In recent years, 
in animation field we paint the pictures one by one, and 
we can not simulate the reaction of the objects in the 
virtual reality about how they collide into each other in 
reality and real time. This paper makes a try to solve 
the problems exited in animation using engineering tool. 
This paper realizes the whole physics process including 
collision using VC++6.0 compiler, treats the objects in 
the virtual reality as the simulation objects, uses the 
boundaries of the objects in the virtual reality as the 
joints and the shape of the blocks in the DDA program, 
sets the parameters and the initial condition. We can 
simulate collision in the real world and it completely 
corroding with the laws of physics. 
 
3.1 Using block sectioning theory to generating the 
physics scene  
 
The blocks of the computed block system are the result 
of sectioning by the existing discontinuities. Therefore 
blocks with any shapes and any number of vertices can 
be produced: convex blocks, concave blocks, the union 
of convex blocks or block containing holes. We know 
that DDA have the capacity to compute blocks of any 
shape. But when input these preexisting blocks offered 
by geologic experts, we can not use the same methods 
like FEM. Here, real blocks can not be produced by an 
automatic meshing, as employed in finite element 
analysis, because the element nodes and edges can be 

chosen optionally. Computing blocks from input 
discontinuities is more convenient and more natural. 
This paper use AutoCAD to design the physics scene, 
and through reading the DXF files to get the boundaries 
information. And then threat the boundaries of the 
objects in the virtual reality as the joints and the shape 
of the blocks in the cutting program of DDA. Now we 
have completed the preprocessing level, the boundaries 
of the objects are represented by their ordered vertices, 
where the vertices are rotated clockwise.   
 
3.2 The setting of the physics parameter 
 
This paper used contact theory in DDA to simulate the 
collision of a car bumps the wall and cars collide. We 
set the speed at start of a travel and the direction of the 
travel, than we repaint the locale of the car accident, 
and simulate the whole process of the collision accident 
in animation form. In order to measure the true 
situation, this paper reset the physics parameter, 
material parameter, speed at start of travel, situation of 
the loading. At last, we simulate the cars collision 
relatively according to the real. 
 
3.3 Examples 

 
                                         (a) 

 
                                        (b) 
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(c) 

Fig.2: A car bump the wall 
 
 

                        (a) 
 

 
                                        

 (b) 
 
 

 
 
 

 

 
(c) 

Fig.3: Collision of two cars 
 

 
(a) 

 

 
(b) 
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                                      (c) 

Fig.4: Collision of three cars 
 
 
In the Fig.2, (a) is the initial condition. We can see a 
jeep parking in front of a wall which made up by a pile 
of stiff bricks, after add a horizontal force on the back 
the car, it start to run, and bump the wall (see Fig.2, (b)). 
The Fig.2, (c) shows the final result at the 475th steps. 
From the Fig.3 and Fig.4 we can see cars collide with 
each other. The DDA program has successfully 
detected the collision, and responds to the collision 
according with the physics law completely. 
 
4. Conclusion  
 
Rigid bodies in the real world do not penetrate each 
other, and the penetration is impossible due to the 
contact forces between rigid bodies. In penalty-based 
multibody animation, a spring-damper system is used 
for penalizing penetrations. This paper applies DDA for 
the first time to solve the problems in Physics-Based 
animation, and the simulation itself proves that the 
contact theory in DDA can be applied very well in this 
area. 
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Determining the contact points between interacting blocks and the associated contact normal is 
an important and time consuming calculation in the discrete element method (DEM) and the dis-
continuous deformation analysis (DDA). Common-plane (CP) algorithm is one of the more ef-
fective methods for contact detection when dealing with three-dimensional polyhedral or two-
dimensional polygonal blocks. A new approach, called fast common plane (FCP) method, is 
proposed by Nezami et al (2004) to find the common plane for separate blocks. In this paper, the 
fast common plane identification algorithm is extended to a general case for all contact types 
and the proof of the algorithm is also provided. FCP approach recognizes that a common plane 
has identifying characteristics, which dramatically reduce the search space for the common 
plane. In two-dimensions, the CP is found by checking only 5 possible candidate lines. In three-
dimensions, the candidate planes fall within 4 types related to the geometry of the blocks and 
their relative positions. So the efficiency for CP identification is improved greatly and the accu-
racy can be guaranteed. Numerical experiments reveal the efficiency of the extended FCP algo-
rithm. 
Keywords: Contact detection; Common plane; Discrete element method (DEM); Discontinuous 
deformation analysis (DDA) 

 
1. Introduction 
 
Although the computer technique has been improved 
greatly, the huge computational time to detect the con-
tact condition is still a bottleneck in large scale DEM 
and DDA simulations. For complex block geometries, 
such as three-dimensional polyhedrons, contact detec-
tion computation can even take up to 80% of the total 
analysis time. 

Contact detection in DEM and DDA is usually per-
formed in two independent stages. The first stage, re-
ferred to as neighbor search, is merely a rough search 
that aims to provide a list of all possible blocks in con-
tact. The most recent neighbor searching algorithms 
include No Binary Search (NBS) contact detection al-
gorithm (Munjiza & Andrew 1998) and DESS algo-
rithm (Perkins & Williams 2001). 

The second stage is called geometric resolution. The 
pairs of contacting blocks obtained from the first stage 
are examined in more detail to find the contact points 
(or contact area if distributed contact forces are consid-
ered) and calculate the contact forces. Geometric reso-
lution algorithms strongly depend on complexity of the 
geometric representation of blocks. For example, if the 
boundaries of the blocks are implicitly represented by a 
single function f(x, y, z) = 0, then a closed form solution 
is likely to be available (for example refer to Cundall & 
Stack (1979)  for contacts between disks and spheres, 
Ting et al (1993) for two-dimensional ellipses, and Lin 
& Ng (1997) for three-dimensional ellipsoids). Effi-
ciency of these contact detection schemes are mostly 
controlled by the simplicity of the resulting equations. 

Where the boundary cannot be represented by a sin-
gle function f(x, y, z) = 0, such as in polygons or poly-

hedrons, the contact detection can be quite cumbersome. 
Barbosa (1990) introduced a simple algorithm for con-
tact detection between polyhedrons that requires com-
paring all the vertices of one block to all faces of the 
other one and vice versa. The algorithm has a high 
computational complexity of order O(N2), with N being 
the number of vertices. Williams and O’Connor (1995) 
introduced Discrete Function Representation algorithm 
which achieves a computational complexity of order 
O(N). Krishnasamy and Jakiela (1995) and later Feng & 
Owen (2002) introduced energy-based methods for 
finding the contact forces, in which a potential energy 
function is defined for each contact as a function of the 
overlap area. There are also some other methods are put 
forward recently, such as penetration edges method 
(Chueng et al 2006), incision body scheme (Wang et al 
2006) and so on.  

Cundall (1988) introduced the well-known class of 
‘‘Common-Plane’’ (CP) methods: “A common plane is 
a plane that, in some sense, bisects the space between 
the two contacting blocks’’. If the two blocks are in 
contact, then both will contact with the CP, and if they 
are not in contact, then neither contacts with the CP. By 
using CP, the block-to-block contact detection problem 
reduces to a much faster plane-to-block contact detec-
tion problem. Once the CP is established between two 
blocks, the normal to the CP defines the direction of the 
contact normal, which in turn defines the direction of 
the normal contact force between the two blocks. This 
is especially advantageous for vertex-to-vertex or edge-
to-vertex contacts, where the definition of the contact 
normal is a non-trivial problem. The method has a 
complexity of order O(N) and has been successfully 
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implemented in three-dimensional DEM code 3DEC 
(Itasca 1998) and 3-D DDA (Liu et al 2004).  

But it is difficult to get the real CP for the two blocks, 
and the existing methods for CP identification always 
need a great amount of calculation and terminate on a 
saddle-point sometimes. Nezami et al (2004) proposed 
a fast contact detection algorithm for 3-D DEM and 
provided the proof for the algorithm for separate blocks. 
For blocks in contact, an additional step is performed 
before the algorithm is used, to temporarily separate the 
contact blocks by translating the two blocks in a direc-
tion perpendicular to the CP from the previous time 
step. On the one hand, the CP for the separate blocks is 
just an approximate CP for the in-contact blocks. On 
the other hand, the initial CP is unknown before the 
DEM or DDA analysis for the initial contact blocks, so 
the separate operation cannot be accomplished. From 
the view mentioned above, the current fast common 
plane (FCP) identification algorithm is limited.  

The following sections extend the FCP algorithm to a 
general case for all types of contact based on rigorous 
proof of the algorithm. In two-dimensions, the CP is 
also found by checking only 5 possible candidate 
planes. In three-dimensions, the candidate planes fall 
within 4 types related to the geometry of the blocks and 
their relative positions. Blocks assumed to be convex, 
while concave blocks can be modeled as a combination 
of several convex blocks attached to each other. In or-
der to give a completely proof for all type of contact, 
the separate case is also included in this paper. The sec-
ond and third sections describe the definition of CP and 
the conventional algorithm for finding the CP. The 
fourth and fifth sections give the FCP algorithm and its 
proof. 
 
2. Definition of the common plane (CP) 
 
The CP is identified by its unit normal, n, and any point 
V0 on it, as shown in Fig. 1. For any point V in the 
space, the “distance” dV of that point to any arbitrary 
plane in the space is defined as 

)( 0VVnd V −⋅= ,               (1) 
where, n is the unit vector normal to the plane and V0 is 
any point on that plane. Both V and V0 are described in 
a global Cartesian coordinate system. Eq. (1) divides 
the space into positive and negative half-spaces, with 
points in positive half-space have positive distances and 
points in negative half-space have negative distances to 
the plane. For any polygonal or polyhedral block A the 
“distance” dA of the block to any plane in the space is 
defined as 

,
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where dV
A is the distance of a vertex V on the block to 

the plane (Eq. (1)), and min{·} and max{·} represent 
minimum and maximum values, respectively, taken 

over all vertices of the block. dC
A is the distance of the 

centroid of the block to the plane. If a face of the block 
is parallel to the plane then more vertices can define the 
distance dA. dC

A = 0 is of no practical interest as the CP 
will never pass through centroid of a block. Subscripts 
and superscripts in all equations denote blocks and ver-
tices (points), respectively. The vertex (or each of the 
vertices) that define the distance in (2) is called the 
‘‘closest vertex’’ of that block to the plane. 
 

Plane

Negative 

half-space

V
V

n

Positive 

half-space

- +

0Vd >
0Vd <

0V

Plane

Negative 

half-space

V
V

n

Positive 

half-space

- +

0Vd >
0Vd <

0V

 
Fig. 1: Definition of distances and sign convention of a 
point to a plane 
 

For any two blocks i and j, a CP is the plane which 
meets the following three conditions: 
Condition1. 

Centroids of block i and block j are located on oppo-
site sides of the CP. In this paper it is assumed that the 
centroid of block i is located on the negative side of the 
CP and that of block j on the positive side. (as shown in 
Table 1) 
Condition2. 

The gap or overlap, defined as dj – di, is a maximum 
in the mathematical sense. 
Condition3. 

ji dd −=  
Condition 1 guarantees that the CP is between the 

blocks. The gap or overlap, dj – di, is only a function of 
direction n of the CP and is independent on the location 
of the plane in space. Condition 2 identifies the direc-
tion of n by maximizing the gap or minimizing the 
overlap. Condition 3 specifies the location of the CP by 
setting di = -dj. For separated blocks the gap is always 
positive (di < 0 and dj > 0), while for blocks in contact 
the gap is always negative (di > 0 and dj < 0) or zero for 
just in contact (di = 0 and dj = 0). 

Whenever dj – di > TOL, where TOL is a small posi-
tive user-defined tolerance, then the blocks are recog-
nized as not in contact, no CP is developed. A “poten-
tial contact” is a contact for which dj – di < TOL the 
blocks are contacted each other or likely to develop 
new contacts in the next few time steps. A real contact 
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is a contact for which dj – di < 0. Contact points and 
forces are found only for real contacts. 
 
Table 1. The CP and its distance to the blocks 
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3. The conventional algorithm to position the com-
mon plane 
 
Cundall [12] suggests a two-stage procedure to search 
the CP: the first stage specifies one point on the CP 
(referred to as the reference point, point M in Fig. 2). 
The second stage is an iterative process, in which a 
normal vector n, corresponding to the maximum gap, is 
found by rotating the CP around the reference point. In 
two-dimensions, the CP is a line and the rotation is per-
formed around the reference point M. In three-
dimensions, two arbitrary orthogonal axes are chosen in 
the CP with their origins at the reference point. The CP 
is then perturbed around each of them in both negative 
and positive sense. If any perturbation produces a gap 
larger than that of the current CP, the new CP replaces 
the current one. In this case, the closest vertices and the 
reference point is updated based on the newly found 
CP. If all the perturbations produce smaller gaps than 
that of the current CP, the next iteration starts with a 
smaller perturbation. The iteration process starts from 
an initial guess (either the CP from the previous time 
step or the perpendicular bisector of the line that con-
nects the centroids of the blocks), and continues until 
the direction of the CP is found with reasonable accu-
racy. At any stage of iteration, if the gap exceeds a 
positive tolerance TOL then the iterative process halts 
and the contact is deleted. A gap larger than TOL indi-
cates that the blocks are too far from each other to gen-
erate a contact. The total number of iterations depends 
on the accuracy of the initial guess of the CP and the 

smallest disturbing rotation angle. In general, the algo-
rithm requires a large number of iteration steps. The 
number of iteration steps is especially high for the first-
time formation of the CP, where the initial guess and 
the actual CP are very different. 
 

i j

n

CP produces the largest gap

M

Direction of movement 
of the CP during 
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Starting plane, not a 
correct choice

i j

n

CP produces the largest gap

M

Direction of movement 
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iteration

Starting plane, not a 
correct choice  

Fig. 2: conventional iterative procedure for finding the 
CP 
 
4. Fast CP identification for separate and in-contact 
blocks 

 

When two blocks are not in contact or already in con-
tact, the definition of the CP can be utilized to limit the 
number of candidate common planes and thus signifi-
cantly reduce the computational cost of common plane 
searching. 
 
4.1. CP identification in 2-D 
 
Statement: In two-dimensions, the CP can be found by 
checking only 5 possible candidate planes.  
The following provides a stepwise proof of the state-
ment above leading to identification of the 5 possible 
candidate planes. 
Proof: Let A and B be the closest vertices for blocks i 
and j, respectively. 
(1) The CP passes through the midpoint M of the seg-
ment AB. 

Let θ measure the angle between the CP and the per-
pendicular bisector (PB) of the segment AB as shown in 
Fig.3. Then dA = |AA0| = |MA|cosθ and dB = |BB0| = 
|MB|cosθ. 

The Condition 3 of CP definition, dA = -dB, implies 
that |dA| = |dB| or 

MBMAMBMA =⇒= θθ coscos . 
 The ∴ CP should pass through the midpoint M of 

the segment AB. 
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(b) In-contact blocks 
Fig. 3: PB of the segment AB and the CP in 2-D 
 
(2) CP is completely located within the space S. 

The space S is the area formed by rays Mm1, Mm2, 
Mm3 and Mm4, drawn from the midpoint M, parallel to 
edges AA1, AA2, BB1 and BB2, respectively (the shaded 
area in Fig.4).  

Assume that line L, portion of which is located out-
side the space S, is a candidate CP (Fig. 4a). Then, ver-
tex B2 makes dB2 < dB according to Equation (2). This 
implies that AB2 and not AB are the closest vertices. 
This contradicts with AB being the closest vertices and 
the geometric arrangement of the blocks. For in-contact 
blocks in Fig. 4b, assume the line PB, portion of which 
is located outside the space S, is a candidate CP. Then, 
vertex A2 makes dA2 > dA according to Equation (2). 
This implies that BA2 and not BA are the closest verti-
ces. This contradicts with AB being the closest vertices 
and the geometric arrangement of the blocks. There-
fore, line L cannot be a candidate CP. Similarly, all 
lines located partially or completely outside the space S 
cannot be the candidate CP. So the CP is completely 
located within the space S. 
(3) CP should produce the smallest angle with the PB 
of the segment AB for separate blocks 

From Fig. 3a, dB – dA = |AB|·cos θ (dB > 0 and dA < 0, 
0 ≤ θ < 90) 

From Condition 2, dB – dA is maximum 
=> cos θ is maximum 

 angle ∴ θ is minimum. 
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(b) In-contact blocks 
Fig. 4: CP is completely located within the space S 
 
 (4) CP should produce the largest angle with the PB of 
the segment AB for in-contact blocks with PB not com-
pletely within the space S 

From Fig. 3b, dB – dA = -|AB|·cos θ (dB < 0 and dA > 
0, 0 ≤ θ < 90) 

From Condition 2, dB – dA is maximum 
=> cos θ is minimum 

 angle ∴ θ is maximum. 
From separate to overlap of the two blocks, the angle 

θ transforms from the minimum to the maximum.  
 
(5) The CP is the PB of the segment AB for in-contact 
blocks when PB is completely located within the space 
S. 

Let f = (dB – dA). f is only the function of angle θ. 
Then 

0sin0 =⇒=
∂
∂ θ
θ
f

. 

So the plane with θ = 0 is also a candidate plane, which 
is the PB itself when the PB is completely located 
within the space S. 
(6) The CP is one of five candidate planes 

The CP is the line that 
 is completely located in space S from proof (2) 

and (5), and 
 makes the smallest or largest possible angle with 

the PB of the segment AB from proof (3) and (4) 
for separate and in-contact blocks, respectively. 

If the PB of the segment AB is completely located in 
the space S for separate blocks (Fig. 5), then: 
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From proof (3) the line that makes the smallest possible 
angle θ with the PB is the PB itself for separate blocks. 
The PB also satisfies proof (2), 

 ∴ The common plane is the PB (type a below). 
If the PB of the segment AB is completely located in 

the space S for in-contact blocks (Fig. 3(b)), then: 
From proof (5) the PB is a candidate common plane. 
The PB also satisfies proof (2). 

 ∴ The common plane is the PB (type a below). 
If the PB is not located completely inside the space S 

(Fig. 4), then: 
 The PB is not the common plane. 
 The common plane is the line with the smallest 
possible angle θ to the PB for separate blocks 
(proof 3) and the line with the largest possible an-
gle θ to the PB for in-contact blocks (proof 4). 

∴ for separate blocks the common plane is one of the 
boundary rays Mm1, Mm2, Mm3 and Mm4, (Mm4 in the 
Fig. 4a, type b below). Any line inside space S other 
than on the boundaries will make a larger angle θ. For 
in-contact blocks the common plane is also one of the 
boundary rays Mm1, Mm2, Mm3 and Mm4, which also 
should be within the space S (Mm3 in Fig. 4b, type b 
below). Any line inside space S other than on the 
boundaries will make a smaller angle θ. 

 T∴ he CP is one of the following candidates: 
Type a: The perpendicular bisector of the segment AB. 
Type b: The lines passing through the mid-point of the 
segment AB and parallel to one edge of AA1 or AA2 of 
the block i, or parallel to one edge of BB1 or BB2 of the 
block B. 

The number of candidate planes is limited to five. All 
these CP candidates in 2-D are defined as the set of 
2DCP. 
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Fig. 5: Perpendicular bisector of segment AB is inside 
of the space S. So it is the CP 
 
4.2. CP identification in 3-D 
 
Statement: In three-dimensions the candidate planes 
fall within 4 types related to the geometry of the blocks 
and their relative position. 
Proof: Let A and B be the closest vertices of blocks i 
and j, respectively. 
(1) The CP passes through the midpoint M of the seg-
ment AB. 

Similar to the 2-D case, the CP should pass through 
the midpoint M of the segment AB. The difference is 
that both PB and CP are planes rather than lines, and 
angle θ measures the dihedral angle between PB and 
CP (Fig.6).  
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Fig. 6: PB plane, CP and dihedral angle θ in 3-D 
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(a) Space S for separate blocks 
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(b) Space S for in-contact blocks 
Fig. 7: Space S constructed by quarter-planes parallel to 
faces of block i and j. 
 
(2) The CP is completely located within the space S. 

Rays Mm1 and Mm2 drawn parallel to edges AA1 and 
AA2 respectively, define a semi-infinite quarter-plane 
m1Mm2, parallel to face A1AA2 of block i. In the same 
way, for every face of block i that shares vertex A, and 
for every face of block j that shares vertex B, a quarter-
plane can be constructed, passing through the midpoint 
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M, parallel to that face. The space bounded between the 
quarter-planes associated with block i form one side, 
and those associated with block j form the other side, 
defines the space S in 3-D as shown in Fig. 7.  

Similar to 2-D, any candidate common plane should 
be completely located inside the space S. For separate 
blocks assume that plane P, portion of which is located 
outside the space S, is a candidate CP (Fig. 7a). Then, 
vertex B1 is closer to this plane than vertex B, which 
contradicts AB being the closest vertices. For in-contact 
blocks the proof is similar to the 2-D case.  

 T∴ he CP is completely located within the space S.  
(3) The CP should produce the smallest dihedral angle 
with the PB plane of the segment AB for separate 
blocks. 

dB – dA = |AB|·cos θ (dB > 0 and dA < 0, 0 ≤ θ < 90) 
still holds in 3-D. From Condition 2, maximizing dB – 
dA can lead cos θ to a maximum. 
∴dB – dA is a maximum when dihedral angle θ is a 
minimum. 
(4) The CP should produce the largest dihedral angle 
with the PB plane of the segment AB for in-contact 
blocks with PB not completely within the space S. 

dB – dA = -|AB|·cos θ (dB < 0 and dA > 0, 0 ≤ θ < 90) 
also holds in 3-D for in-contact blocks. From Condition 
2, maximizing dB – dA can lead cos θ to a minimum. 
∴dB – dA is a maximum when dihedral angle θ is a 
maximum. 
  (5) The CP is the PB of the segment AB for in-contact 
blocks when PB is completely located within the space 
S. 

Let f = (dB – dA). f is only the function of angle θ. 
Based on the extremum theory, we can get 

0sin0 =⇒=
∂
∂ θ
θ
f

. 

So the plane with θ = 0 is also a candidate plane, 
which is the PB itself when the PB is completely lo-
cated within the space S.  
(6) The CP is one of four different types 

The CP is the plane that 
 is completely located in space S from proof (2) 
and (5), and 

 makes the smallest or largest possible angle with 
the PBP of the segment AB from proof (3) and (4) 
for separate and in-contact blocks, respectively. 

If the PB plane of the segment AB is completely lo-
cated in the space S for separate blocks, then: 

From proof (3) the plane that makes the smallest pos-
sible dihedral angle θ with PB is the PB itself. The PB 
also satisfies proof (2) 

 ∴ The common plane is the PB (type a below).  
If the PB of the segment AB is completely located in 

the space S for in-contact blocks, then: 
From proof (5) the PB is a candidate common plane. 

The PB also satisfies proof (2), 
 ∴ The common plane is also the PB (type a below). 

If the PB plane is not completely located inside the 
space S, then: 

 The PB is not the common plane. 
 The common plane is the plane with the smallest 
possible angle θ to the PB (proof 3) for separate 
blocks or the largest possible angle θ to the PB 
(proof 4) for in-contact blocks. 

 ∴ The common plane contains at least one ray from 
the boundary. Any plane which is completely inside the 
space S and does not contain any of the boundary rays 
makes a larger dihedral angle θ with PB for separate 
blocks and a smaller angle for in-contact blocks and 
cannot be a candidate common plane. The number of 
rays included in CP can be used to further categorize it: 

• The CP contains exactly two boundary rays. If 
those two rays correspond to the same block, then the 
CP contains the quarter-plane made by those rays. 
Therefore it is parallel to one of the faces of the blocks 
(type b).  

If those two rays correspond to different blocks, then 
the CP is parallel to corresponding edges from different 
blocks (type c). 

• The CP contains exactly one boundary ray. In this 
case, the CP is parallel to the corresponding block edge 
(type d). 

• The CP contains more than two boundary rays. 
Then any two of them can be utilized to identify the CP 
(the result is either type b or type c).  

 The ∴ CP is one of the following candidates: 
Type a: The PB of the segment AB. 
Type b: The plane passing through the midpoint of the 
segment AB, parallel to one of the faces of block i or j. 
For block i, only faces which include the vertex A are 
considered. For block j, only faces which include the 
vertex B are considered. 
Type c: The plane passing through the midpoint of 
segment AB, parallel to one edge of block i and one 
edge of block j. For block i, only edges which share the 
vertex A are considered. For block j, only edges which 
share the vertex B are considered. 
Type d: The plane passing through the midpoint of 
segment AB parallel to one edge from one of the two 
blocks. The plane can be fully defined by using the 
Conditions of the common plane. Fig. 8a shows the CP 
containing only one ray (Mm1), parallel to the edge BB1 
of block j. In this condition, the normal of the CP can 
be calculated by 

1 1
( )BB BB ABn n n n= ± ⊗ ⊗ , where 

nBB1 and nAB are the unit vector of BB1 and AB, respec-
tively. For in-contact blocks as shown in Fig. 8b, the 
candidate common plane of type d can be obtained by 
the similar computation method for separate blocks 
mentioned above. 
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Fig. 8: Type d, CP is parallel to one edge from the 
blocks: (a) CP is parallel to edge BB1 from block j for 
separate blocks; (b) CP is parallel to edge BB1 from 
block j for in-contact blocks 
 

The number of candidate planes type is limited to 
four. All these CP candidates in 3-D are defined as the 
set of 3DCP. 
 
5. Fast CP identification for two just-in-contact 
blocks 
 
5.1 CP identification in 2-D 
 
Statement: The CP is completely located in the space 
S. 
Proof: For two just-in-contact blocks the space S is 
shown in Fig.9. Assume that line L, portion of which is 
located not completely within the space S, is a candi-
date CP (Fig. 9). Then, vertex B1 makes dB1 < dB ac-
cording to Eq. (2). This implies that AB1 and not AB are 
the closest vertices. This contradicts with AB being the 
closest vertices and the geometric arrangement of the 

blocks. Therefore, line L cannot be a candidate CP. 
Similarly all lines located partially or completely out-
side the space S cannot be the candidate CP. So the CP 
is completely located within the space S. 
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Fig. 9: CP is located within the space S defined in 2-D 
 
Statement: The CP can be found in the set of 2DCP 
Proof:  
(1) vertex-to-edge or edge-to-edge contact type 

For vertex-to-edge or edge-to-edge contact type the 
space S contains just a line that is the contact edge from 
one of the blocks. This line meets the conditions to be a 
CP and locates within the space S. So the CP can be 
found in the set of 2DCP.  
(2) vertex-to-vertex contact type 

For vertex-to-vertex contact type, there are infinite 
CPs in the space S since vertex A and B are coincide, 
which indicates that this type of contact is non-smooth 
and the normal direction is undefined.  
Based on the proof above that the CP must exit and it is 
completely located within the space S. So the intersec-
tion of the space m1Mm2 and m3′Mm4′ is non-zero. 
m3′Mm4′ is the diagonally space of m3Mm4 as shown in 
Fig. 10. This intersection makes the space S′, which is a 
subset of the space S. Any line located in the space S′ is 
a CP, for all these lines meet the conditions to be a CP. 
The boundary of the space S′ is determined by two 
edges from the two blocks. So these two edges from the 
blocks are the CP and the CP can be found in the set of 
2DCP. 
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Fig. 10:  Subset of the space S 

 
Furthermore, in order to get a better CP, we can 

move vertices A and B along ACi and BCj by a distance 
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of ε (ε << min (|ACi|, | BCj|)) to A′ and B′, where ACi 
and BCj are the centroids of block i and j, respectively 
(Fig. 11). So the perpendicular bisector line of the seg-
ment A′B′ can be defined. If the PB is completely lo-
cated in space S, it meets the conditions of CP and it is 
the CP. If the PB doesn’t completely locate in the space 
S, we can also find a CP in the set of 2DCP by the 
edges from the blocks. 

The ∴ CP can be found in 2DCP. 
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Fig. 11: Moving A and B to get PB 
 
5.2 CP identification in 3-D 
 
Statement: the CP is completely located in the space S 
Proof: Similar to 2-D, any candidate common plane 
should be completely located inside the space S. As-
sume that plane P, portion of which is located outside 
the space S, is a candidate common plane (Fig. 12). 
Then, vertex B1 is closer to this plane than vertex B, 
which contradicts AB being the closest vertices. There-
fore, plane P can’t be a candidate CP, and the CP is 
completely located within the space S. 
 

B1

P

BA
M

A1

A2

B1

P

BA
M

A1
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Fig. 12: A plane, partially located outside the space S, 
can’t be a CP candidate 
 
Statement: The CP can be found in the set of 3DCP 
Proof: (1) vertex-to-face, edge-to-face, face-to-face 
contact type 

For vertex-to-face, edge-to-face or face-to-face con-
tact type, the space S contains just a face that is the con-
tact face from one of the blocks. This face meets the 
conditions to be a CP and locates completely within the 
space S.  

 The ∴ CP can be found in the set of 3DCP.  
(2) edge-to-edge contact (intersected) 

Let A and B be the closest vertices. With the two 
edges (assume the contacting edges are AA1 and BB1, as 
shown in Fig.13), the normal n of the CP can be de-
fined by n= AA1×BB1, just like type b in 3DCP.  

 The ∴ CP can be found in the set of 3DCP. 
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Fig. 13: edge-to-edge (intersected) contact of blocks 
 
(3) edge-to-edge contact (parallel) and vertex-to-edge 
contact 

Let A and B be the closest vertices. For these two 
types of contact, the number of CP in the space S is 
infinite. Similar to vertex-to-vertex contact in 2-D, we 
can also find a non-zero space S’, which is a subset of 
the space S. The boundary of S’ is defined by the faces 
containing A from block i and the faces containing B 
from block j. So these boundary faces of the space S’ 
are CPs. Furthermore, if A and B are coincide, then 
these two vertices can be moved a length of ε towards 
the centroids of the two blocks as shown in Fig. 11. The 
perpendicular bisector plane of the segment A’B’ is the 
CP when it is completely located within the space S. If 
A and B are not coincide, then vertex A or B can be 
move a length of ε towards its block centroid (moving 
B to B’ in Fig. 14). A perpendicular line from B’ to AB 
can be defined, with the pedal point of B˝. Then the 
plane passing through AB with the normal of B’B’’ is a 
candidate CP. If the plane is completely located in the 
space S, then it is the CP.  

 The ∴ CP can be found in the set of 3DCP. 
 

A

B

B’B˝

Cj

j

i

A

B

B’B˝

Cj

j

i

     
Fig. 14: A candidate CP for edge-to-edge contact (par-
allel) 
 
(4) vertex-to-vertex contact 

Similar to 2-D case, there is a non-zero subset S’ of 
the space S, which is bounded by some faces from the 
two blocks. So these boundary faces of the space S’ are 
CPs. Furthermore, vertices A and B can be moved a 
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small distance to A′ and B′ towards the centoids of the 
blocks. So the perpendicular bisector line of the seg-
ment A′B′ can be defined. If the PB is completely lo-
cated in space S, it meets the conditions of CP and it is 
the CP. 

 The ∴ CP can be found in 3DCP 
 
6. FCP algorithm 
 
The FCP algorithm to find the CP consists of the fol-
lowing steps (Fig. 15): 

Step 1. Initial guess: if there is a CP from previous 
DEM time step then use it as the initial guess for the CP 
in this time step. Otherwise, set the CP as the PB plane 
of the line connecting the centroids of the two blocks.  

Step 2. Based on the guess CP, find the closest verti-
ces AB in blocks i and j. This can be performed by a 
quick search of the distances of all the vertices of the 
blocks to the CP, considering the sign convention for 
each block. Among all segments such as AB that con-
nect a closest vertex A of block i to a closest vertex B 
of block j, the one with the shortest length is chosen. If 
more than one pair of closest vertices have the shortest 
length (i.e., those vertices are equidistant), then any of 
them can be chosen to proceed with the algorithm. 

Step 3. For the two closest vertices A and B found in 
Step 2, check all candidate planes of Section 4 and 5 
(from type a to type d) and find the one with the largest 
gap or smallest overlap. If dA = dB = 0, moving A 
and/or B a small distance temporarily is needed to de-
fine the PB. If any candidate plane produces a gap lar-
ger than TOL, then stop the algorithm as the blocks are 
too far from each other to make any, real or potential, 
contact. If the gap is less than zero then a real contact is 
generated. 

Step 4. If the CP obtained in Step 3 is the same as the 
one from Step 2, then it is the correct common plane. 
Otherwise go to Step 2. 

 

Initial guess for CP Exit

Yes

Check candidate planes,

Find the one with the largest gap 

or the one with the smallest overlap.

No
Find the closest vertices identical to CP 

From the last iteration

Initial guess for CP Exit

Yes

Check candidate planes,

Find the one with the largest gap 

or the one with the smallest overlap.

No
Find the closest vertices identical to CP 

From the last iteration

 
Fig. 15: FCP algorithm 

 
This is an iterative algorithm, with consisting of steps 

2–4 in each iteration. The number of iterations required 
to find the CP is usually very small and the position of 
the selected CP is accurate. This is mainly because the 

iteration is done to locate the two closest vertices, 
rather than the CP itself. 
 
7. Numerical experiments 
 

The numerical experiment below is an example of a 
gravity dam used by Dr. Shi [12] in 2-D DDA. The 
gravity dam is modeled as a single block. The bedrock 
is composed of many blocks by horizontal bedding 
planes and nearly vertical joints. The loads are the 
weight of the dam and of the rock blocks and the resul-
tant water pressure acting horizontally on the face of he 
dam. The base and side borders of the bed rock are 
fixed. Fig. 16a shows the 3-D view of unmoved blocks 
before loads are applied. The concave blocks are 
meshed to several convex sub-blocks for contact detec-
tion and contact transfer (as shown in Fig. 16b). Fig. 
16c is the result of time step 2000 with friction angle φ 
=20°.  
 

(a) 
 

 (b) 
 

(c) 
Fig. 16: Numerical experiment of gravity dam: (a) be-
fore deformation in 3-D view; (b) concave blocks 
meshed by several convex blocks; (c) deformed system. 
The input data were the following:  
number of steps = 2000,  
step time interval = 0.005,  
unit mass = 0.05,  
ratio of maximum displacement = 0.010, 
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water pressure (Fx , Fy, Fz) = (10 , 0, 0),  
block unit weight (fx , fy, fz) = (0 , -0.5, 0),  
material constants E = 20, ν = 0.30.  

Fig. 17 shows the average computing times of the dA 
and dB (Eq. 2) to get the CP in each contact searching 
for two blocks using FCP algorithm and the original CP 
algorithm. In the original CP algorithm, the maximum 
and minimum rotation angles in the original CP algo-
rithm are 10° and 0.001°, respectively. From Fig. 17 
one can find that the FCP algorithm is faster about 100 
times than the original one.  
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Fig. 17: The efficiency comparison between FCP and 
original algorithm.  
 
Conclusions 
 
The fast common plane (FCP) algorithm proposed by 
Nezami et al (2004) for separate blocks is extended to a 
general case for all contact types and the proof of the 
algorithm is also given. The algorithm takes advantages 
of the properties of the CP to limit the research space 
and reduce candidates of the common plane to five in 
2-D and four types of faces in 3-D. With this algorithm, 
the efficiency of the contact detection can be greatly 
improved. 
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The numerical model coupling three-dimensional discontinuous deformation analysis (3D-DDA) 
with finite element method (FEM) was developed in the present paper. The displacements and 
stresses were obtained by proper internal discretization of deformable blocks using finite 
element meshes while the contacts between the blocks were modeled by DDA method. Based 
on the variational principle of minimum potential energy, the simultaneous equilibrium 
equations of the coupled method were then established. A multilayer asphalt concrete pavement 
subjected to moving vehicle loads was analyzed to illustrate the application of the proposed 
method. The numerical results demonstrated the validity and the advantages of the coupled 
method.  
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1. Introduction 
 
The dynamic displacements and stresses of pavement 
systems have raised an increasing concern in the field 
of pavement engineering in recent years. During the 
past decades many developments in both analysis 
techniques and materials testing procedures have made 
it possible to better simulate the dynamic response of 
pavements to traffic loads and environmental 
conditions. Various pavement structure models have 
been generated since 1960s, ranging from an infinite 
beam on Winkler foundation to a multilayered system 
over an infinite half space (Monismith 1988). Among 
them, the multi-layered model is a widely accepted one 
by researchers and engineers due to its validity and 
precision. How-ever, the solutions of the problem 
usually encounter much difficulty and are not 
satisfactory. It is very complex and difficult for 
engineers to master the analytical method of multilayer 
pavements. Although the flexible multilayered 
pavement system can also be modeled in a discrete 
manner with finite element method (FEM) using special 
joint elements, the description of discontinuities is 
usually difficult and there are often restrictions on the 
degree of deformation permitted (Cho et al. 1996). 
Furthermore, the number of locations where 
discontinuities can be handled is very limited.  

The discontinuous deformation analysis (DDA) is a 
promising discontinuous modeling technique which has 
great potential for modeling of blocky systems (Shi 
1988, 2001). Since it was proposed, DDA has received 
considerable attention from researchers and practicing 
engineers throughout the world and has become a 
useful tool for the analysis of jointed rock mass 
behaviors. Many scholars have also made great effort to 
improve it for applications in more widely domains 
(Pearce et al 2000; Ning and Yang 2006). Although the 

geometry of the block in DDA can be convex or 
concave, or even with holes in it, the stress and strain in 
each block is constant, which is not a realistic 
assumption, particularly for a big block. Thus, some 
researchers presented a coupled method called “DDA-
FEM Coupled Method” (DFCM) to improve its 
deformation ability by means of discretizing each block 
using finite element meshes. The method combines the 
advantages of the FEM and the DDA so that not only 
the movements of the block system can be depicted, but 
the stress distributions in the blocks can also be 
obtained. It is a good approach to simulate a domain 
controlled by continuous and discontinuous medium 
which is not suitable for any single numerical technique. 

In this paper, the authors developed the DDA-FEM 
Coupled Method to solve the problems of moving load 
and made attempt to apply the DFCM for displacement 
and stress analysis of pavements. The pavement system 
is modeled by the multilayered medium; the moving 
vehicle is presented by a moving concentrated load. 
The displacement and stress fields are obtained by 
proper internal discretization of deformable blocks 
using finite element meshes. The contacts between the 
deformable blocks were modeled by DDA method. 
Based on the variational principle of minimum potential 
energy, the global equilibrium equations of the 
coupling method were deduced in detail.  
 
2. Formulations of 3D-DDA-FEM coupled method 
 
2.1 Displacements of each element 
 

If the four-node tetrahedrony isoparametric element 
(Fig. 1) is chosen to be the finite element in DDA 
blocks, the x-, y-, z-displacements (u, v, w) of an 
arbitrary point (x, y, z) in each element can be 
expressed as  
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where [ ]iD  is the nodal displacement vector,  
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[ ]iN  is the matrix of the shape functions of elements. 
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where 1N ξ= , 2N η= , 3N ζ= , 4 1N ηξ= − − ; and  
(ξj, ηj, ζj) is the natural coordinate of nodes.  
 

 
Fig. 1: Tetrahedrony isoparametric element model 

 
In general, a block can be as small as an element or as 
large as an element mesh, and different meshes can also 
be put into different blocks if conditions permit (Chang, 
1994).  
 
2.2 General equilibrium equations  
 

A number of individual blocks can be connected to 
form a block system satisfying the constraints between 
blocks. For a system of n blocks and k contact, if each 
DDA block is discretized into mb finite elements, the 
total potential energy of the system includes the strain 
energy of the initial and induced stresses, the external 
work of the point loadings, body loadings, inertia forces 
and the displacement constraints, as well as the 
potential energy of the normal and shear contacts, and 
friction forces.  

The total potential energy Π of the system can be 
expressed as  

1 1 1 1 1

( )
b bm mn n k

e w n s
b i b i i= = = = =

Π = Π − Π + Π +Π∑∑ ∑∑ ∑  (4) 

where Πe, Πw, Πn, Πs are the potential energy of each 
finite element in a block, the work of external forces, 
the potential energy of the normal spring and the 
potential energy of the shear spring, respectively.  

The element matrices of stiffness and force are 
formed by taking the derivatives with respect to the dis-

placement variables from the corresponding potential 
energy. Taking the direct summation of these individual 
submatrices to form the global stiffness matrix [K] and 
force matrices [F], the simultaneous equations of 
equilibrium are then established.  

The simultaneous equilibrium equations derived by 
minimizing the total potential energy of the system 
have the following form: 
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            (5) 

In the Eq. (5), the nodal displacements [Di] are chosen 
unknown variables, [Kij] is a 12×12 submatrix and [Fi] 
is a 12×1 submatrix.  
 
2.3 Formulation of the elements 
 
Stiffness matrix 

 
The strain energy Πe of element i can be expressed as 
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i=1, 2, …, 4. E and ν are Young's modulus and Poisson 
ratio, respectively.  

Taking derivatives with respect to the displacement 
variables from the strain energy Πe, a 12×12 element 
stiffness matrix [Kii] is obtained  
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(r, s=1, 2, …, 12.) 
where |[J]| is the determinant of the Jacobian matrix. 
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Inertia force matrix 
 

If the displacement of an arbitrary point (x, y) in i-th 
element and the mass per unit volume are expressed as 
{ }  u v w  and M, respectively, the potential energy Πi of 
the inertia force is given as  
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z
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u v w f dxdydz
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The derivatives of Πi gives 
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(r, s=1, 2, …, 12.) 
where Δ is the time step, { }(0)iv is the initial velocity 
at the beginning of the times step. The velocity at the 
end of the time step { }( )iv Δ  is calculated by  

{ } { } { }2( ) (0)i i iv D vΔ = −
Δ

                   (12) 

 
Initial stress matrix 
 

For the i-th element, the potential energy of initial 
stresses { }0 ( , , )i x y zσ  is written as 

{ } { }0 ( , , )
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where 0 0 0 0{ } {   }i ξ η ζσ σ σ σ= . Minimizing Πσ by taking 
the derivatives can obtain a 12×1 force submatrix : 
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(r=1, 2, …, 12.) 
 

Displacement constraint matrix   
 

Assume the point (x, y, z) of element i is constrained 
with displacement vector of { }  c c cu v w . Then, the 
potential energy Πc related to the constrained spring is 

{ } { } [ ] { } [ ] [ ]{ }  
2 2

c c
T TT T

c c c c c i i c i i i i
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u u
p p
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 (15) 

Taking the derivatives of displacement variables from 
potential energy Πc can obtain a 12×12 element 
stiffness matrix [Kii] and a 12×1 element force matrix 
[Fi] as follow:  
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(r, s=1, 2, …, 12.) 
  
Point loading matrix  
 
The point loading force (Fx, Fy, Fz)T acts on the point (x, 
y, z) of element i, then the potential energy of the 
loading can be written as  

{ } { } [ ]  
x x

TT

p y i i y

z z

F F

u v w F D N F

F F

Π = − = −

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

     (18) 

The derivatives of Πp gives a 12×1 element force 
submatrix  

[ ] [ ]
(0)

x

Tp

r i y i

ri

z

F

f N F F
d

F

∂Π
= − = →

∂

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

          (19) 

(r=1, 2, …, 12.) 
which is added to the [Fi] in the global  Eq. (5). 
 
Body loading matrix  
 

Assume (fx, fy, fz)T is the constant body force loading 
acting on the volume of element i. The potential energy 
due to the body loading is expressed as  

{ }  
i

x

v yv

z

f

u v w f dxdydz

f

Π = −

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

∫∫∫
 

{ } [ ]
1 1 1

1 1 1
| [ ] |

x
TT

i i y

z

f
D N J d d d f

f

ξ η ζ
− − −

⎧ ⎫
⎪ ⎪= − ⎨ ⎬
⎪ ⎪
⎩ ⎭

∫ ∫ ∫    (20) 
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The derivatives of Πv at 0 gives a 12×1 element force 
submatrix  

[ ] [ ]1 1 1

1 1 1
| [ ] |

x

T

r i y i

z

f

f N J d d d f F

f

ξ η ζ
− − −

= →

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

∫ ∫ ∫ ,   (21) 

(r=1, 2, …, 12.) 
which is added to the [Fi] in the global  Eq. (5).  
 
2.4 Contract matrix between adjacent blocks 
 

In the contact theory of 3D-DDA, the requirements 
of no-penetration, no-tension and Coulomb’s law must 
be satisfied in DDA’s block kinematics. When using 
the four-node isoparametric element, the contract 
problem can reduce to the relationship of point-face of 
finite elements. The common-plane method (Cundall, 
1988) is used to determine the contact type. Once the 
contact types and contact faces are determined, all 
contacts can be converted to one or more point-to-face 
contacts (Jiang and Yeung, 2004), as shown in Fig. 2.  
 

 
 

Fig. 2: Point-to-Face Contact Model  
 
Normal spring submatrices  
 

Utilizing the penalty method, a mathematical spring 
is placed between point P1 and the contact face P2 P3 P4 
in the direction normal to the contact face. Assuming 
the stiffness of the spring as pn, the potential energy of 
the normal spring is given by  

{ } { }
2

2 0 [ ] [ ]
2 2

n n
n n i i j j

p p S
d G D H D

L
Π = = + +⎡ ⎤

⎢ ⎥⎣ ⎦
(22) 

where  
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z z

−

= −

−

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

, 2 2 2L a b c= + +       (23) 

{ }1
[ ] a b c [ ]i iG N

L
= ,    { }1

[ ] a b c [ ]j jH N
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3 2 3 2

4 2 4 2

y y z z
a

y y z z

− −
=

− −
, 3 2 3 2

4 2 4 2

z z x x
b

z y x x

− −
=

− −
, 3 2 3 2

4 2 4 2

x x y y
c

x x y y

− −
=

− −
. 

In general, pn should be a large positive penalty so 
that it can ensure that the deformation of the spring is 
much smaller than that of the block. If the value of pn is 
large enough, the computational results practically will 
not depend on the value of pn. (Shi, 1988). 

Taking derivatives with respect to the displacement 
variables from Πn obtains four 12×12 submatrices and 
two 12×1 submatrices which are added to [Kii], [Kij], 
[Kji], [Kjj], [Fi] and [Fj], respectively.  

2
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           (29) 

[ ]0(0)
[ ]Tn n

ri j j

ri

p S
f H F

d L

∂Π
= − = − →

∂
          (30) 

(r, s=1, 2, …, 12.) 
 

Shear spring submatrices 
 

It is assumed that the points P1 and P0 respectively 
move to P’

1 and P’
0 after the displacement increments 

are applied. Let 'L
r

 be the projection of 0 1p p′ ′
uuur

, the 
increments of the spring is expressed as  

2 2

0 1| | | | | |s nd L p p d′ ′= = −
r uuuur

                   (31) 
Assuming there is a shear spring with the stiffness of 

ps between points P1 and P0, the potential energy of the 
shear spring is given by 

1 1 0 0 1 1 0 0

2 2

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0

2 2 2

T

s s s
s s n

x u x u x u x u
p p p

d y v y v y v y v d

z w z w z w z w

+ − − + − −

Π = = + − − + − − −

+ − − + − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(32) 

In general, ps should be a large positive penalty number. 
If the value of ps is large enough, the computational 
results practically will not depend on the value of ps.  

Minimizing Πs by taking derivatives, four 12×12 
submatrices and two 12×1 submatrices are obtained and 
added to the submatrices [Kii], [Kij], [Kji], [Kjj], [Fi] and 
[Fj], respectively.  

( )[ [ [] [ ] ] [ ] ]T T

rs s i j i j iik p N N G G K= + →        (33) 

( )[ [ [] [ ] ] [ ] ]T T

rs s i j i j ijk p N N G H K= − + →     (34) 

( )[ [ [ [] ] ] ] [ ]T T

rs s i i j i jik p N N H G K= − − →     (35) 
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( )[ [ [ [] ] ] ] [ ]T T
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        (38) 

(r, s=1, 2, …, 12) 
 
Friction force submatrices 
 

For the 3D contact problem, sliding at the contact 
point may occur in any direction parallel to the contact 
face. Yeung et al. (2004) propose an iterative procedure 
for determining the frictional force and the sliding 
direction. For the point-to-face contact shown in Fig. 2, 
the point P1 is on element i and its projection P0 is on 
element j. When the sliding happens, a pair of equal 
and opposite friction forces parallel to the sliding 
direction is applied, one at the point P1 and one at the 
point P0 on the face. The magnitude and directions of 
the frictional forces are obtained from the previous 
iteration. The friction force F is obtained from the 
normal contact compressive force from the previous 
iteration: 

| | tann nF p d ϕ=                               (39) 
where Pn, dn and φ are the normal spring stiffness, the 
normal penetration distance after the previous iteration; 
and the friction angle, respectively. 

The direction of the friction force acting at P0 is 
assumed to be in the direction of 'L , which is the 
projection of the vector 0 1p p′ ′ , and the direction of the 
frictional force acting at P1 is assumed to be opposite to 
that of 'L . Now, let n  be the unit vector pointing out of 
the block, then,  

'

0 1 | | [   ]nL p p d n d e f′ ′= + =                  (40) 
The potential energy of the pair of frictional forces is 
expressed as  
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The relevant derivatives of Πf with respect to dri and 
drj at 0 form two 12×1 submatrices which are added to 
[ ]iF  and [ ]jF  in global Eq. (5), respectively.  
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f F M F
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= − = − →
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,            (44) 

[ ](0)
[ ]f

rj j
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f F N F
d

∂Π
= − = →

∂
.               (45) 

(r=1, 2, …, 12.) 
After iteration, the friction force magnitude and 
directions are updated according to the results of the 
iteration. 
 
3. An example of multilayer pavement  

 
As shown in Fig. 3, the pavement structure is 

described by a multilayer system containing three 
horizontal layers, which are asphalt concrete layer, base 
layer and subgrade soil layer, respectively. The 
parameters of each layer are listed in Table 1. The 
moving vehicle is presented by a circular distributed 
load. It is assumed that the length, width and thickness 
of the 3D model of pavements are respectively 5 m, 5 
m and 3 m based on engineering judgment and previous 
research.  

 

 
 

Fig. 3: 3D model of multilayer pavement system  
 

Table 1: Input values of parameters for calculation 
 

Layer E 
(MPa) v Thickness

(cm) 
Asphalt  (h1) 2000 0.25 20 

Base (h2) 400 0.25 40 
Subgrade (h3) 200 0.35 240 

Load stress (kPa) 500 
Load radius (mm) 200 

 
To compare with analytical solution, it is assumed 

that the velocity of the load is zero in particular and the 
load is applied on the original point of x-y plane. Then, 
it can be reduced to 2D plane strain problem. In the 
analysis, each layer of the model is treated as a block of 
DDA and the blocks are discretized into 45 four-node 
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element meshes (Fig.4). Full friction between the layers 
is assumed. The displacements and stresses of the 
pavement can be obtained by the program of 2D-
DFCM, which is developed by the authors. The 
numerical results are shown in Table 2, where σr and σz 
are normal stresses in the directions of r and z, and w is 
the vertical displacement of the pavement. 
 

 
 

Fig. 4: 2D-DDA-FEM pavement calculation model 
 

Table 2: Numerical results of DFCM 
 

Layer (r, z) 
(cm) Solution σr 

(MPa) 
σz 

(MPa) 

w 
(mm)

Analytic -0.685 -0.500 0.320 
(0, 0) 

DFCM -0.685 -0.500 0.319 
Analytic -0.288 -0.250 0.261 

(20, 0) 
DFCM -0.286 -0.250 0.261 

Analytic -0.007 0.000 0.212 

Asphalt  
layer 

(30, 0) 
DFCM -0.007 0.000 0.211 

Analytic 0.0107 -0.2051 0.209 Base 
layer 

(0, 20) 
DFCM 0.0103 -0.2030 0.202 

Analytic 0.0023 -0.0426 0.182 Subgrade 
layer 

(0, 60) 
DFCM 0.0020 -0.0421 0.176 

 
The results in Table 2 show that the solutions 

obtained by the DFCM agree very well with the 
analytical solutions (Zhong and Yin 2006). It 
demonstrates the validity of the coupled method. 
 
4. Conclusions 

 
The numerical model and formulations of 3D DDA-

FEM Coupled Method (3D-DFCM) were developed in 
the present paper. The displacements and stresses were 
obtained by proper internal discretization of deformable 
blocks using finite element meshes. The contacts 
between the deformable blocks were modeled by DDA. 
It combines the advantages of the DDA and the FEM so 
that not only the movements of the block system can be 
depicted, but the stress distributions in the blocks can 
also be obtained. A multilayered pavement subjected to 
moving vehicle loads was investigated by the method. 
The numerical results demonstrated the validity of the 
coupled method. The DFCM will have a wide 

application in complicated rock mass problems and 
other new fields.  
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Simulation of blasting problems is one of the important applications in dynamics for the DDA 
method. Demolition blasting and rock blasting are two main aspects of blasting engineering and 
research. In this paper, the blasting demolition process of two brick walls in an anti-terrorism 
exercise was simulated by the DDA method firstly, and then a typical rock bench blasting was 
simulated with the DDA code extended by the authors especially for rock blasting simulation. The 
extensions of the code include: the development of plastic rock constitutive relation, the calculation 
of damping, the calculation of suppositional cracks, and a temporary way of boundary treatment. 
With these extensions, the problems of energy dissipation and stress wave reflection at finite 
boundaries in rock blasting simulation are solved to a certain extent, and the fragment size can be 
forecasted. According to the simulation results and corresponding analysis, the feasibility of 
simulating blasting process with DDA method was validated. 

Keywords: DDA method; Demolition blasting; Rock blasting; Numerical simulation 
 
 
1. Introduction 
 
Demolition blasting and rock blasting are two main 
aspects of blasting engineering. To simulate blasting 
process with numerical methods is an important way of 
engineering blasting research. By numerical simulation, 
the collapse, disassembly of buildings and the 
formation of blasting piles can be forecasted for 
demolition blasting; the breakage and fly of rock 
blocks, the formation of blasting piles, and the blasting 
fragment size can be forecasted for rock blasting. 
Thereby the designs of engineering blasting projects 
can be directed by the numerical results, increasing the 
reliability and decreasing the failure probability of 
engineering practice. 
In this paper, the numerical DDA method is utilized to 
simulate the large deformation and large displacement 
breakage problem of engineering blasting projects. 
Firstly, the blasting demolition process of two brick 
walls in an anti-terrorism exercise was simulated 
respectively by the 2D-DDA and 3D-DDA method, 
and then a typical rock bench blasting was simulated 
by the 2D-DDA code extended by the authors 
especially for rock blasting simulation. The extensions 
of the code include: the development of plastic rock 
constitutive relation, the calculation of damping, the 
calculation of suppositional cracks, and a temporary 
way of boundary treatment. With these extensions, the 
problems of energy dissipation and stress wave 
reflection at finite boundaries in rock blasting 
simulation are solved to a certain extent, and the 
fragment size can be forecasted. 
 
 
 

2. Brick Wall Blasting Demolition Simulation 
 
As the DDA method is especially developed for the 
calculation of discontinuous block systems, it’s very 
suitable for the simulation of the blasting demolition 
process of block structures, such as steer constructions 
(Hu et al 2002), brick chimneys (Zhao et al 2005), etc.. 
Zhao et al (2006) also simulated the blasting 
demolition process of a RCC cofferdam successfully 
by this method.  
In this paper, the blasting demolition process of two 
brick walls in an anti-terrorism exercise is to be 
simulated by the DDA method. For the restriction of 
the actual DDA code, only the collapse and 
disassembly process of the walls under the effect of 
self-gravity after the formation of blasting cuts is 
simulated. 
 
2.1 Calculation models and material parameters 
 
Two brick walls demolished in the exercise is shown in 
Fig. 1 , and a typical moment of the blasting process is 
shown in Fig.2. The two brick walls intersect with an 
angle of 90º and have different breakage styles. The 
eastern wall is to be simulated with the 2D-DDA 
method according to its symmetry character, and the 
southern wall is to be simulated with the 3D-DDA 
method.  
The DDA models of the two walls are shown in Fig.3 
(a) and Fig.4 (a) respectively. The eastern wall has a 
height of 8m with 0.24m thick and 0.2m high bricks. 
To save calculating time, the southern wall only has a 
height of 2.4m with 0.4m length bricks. 
According to the field material characteristics, the 
material parameters are set as follows: density of the 
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walls (hollow bricks) ρ =1800kg/m3; Yong’s modulus 
E =7000MPa; Poisson’s ratio μ =0.22; as only the 
parameter of friction angle among blocks can be 
calculated in the actual 3D-DDA code, the friction 
angles are respectively set as 1ϕ =15º and 2ϕ =30º 
among 2D-DDA bricks and 3D-DDA bricks; cohesion 
and tensile strength among both 2D-DDA bricks and 
3D-DDA bricks are respectively c =0.5MPa and 

tσ =0.3MPa. 
 

 N 

     E

 
Fig.1: Two brick walls to be demolished 

 

 
Fig.2: A typical moment during blasting demolition 

 
2.2 Simulation results and the analysis 
 
As the air resistant effect is taken into account, static 
calculation is used in the simulation of the eastern wall. 
Dynamic calculation is used in the simulation of the 
southern wall. Typical moments of the simulation of 
the two walls are shown in Fig. 3 (b) - (d) and Fig. 4 (b) 
- (d).  
(1) According to the comparison of the simulation 
results and the field photos, it can be found that the 
demolition process of the two walls is numerically 
displayed quite well. As the effect of the blasting 
vibration is not taken into account, the simulation is 
carried out approximatively. 
(2) The simulated demolition pile of the eastern wall is 
very close to that in the exercise, but the southern wall 
has just been disassembled and the calculation stops, 
which is because of the relatively low development 
level of 3D-DDA code presently. In the 3D-DDA 
simulation, as the calculation went on, block invading 

happened, and the calculation efficiency was fairly low 
in dynamic calculation. 
 

 
(a) Model 

 
(b) Collapse begin 

 
(c) Puckering 

 
(d) Result 

Fig.3: Demolition process of the eastern wall 
 

 
(a) Model 
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(b) Typical moment 1 

 
(c) Typical moment 2 

(d) Disassembly 
Fig.4: Demolition process of the southern wall 

 
3. Development of 2D-DDA code for rock blasting 
 
For the numerical simulation of rock blasting, the DDA 
method has its superiority in theory compared with 
other traditional numerical methods and it meets the 
characteristics of rock blasting: large deformation, 
large displacement, with both static and dynamic 
process (Yang et al 1999). Furthermore, as blocks may 
be fractured by explosive impact effect during blasting, 
and for the DDA method, both the growth of initial 
faults and the generation of new cracks in rock 
mediums can be calculated, the blasting fragment size 
can be forecasted by this method (Yang at al 2005).  
In the initial edition of 2D-DDA code, the friction 
among blocks is the main way of the consumption of 
energy (Shi 1985) and obviously it’s not enough in 
dynamic calculation. Based on their past work in 
simulating rock blasting by the DDA method (Yang 
Jun at al, 2005), the authors may try to solve the 
problem of energy dissipation better in this paper with 
the development of rock plastic constitutive relation, 
the calculation of damping and artificial boundary 
blocks and a more sophisticated calculating method of 
suppositional cracks. Then a typical rock bench 
blasting is calculated with the extended code and more 
satisfying results of block throw and fragment size 
forecast curves are achieved.  
 
3.1 Plastic constitutive relation 
 
As Drucker-Prager yield criterion is the revise of 
Mohr-Coulomb yield criterion, the effect of ambient 

pressure 2σ  to the yield of rock medium is taken into 
account and this criterion can also reflect the effect of 
shear stress to the expansion of volume (Cai Mei-feng 
et al, 2002), so this yield criterion is to be used in the 
extension of the 2D-DDA code. The criterion can be 
expressed as follows: 

021
1 =−+= KJIf α  

Where I1 is the first invariant of stress tensor, J2 is the 
second invariant of deviator stress tensor, α and K are 
material parameters, their relations to cohesion c and 
internal friction angle φ  are: 

)sin3(3
sin2

φ
φα

−
=  

)sin3(3
cos6

φ
φ

−
=

cK  

Using the two dimensional Drucker-Prager yield 
criterion, the linear strain-hardening plastic constitutive 
relation of rock medium is added to the 2D-DDA code. 
 
3.2 Damping and boundary treatment 
 
In the simulation of dynamic problems, energy 
dissipation of materials and structures is revealed by 
the use of damping matrices. In order to calculate rock 
blasting with the DDA method, damping matrices are 
to be added into the 2D-DDA code. 
Rayleigh damping is always used in dynamic problems 
(Cai et al,2002), in which the affect of the system 
frequency to the damping force is neglected and the 
damping matrix is predigested as the linear 
combination of the mass matrix and stiffness matrix: 

C = ⋅α M + ⋅β K 
where C is the damping matrix; M is the mass matrix; 
K is the stiffness matrix; α and β are constants 
independent of frequency. ⋅α M represents the effect 
of the damping force directly proportional to the 
particle velocities; ⋅β K represents the effect of the 
damping force directly proportional to the strain 
velocities. 
In the calculation of dynamics, to represent the infinite 
region of true model with finite calculating region has 
an unavoidable problem to be solved: stress wave 
reflection at artificial boundaries. To decrease the 
effect of artificial boundaries in the simulation, a 
temporary method is used: blocks along the artificial 
boundaries are defined as boundary blocks, and for 
these boundary blocks, the stresses, stains and 
velocities are not to be inherited at each time step so as 
to absorb reflected energies.  
 
3.3 Suppositional crack calculation and fragment Size 
forecast  
 
Under the effect of explosive shock loadings, rock 
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mass may be terribly destroyed in blasting. Joints, 
beddings and other existing faults may be tensed and 
staggered and continuous rock medium may be 
fractured. For the calculation of the breakage along 
existing faults, the DDA method can already solve it 
very well. However, the generation of new cracks and 
crack propagations can’t be calculated by the actual 
DDA code now. To insure more correct energy 
dissipation and to forecast the rock blasting fragment 
size, suppositional cracks may be calculated based on 
the stress strength criterions of the rock medium. 
Because of the fragile property of most rock mediums, 
they are always fractured by tensile or shear effect. 
Based on the fact that fractured rock blocks may not 
have the ability of reserve tensile effect, the following 
fracture rules for each block in every time step are used 
in the DDA code: 
(1) To judge whether the block is fractured according 
to the largest main tensile stress and the largest shear 
stress, if it is fractured, the increasing velocity in this 
time step, the tensile stresses, the tensile strains of this 
block may be set as zero. 
(2) Once a block is fractured, a crack is recorded for 
this block. When the crack time for a certain block is 
beyond a given number (in this paper the given number 
is 15, which can be estimated by the initial average 
block area), the block is thought to be crushed and it 
may not reserve any stress or strain. 
Based on the crack times and the open-close conditions 
of all the blocks in the blasting pile, the 
representational dimension l can be obtained, and then 
a Γ - l curve can be drawn to reveal the blasting 
fragment size distribution (Yang Jun, et al, 2005), 
where Γ  is the percentage of the total volume of 
blocks that have a smaller representational dimension 
than a certain value. Then, the G-G-S distribution 
curve and R-R distribution curve can be drawn as 
follows (Yang Jun, et al, 1999): 
G-G-S distribution: )log(Γ - )log(l ;  
R-R distribution: )))100/(100log(log( Γ− - )log(l . 
To display the fragment size distribution condition 
intuitionisticly, a more diplomatic post-processor DG is 
developed, in which the crack time of each block is 
revealed by its color. Once a block is crushed, it turns 
red. 
 
4. A typical rock bench blasting simulation 
 
4.1 Geometrical model and physical parameters 
 
The sketch map of the calculated typical rock bench 
and its main geometrical parameters are shown in Fig.5. 
The height of the bench is H =10m and the over 
drilling depth is H0 =1m. The height of the explosive 
column is He =7m and the stemming depth is Hs =4m. 
The width of the bench at the top is 4m and the 
obliquity is about 70º. As the main crushed zone is not 

going to be calculated, the diameter of the borehole D 
=500mm in the model is 5 times (Cai Mei-feng et al, 
2002) of that in reality (D0 =100mm).  
 

fractured area

explosive column

fractured area

borehole

rock medium

70
°

H=
1
0m

1
1m

4m
stemming column

 
Fig.5: A typical rock bench model 

 
There are mainly three sets of joints distributing in the 
rock medium, and the block system of this typical rock 
bench produced by the DDA pre-processor is shown in 
Fig.6, in which there are 1853 blocks and the average 
area of the blocks is 0.292m2, so the representational 
dimension l is 0.713m. Physical parameters of the rock 
medium and the joints are shown in Table 1.  

 

 
Fig.6: Block system of the rock bench 

 
4.2 Explosive Load Estimation 
 
As the explosive impact effect can’t be directly 
calculated in the actual DDA code, the explosive load 
should be estimated before simulation. The sketch map 
of the explosive load history affecting the wall of the 
borehole is shown in Fig.7. 
(1) Load history along the explosive column 
For the sect of the borehole at the bottom where the 
explosion directly acts, the peak value (Pm) of the load 
can be calculated according to the coupling coefficient 
of explosive charge and the total lasting time (t2) can 
be calculated according to the fly out of the stemming 
column (Ning et al 2007). 
The peak value of the explosion pressure Pm =20MPa, 
the total lasting time t2 =10ms, and the peak value time 
t1 is 1/10 of t2, that is 1.0ms. 
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Table 1: Physical parameters 

 
Density 
ρ / 

(Kg/m3 ) 

Yong’s 
modulus 
E / GPa 

Poisson 
ratio 
μ 

Friction 
angle 
θ / ° 

Cohesion
c / MPa

Tensile 
strength 
σt / MPa 

Shear 
strength 
σs / MPa 

Compressive 
strength  
σp / MPa 

Rock 
medium 2600 62 0.25 60 50 5 10 155 

Joints / / / 30 0.5 0.2 / / 

 
(2) Load history along the stemming column 
For the sect of the borehole at the top that contains the 
stemming material, Pm decreases linearly from 20MPa 
to 7.5MPa. Meanwhile, t0 increases linearly form 0ms 
to 8.94ms and t1 increases linearly from 1.0ms to 
9.05ms. All the loads finish at t2 =10ms, and the rising 
time (t1 - t0) is 1/10 of the total lasting time for all the 
loads. 
 

explosive
column

stemming
column

t1t0

t1t0

t0 t2

o
t1

t

P

Pm

Pm

Pm

 
Fig.7: Explosive load history estimation 

 
4.3 Simulation result and fragment size forecast 
 
Four typical moments of the simulation are shown in 
Fig.8. The movement of the blocks in the bench is 
displayed, and the rough shape of the blasting pile is 
obtained as Fig.8 (d). Compared with the past 
simulation result of rock bench blasting (Yang Jun at al, 
2005), the fly of the blocks is controlled much better 
for the more exact energy dissipation. It can be found 
that blocks around the borehole are totally crushed and 
blocks bellow the borehole and at the foot of the bench 
are cracked terribly. These conclusions are consistent 
with that in practice.  

 
(a) t =0.0915s 

 

 
(b) t =0.3520s 

 
(c) t =0.6493s 

 
(d) t =0.9772s 

Fig.8: Typical moments of simulation 
 

Regretfully, the final formation of the blasting pile is 
not achieved for the shape aberrance current of some 
blocks, which may likely be induced by the primary 
suppositional crack calculation method used in this 
paper. 
According to the crack times and the open-close 
conditions of the blocks in the rough blasting pile, the 
Γ -l curve that reveals the fragment size of the rock 
bench blasting is shown in Fig.9 (a). As most blocks in 
the bench just separate from each other and are not 
cracked, the proportion of the blocks with initial 
representational dimension (0.713 m) is as large as 
45%, which means that initial joint density may 
strongly affect the fragment size. G-G-S distribution 
and R-R distribution of the fragment size are shown in 
Fig.9 (b). They both have well linearity as 0.98 and 
0.94 respectively. 

121



 

0

20

40

60

80

100

1 10 100 1000

l (mm)

Γ 
(%

)

 
(a) Γ - l curve 

y = 0.6727x - 0.1276
R2 = 0.9594

y = 1.7703x - 5.1597
R2 = 0.89

-5
-4
-3
-2
-1
0
1
2
3

0 0.5 1 1.5 2 2.5 3 3.5 4

log (l)

R-R
G-G-S

 
(b) G-G-S and R-R distributions 

Fig.9: Blasting fragment size forecast 
 
5 Conclusions and Remarks 
 
(1) The blasting demolition process of two brick walls 
were respectively simulated by the 2D-DDA and 
3D-DDA method, in which the 2D-DDA simulation 
result was pretty good, while the 3D-DDA simulation 
result still needs to be improved. Generally, the 
simulation results were quite close to that in practice. 
(2) By the development of rock plastic constitutive 
relation, the addition of damping matrices, the 
utilization of artificial boundary blocks and the more 
sophisticated calculation of suppositional cracks, using 
the estimated explosive loads acted on the borehole 
wall, a typical rock bench blasting was simulated by 
the developed 2D-DDA code, in which the movement 
of the blocks and the formation process of the blasting 
pile were displayed numerically, but the final 
formation of the blasting pile was not achieved. 
(3) All the simulation work in this paper indicates the 
feasibility of simulating engineering blasting process 
with the DDA method. However, in the demolition 
blasting simulation, the actual development level of the 
3D-DDA method restricted the simulation result; in the 
rock blasting simulation, the artificial boundary method 
and the fragment size forecast method used in this 
paper were primary and temporary. 
(4) To simulate engineering blasting better by the DDA 
method, real artificial boundary techniques and real 
crack calculation should be carried out in the 2D-DDA 
code, and the 3D-DDA method also needs to be 
developed as soon as possible. 
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Seismic risk estimation from overturning analysis of hellenistic columns using DDA 
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We present here back analysis of structural collapse of monolithic granite columns used as supports 
in a Hellenistic cathedral which was destroyed during a strong earthquake probably in 749 AD. 
First an existing analytical solution for dynamic rocking of columns is compared with results 
obtained using the numerical DDA method. We then proceed with forward DDA modeling to 
obtain the most likely frequency and peak acceleration of the accelerogram which triggered the 
observed failures, using sinusoidal input functions. While we find that the required PGA for 
overturning is frequency dependent, we believe that an input frequency of 2 Hz and PGA of 0.6 g 
can explain the observed column failure at Susita.  

 
Keywords: PGA, DDA, Back Analysis, Seismic Risk, Toppling, Dynamic Analysis 
 

 
1. Introduction 
 
Dynamic stability of masonry structures in regions 
which suffer from high seismicity is an important 
issue when assessing the seismic risk associated 
with such areas. In particular, failure of distinct 
elements in the structures can be analyzed to 
estimate the driving motion responsible for the 
observed damage. In Israel there are several 
archeological monuments where partial or complete 
collapse of ancient masonry structures can be 
observed today. In this paper we present back 
analyses of topping of monolithic granite columns 
dated back to the Hellenistic period, which are 
preserved to this day in the Susita (Hippos) 
archeological site, located along a northern segment 
of the seismically active Dead Sea rift valley 
(Figure 1 A). We use the numerical DDA method 
(Shi 1993) first to check agreement with a 
published analytical solution and then to proceed 
with forward modeling to obtain the most likely 
characteristics of the seismic motion which 
triggered the collapse of the columns at Susita. 
 
  1.1 Geological Setting 
 
Susita is located at the top of a diamond shaped 
plateau 350 m above the Sea of Galilee, a rhomb-
shaped graben that formed due to a left 
segmentation on a sinister fault - the Dead Sea 
transform, and is characterized by relatively high 
seismicity. From earthquake statistics, strong 
earthquakes have occurred along the Dead Sea 
Transform every 80-120 years, the last event 
recorded in 1927.  A horizontal peak ground 
acceleration greater than 0.3 g is reported for this 
region by SII building code 413 (2004). 
Archeological excavations of a spectacular 

cathedral discovered at the site reveal a row of 
collapsed granite columns, where all columns are lying 
parallel on the ground (Figure 1B). This observation 
suggests that the cathedral was destroyed by an 
earthquake; most probably the great earthquake of 749 
AD which caused much documented damage in the 
region.  
 

  

A

Susita
Sea of 
Galilee

A

Susita
Sea of 
Galilee

   
Fig. 1: A) Location map B) The collapsed columns in 
the Susita cathedral  
 
1.2 Previous Paleo-seismological Studies 
 
Several Paleo-seismic methods have been attempted 
for the resolution of past ground motions from mapped 
rock/structural deformations. One common approach is 
to use trenching through soil profiles in an attempt to 
identify actual fault traces and date displaced horizons 
(e.g. Amit et al. 2002). Another is to attempt to work 
out the required horizontal PGA in a pseudo-static 
back-analysis of ancient landslides (Yagoda et al. 
2007). Finally, where seismically-displaced structural 
elements can be identified in historic monuments, 
dynamic back analysis may be attempted (Kamai and 
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Hatzor, in press). While previous studies focused 
on dynamic sliding analysis for blocks in ancient 
masonry structures (Kamai and Hatzor, in press), 
here we attempt to address a slightly more 
complicated problem: the dynamic rotation of a 
shaking column, and to deduce from our analysis 
the main characteristic (frequency, amplitude) of 
the driving input motion. 
 
2. Dynamic Column Rotation: Analytical 
Solution 
 
Makris and Roussos (2000) presented an analytical 
solution for the rocking of a free standing block 
under a sinusoidal input function. The two-
dimensional solution addresses a rigid rectangular 
block as shown in Figure 2. 

2b

2h

R

c.m.

h

b

α

θ

0’ 0

ü(t)

2b

2h

R

c.m.

h

b

α

θ

0’ 0

ü(t)  
Fig. 2. Sign convention used in this paper 

 
Consider the block diagram in Figure 2. The centers 
of rotation can be either O or O'. A friction 
coefficient greater than b/h is required for a rocking 
motion to ensue (Scalia and Sumbatyan 1996). We 
will assume here that the coefficient of friction is 
sufficiently high to completely prevent block 
sliding. Assuming there is no vertical base 
acceleration, the equations of motion are (Makris 
and Roussos 2000): 
 

( ) ( ) 0,cossin0 ≤−−−=−−+ θθαθαθ RummgRI g&&
&& (1) 

and  

      ( ) ( ) 0,cossin0 ≥−−=−+ θθαθαθ RummgRI g&&
&&      

(2) 
  

where I0 is the mass moment of inertia (in this case 
2

0 3
4 mRI = ),  m the block mass, and üg the ground 

acceleration. All the geometrical parameters are 
defined in Figure 2. Inserting the definition of Io 
into (1) and (2) we get: 
 

 

 ( ) ( )[ ] ( )( ) ( )[ ] ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

−+−−= tt
g
u

ttpt g θθαθθαθ sgncossgnsin2 &&
&&  (3) 

 
where 

R
gp 4

3= , a measure of the dynamic 

characteristics of the block. When the block transfers 
smoothly from rotating around point 0 to rotating 
around point 0', the ratio between the angular velocity 
before the impact ( 1θ& ) and the angular velocity after 
the impact ( 2θ& ) is called the coefficient of restitution, 
and is expressed by:  
 

                      
2

2
2

1

2
2 sin

2
31 ⎥⎦

⎤
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⎡ −== α

θ
θ
&

&
r                        (4) 

 
Introduction of the coefficient of restitution as in (4) 
implies that there is no energy loss due to another 
interface mechanism such as, for example, sliding or 
damage at blocks corners. For tall slender blocks 
characterized by small α equations (1) and (2) can be 
linearized. Here a solution for ground motion in the 
form of a sine function )sin()( ψω += tatu ppg&&  is 

presented, where ap, ωp and ψ  are the amplitude, 
frequency and phase when rocking initiates, 
respectively.  
 
Using the linearized assumption, equations (1) and (2) 
become: 
  
     ( ) ( ) ( ) 0,sin 222 ≤++−=− θαψωθθ ptp

g
a

tpt p
p&&   (5) 

and 

   ( ) ( ) ( ) 0,sin 222 ≥−+−=− θαψωθθ ptp
g

a
tpt p

p&&  (6) 

 
Integrating these equations yields: 
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and 
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and the coefficients of integration are: 
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the equations for the angular velocity are given by: 
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3. DDA Validation for Dynamic Column 
Rotation 
 
The analytical solution for dynamic rotation 
induced by an input of a half-sine pulse is obtained 
in two stages: 1) motion simultaneously under the 
input acceleration function: )sin()( ψω += tatu ppg  

from t = 0 to t = 0.5 sec, where here ω is 2π, and 

the phase angle is 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

pa
gαψ 1sin , and 2) free 

vibration following pulse termination from t = 0.5 
sec onwards. At pulse termination the input 
acceleration diminishes ( 0)( =tug

, hence ap = 0) and 
the coefficients of integration are updated for 
changing rotation angle and angular velocity. 
Furthermore, following each impact (@ 0=θ ), the 
angular velocity and the coefficients of integration 
are recalculated as well. 

 
The analytical and DDA solutions for column width 
and height of b = 0.2 m and h = 0.6 m are presented in 
Figure 3. The results on the left hand side of the figure 
are obtained for amplitude ap = 5.43 m/s2 (0.5535g), a 
value slightly lower than required for overturning, 
hence only column vibration is obtained. On the right 
hand side an amplitude of ap = 5.44 m/s2 (0.5545g) is 
used, the minimum value required for overturning, and 
indeed column overturning is obtained ~ 1.5 sec after 
pulse termination.  
 
In the DDA model the column rests on a fixed base and 
is subjected to dynamic input at its centroid. The 
friction angle along the interface is set to 89 degrees to 
avoid sliding, as in the analytical solution which 
ignores sliding. The optimal values for DDA numerical 
control parameters (g1, g2) are obtained following the 
optimization study performed by Tsesarsky et al.(2005). 
Contact spring stiffness (g0) is selected by iterations, 
until the numerical computation returns the correct 
value of ap necessary for column overturning. A 
remarkably good agreement between the analytical and 
numerical solutions is suggested by the data presented 
in Figure 3. The accuracy of the numerical solution can 
be assessed in terms of the numerical error 
( %100

.

.. ⋅
−

anl

numanl

θ
θθ ). As can be seen in Figure 3 after 

initial perturbations the numerical error rapidly 
decreases below 1%. Note that the DDA solution 
deviates from the analytical solution as soon as the first 
impact between the rocking block and the fixed base 
occurs. This deviation may be explained by the way 
damping is addressed in the two methods. While in the 
analytical solution the motion between impact cycles is 
restrained following the constant value of the 
coefficient of restitution, in DDA oscillations at contact 
points are restrained due to algorithmic damping (see 
Doolin and Sitar, 2004; Ohnishi et al., 2005). The 
numerical control parameters used in DDA simulations 
are: (k01 = 1, g2 = 0.0075, g1 = 0.0025 sec, g0 = 
83*106 N/m, E = 3 GPa, ν = 0.25). 
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Fig. 3: Solution for dynamic column rotation (b=0.2 m, h=0.6 m). Left: ap lower than required for toppling, Right: ap 
sufficient for column toppling. Solid line - analytical solution, Open circles - DDA results.  
 
 
The same procedure is repeated to find the solution 
for a full sine input function, again with ω = 2π. 
The comparison between analytical and numerical 
solutions is presented in Figure 4 for column width 
and height of b = 0.5m and h = 1.5m, respectively.  
Again on the left-hand side ap is slightly lower and 
on the right hand side ap is slightly higher than the 
peak acceleration required for overturning. The 
difference between the two values used for input in 
the two simulations is 0.003 m/s2 or 0.0001 g(!), 
suggesting an extremely high DDA accuracy. The 

spring stiffness found in iterations as before is g0 = 
64*106 N/m, probably because of the difference in 
column stiffness due to the change in column geometry. 
The other DDA input parameters are: k01 = 1, g2 = 
0.0075, g1 = 0.0025 sec, E = 3 GPa, ν = 0.25. As in the 
previous validation for a half sine the error remains 
very small until the first impact occurs, after which the 
error begins to increase. Naturally from the definition 
of error which depends on the actual value of θ, greater 
error is expected for very small values of θ, and vice 
versa.  
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Fig. 4: Solution for dynamic column rotation (b=0.5 m, h=1.5 m). Left: ap lower than required for toppling, Right: ap 
sufficient for column toppling. Solid line - analytical solution, Open circles - DDA results.  
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4. Column Collapse at the Hellenistic Cathedral, 
Susita 
 
In Susita, the columns of the Hellenistic cathedral 
are found lying parallel on the ground in azimuth 
70°-250° (Figure 1B). The column bases are 
typically displaced by 60 to 90 cm from the column 
pedestals. The columns are made of solid granite, 
which was brought to the region probably from 
Egypt (Segal et al., 2004). Model geometry is 
presented in Figure 5, and the material properties 
are estimated as follows: E = 40 GPa, ν = 0.18, ρ = 
2700 kg/m3, and friction between column base and 
pedestal φ = 45°. The values of the numerical 
control parameters are as in the validation study. 
An optimal contact spring stiffness of g0 = 2*108 
N/m   is found by iterations, this time for best fit 
with the analytical solution but for initial oscillation 
stage (see Figure 6). The optimal g0 value was 
determined for very low values of θ  to avoid 
sliding deformation.  
 

4.7 m

0.75 m

0.6 m

4.7 m

0.75 m

0.6 m

 
Fig. 5: The structural model used for the columns at 

Susita 
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Fig. 6: The best fit solution for contact spring 
stiffness (g0 = 2*108 N/m) in the Susita case. 
 
Forward DDA modeling is preformed as a function 
of frequency and amplitude of the input 
acceleration function. DDA results for one and 

three cycles of a sinusoidal input function are presented 
in Figures 7A and 7B respectively. With a single 
loading cycle the required amplitude for overturning 
clearly increases with frequency (Figure 7A). For 
example, the amplitude required for overturning at 5 
Hz is 4.6 g, far greater than the expected PGA for this 
region, which is 0.3 g. Input loading frequencies of 1 
Hz and 2 Hz return PGA values of 0.2 g and 0.6 g 
respectively, much closer to the expected PGA for this 
region. The required PGA for overturning also 
increases with frequency for three loading cycles, but 
at a smaller rate (Figure 7B).  
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Fig. 7: DDA results for the Susita columns. Required 
PGA for overturning under one (A) and three (B) 
cycles of input loading function. Solid Triangles - 
stable columns, Empty diamonds – overturned columns. 
Solid line – stability boundary. 
 
5. Discussion and Conclusions 
 
In this paper we have presented an analytical solution 
for the dynamic rocking and overturning of rectangular 
columns developed by Makris and Roussos (2000). 
This problem is very important for seismic risk 
evaluation of existing structures, but is used here to 
back analyze a documented failure of monolithic 
columns which was clearly driven by seismic vibration 
in a known historic period. The sought products of this 
exercise are the most likely characteristics of the 
loading function, primarily the frequency and 
amplitude of the input acceleration record, for 
obtaining some constrains on regional seismic risk 
estimations which are, to date, largely dependent upon 
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empirical relations between earthquake magnitude, 
distance, and attenuation models. We use the 
dynamic DDA method first to check the validity of 
the numerical solution and then for forward 
modeling using sinusoidal input loading functions 
and calibrated numerical control parameters. By 
using dynamic DDA we relax the restriction of a 
"non-sliding" boundary at the base, inherent to the 
analytical solution, and allow the deformation to 
proceed in a more realistic manner.  
Using the existing analytical solution we found by 
iterations the numerical contact spring stiffness, the 
value of which greatly influences the results of the 
numerical computation. We found that the best 
contact spring stiffness in this case is two orders of 
magnitude less than the elastic modulus of the 
column. The iterative procedure used to obtain to 
best value of numerical contact spring stiffness is 
recommended for problems where a very high level 
of accuracy is desired. Naturally selecting to 
perform this optimization calls for an existing 
analytical solution for the problem at hand. 
We found that the required PGA for overturning 
increases with input function frequency, as also 
found by Psycharis et al. (2000). They further found 
that for low frequencies of 1 Hz or below the 
required PGA for overturning is independent of the 
number of loading cycles, since the column will 
overturn during the first cycle or soon after it. For 
higher frequencies however, three loading cycles 
seem to better represent earthquake thresholds. 
Proceeding with this reasoning we feel that the 
solution for three loading cycles better represents 
real earthquakes. Considering the result for three 
loading cycles (Figure 7B) the required PGA for 
overturning reaches a constant value of 1 g at 
frequencies greater than 3 Hz. For both one and 
three loading cycles realistic PGA values are 
obtained for 1 Hz and 2 Hz loading frequencies: 0.2 
g and 0.6 g, respectively. Considering typical 
structural amplifications of 2.5 PGA in standard 
seismic building codes (e.g. NEHRP, 2004), the 
result of f = 2 Hz and PGA = 0.6 g yields a 
reasonable ground PGA value of 0.24 g.  Another 
constrain we have on the threshold PGA is the 
distance between collapsed column base and 
pedestal which is consistently between 60 and 90 
cm in the field. Column collapse under both 1 Hz 
and 2 Hz frequencies gives reasonable displacement 
distances of 0.6m and 0.79m, respectively. Further 
research on the natural frequency of free-standing 
columns is required before a definite determination 
of the most likely PGA value can be made.  
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It is well known that the friction coefficient depends on the displacement and velocity. However, 
the current DDA program detects the slide at the contact surface by the Mohr-Coulomb criteria. 
Although DDA analysis is dynamic analysis, the friction coefficient is treated as a constant value. 
It is in fact that the sliding velocity along the fault is very high; in order of 1m/sec. Consequently, 
an implementation that considers the effect of dynamic friction should be employed in the DDA 
program especially in case of analysis the ground deformation by fault movement. This paper 
presents the effect of dynamic friction that should be implemented in DDA program. The 
validation of DDA program was firstly performed by verifying the block sliding induced by a 
sinusoidal motion. Subsequently, the potential rotation of block depends on the geometry and 
friction at contact surface was observed. Likewise, the constitutive friction law of dynamics 
friction developed by Dieterich (1979) and Ruina (1983) provided a connection between friction-
velocity and time dependence, was used to observe the effects of weakening-friction behaviour. 
The analysis results showed that the effect of dynamic friction is influenced significantly in case of 
large slip velocity and slip distance. However, this weakening of sliding resistance may depend on 
many other factors such as the stiffness of the system, stress, temperature, historical sliding, etc.  

       Keywords: DDA; Dynamic friction; Constitutive friction law; Block sliding. 
 

1. Introduction 
 
Since it has been reported by Dieterich (1972, 1978, 
1979), Ruina (1980) and Dieterich (1981), frictional 
sliding at surface contact has become a topic of 
interest in the field of fault mechanics. Therefore, 
frictional sliding behavior has been studied quite 
extensively by many researchers within the theoretical 
and experimental frameworks. As a result, constitutive 
friction laws, a simulation of the frictional sliding 
behavior, have been proposed as a powerful tool for 
investigating the mechanics of fault movement. By 
range of observations in laboratory experiment over 
natural fault problems, it has been documented that 
the weakening of frictional resistance at contact 
surface is nonlinear behavior of slip distance, slip 
velocity, stiffness of the system, stress condition, 
temperature, and history of sliding, etc. A summary of 
research on constitutive friction laws were performed 
by Marone (1992, 1998), in which presented the 
fundamentals of laboratory-derived friction laws and 
their application to seismic faulting. In addition, a 
slip-weakening friction law was introduced by 
Dieterich (1979, 1981), Ruina (1983), Rice (1983), 
Rice & Ruina (1983), Brace & Byerlee (1966, 1970), 
etc, in which friction - slip distance and slip velocity 
dependence is widely used. When sliding occurs, 
frictional resistance will change from static friction 
coefficient, μs to a lower dynamic friction coefficient, 
μd. A numerical simulation considering the reduction 
of friction - slip distance, slip velocity dependence are 
important particularly in case of large slip distance, 
and slip velocity as it was reported that the sliding 

velocity along the fault is very high in order of 1m/sec 
when earthquake occurs.  
 
Although DDA (Shi 1989) is dynamic analysis, it 
detects the sliding condition at the contact surface by 
the Mohr-Coulomb criteria where the friction 
coefficient is treated as a constant value in most DDA 
program. Therefore, in order to analyse the ground 
deformation by fault movement effectively, it is very 
important to incorporate the dynamic friction in the 
DDA program (Osada and Taniyama 2005). 
 
In this research, a DDA program was implemented, in 
which weakening friction behaviour is firstly assumed 
in order to observe the effect of dynamic friction in 
block sliding. Likewise, the constitutive friction law 
of dynamic friction, developed by Dieterich (1979) 
and Ruina (1983) was used, in which provides a 
connection between friction and velocity, time 
dependence. 
 
2. Friction coefficient update in DDA program 
 
DDA calculation is controlled by time steps, in which 
friction can be updated according to the shear 
displacement and velocity that are obtained after each 
time of Open-Close calculation. The algorithm of 
friction coefficient update can be expressed as in fig.1. 
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        Fig. 1: The algorithm of the friction 
                    coefficient update. 

3. Validation of DDA 
 
First, the DDA program was validated for the 
calibration purposes. Because, only an agreement 
between DDA program and analytical solution will 
ensure the accuracy of program. In this case, single 
block sliding on the horizontal plane induces by a 
sinusoidal motion is studied. Fig. 2 shows the model: 
Block 1 is fixed in the vertical direction, whereas the 
horizontal direction is subjected to a sinusoidal load 
at the centre point. Block 2 with the Height/Width 
ratio of 0.25 is set as responding block. The 
acceleration of input motion is expressed as ainput = 
Asin(ωt) for simplicity. 

Since it is being a verification, horizontal sliding only 
is considered without any rotation or vertical motion. 
The resistance force in the system is only a friction 
resistance on the surface contact between the two 
blocks.  

 

Fig.2: Blocks system. 

The mechanical properties of the blocks used in 
present DDA program are described in table 1. 

Table 1. Mechanical properties of blocks. 

Properties Value 

Bulk density ρ (kg/m3) 
Young’s Modulus E (GPa) 
Poison ratio ν 
Cohesion at contact surface c (kN/m2) 

2000 
100 
0.3 
0 

 
The block system was set as rigid material with the 
slender geometry and one degree of freedom in 
horizontal sliding. Therefore, such an effect of 
rotation, vertical motion, deformation of block, and 
cohesive strength do not considerably influence the 
sliding behaviour of Block 2. 
 
3.1. Analytical Solution 
 
As the model is shown in Fig.2, when Block 1 starts to 
move, the frictional force pulls Block 2 in the same 
direction. The relative velocity, vr = v1-v2 between two 
blocks decides the motion of two blocks. When vr= 0, 
Block 2 is at rest against the Block 1, when vr ≠ 0, the 
sliding will occurs between two blocks. The analytical 
solution for this case is implemented by stepwise 
calculation of time, in which the sign and value of 
accelerations a1, a2 of two blocks are set by the 
previous conditions. By considering the equilibrium 
conditions of each block, the analytical solution can 
be described as follows: 
 
If vr = 0 
      a1= ainput = Asinωt 
      if m1|a1|< m2gμ               

a2 = a1   
      else  
             if  a1>0, a2 = μg 
             else   a2 = -μg 
             end 
       end 
 
elseif vr ≠ 0 
      if vr > 0  
            a1 = Asinωt –μ g;  a2 = μg 
        else 
              a1 = Asinωt + μ g; a2 = -μg 
       end 
 
end                                                                           (1) 
 
where μ is the friction coefficient at the contact 
surface and g is acceleration due to gravity.  
 
3.2. The numerical analysis 
 
The accumulating displacement of the responding 
Block 2 was calculated with a change of amplitudes, 

1 
2 y 

x
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Fig. 3: The Response of Block 2. Time step Δt= 
0.005 sec. 3.a.) Changing frictions with A = g; 
frequency f = 1Hz. 3.b) Changing frequencies 
with A = g and φ = 300. 3.c) Changing A with 
f=1Hz, φ =300. 

frequencies and friction. A stabilization of normal 
force is required for the friction force existing on the 
contact surface. So that, for all cases, the input 
motion starts to apply only at t = 0.2 sec in order to 
ensure the vertical motion by self-weight of block 2 is 
finished. 
 
Fig. 3 shows the comparison between DDA and 
analytical solution. A remarkable agreement between 
DDA program and analytical solution (Fig. 3.a, 3.b, 
3.c) with changing of friction, frequencies and 
amplitudes of input motion ensures the performance 
of DDA program as recommended by Kamai and 
Hatzor (2005), Tsesarsky, Hatzor, and Sitar (2005).    
Figure 3.a. presents the displacement of responding 
Block 2 to changing the friction at the contact surface 
with the constant input amplitude and input frequency. 
The good agreement between DDA and analytical 
solution indicates that the contact condition at the 
surface contact, induced by normal force and shear 
force at contact point, is stable as expected. Fig. 3.b. 
and 3.c. present the accumulating displacement of 
Block 2 to changing frequencies and amplitudes of 
input acceleration. These figures reveal the effect of 
loading velocity to the sliding behaviour. Although, 
the frequency and amplitude of acceleration are 
increased 4 times (1 Hz to 4 Hz) in the former and  
0.2g to 1.5g in the later (g is acceleration due to 
gravity), the difference of displacement between DDA 
and analytical solution is not significant. Hence, it is 
clear that a wide range of input loading does not 
influence significantly the agreement of block sliding 
between DDA and analytical. 
 
3.3. Effect of rotation of block  
 
Subsequently, effect of rotation that may depend on 
the geometry, input motion loading and friction at 
surface contact will be discussed. To observe the 
effect of geometry to rotation, a changing 
Height/Width ratio of Block 2 will be considered 
which is called here as geometric parameter α = h/b as 
shown in fig. 4.  
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Fig. 4: Overturning of rigid block sliding 
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The static equilibrium condition of Block 2 for the 
rigid body (Fig.4): 
x direction:              Ff - F= 0                            (2)  
y direction:              N - m2g= 0                               (3) 
Moment round point O:    

Fh + Nx -  m2gb = 0                                  (4) 
where x is distance from reactive force N to point O, 
and x = 0 ∼b. It follows equations (2), (3), (4) that: 

x = b - 2a
g
h                                              (5) 

At x = 0:  K = 2a
bg
h

  = 2a
g
α

                                 (6) 

K reveals the ratio of rotational moment over 
resistant moment from a rotation. Consequently, 
when K >1, Block 2 starts to rotate. When the 
exciting force from Block 1 is smaller than friction 
force existed at the contact surface, Block 2 is a rest 
relative to Block 1. In contrast, when exciting force is 
larger than friction force, Block 2 will slide relatively 
to Block 1 without any rotation. Hence, from the 
equilibrium condition of Block 2, a2 = μg and K= αμ.  
 
Then, the rotation of block was analysed by DDA. 
The model in Fig. 4 was studied with a linear 
acceleration a= At which is subjected at the centre 
point of Block 1 for simplicity. In these analyses, the 
initial state of relatively sliding and potential rotation 
is determined from the contact condition. Basically, 
the contact condition in DDA is divided into three 
types, Lock, Close, and Open that depend on the 
penetration distance of contact point to the contact 
surface after a repeated calculation of Open-Close of 
each time step. At the initial state of the loading, the 
contact condition is detected as Lock condition. Then, 
an increasing of exciting force induces a change of the 
contact condition. The rotational condition of Block 2 
is realized when a contact point of Block 2 changes to 
the Open condition whereas the other point is either in 
Lock or in Close condition. In addition, the sliding 
condition of Block 2 is detected when both contact 
points are changed from Lock condition to Close 
condition. K value is calculated at the initial rotation 
state as well as sliding of Block 2. 
Fig. 5 presents the K-α relation. When α is small such 
as α = 0.5, K was less than 1 in the range of frictions 
at the contact surface which implies that Block 2 is 
only sliding without any rotation.  When K > 1, Block 
2 is rotated, and a larger K with the same α implies 
the potential rotation of Block 2 is lower. Likewise, 
with the same value of friction, the potential rotation 
of Block 2 increases with the increase of 
α. Consequently, it can be concluded that the 
increasing of friction at contact surface or geometric 
parameter α causes the potential of overturning to be 
high. However, since it depends on the detection of 
possible contacts between blocks, the potential 

rotation of the block depends on the control parameter 
using in DDA such as penalty parameter, time step 
size, assumed maximum displacement ratio. For 
instance, in case of α=2 and φ= 300 K >1, but a 
rotation of Block 2 was not occurred. An observation 
of the effects of control parameters to rotation of 
block will be performed in the DDA research.  
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0.001; penalty parameter = 1000 MN/m. 

 
4. Effects of dynamic friction in DDA 
 
When sliding occurs, frictional resistance falls from 
static friction coefficient, μs to a lower dynamic 
friction coefficient, μd. In a possible approach to this 
weakening-friction, the constitutive friction law of 
dynamic friction was considered. The Dieterich’s 
original constitutive friction law (1979) was validated 
by various researchers over the laboratory works on 
many rock types. One possible constitutive friction 
equation is slip velocity, and history slip stage 
dependence which is given by Kanagawa (1996) as 
follow: 

       Θ++== b
V
Va )ln(

0
0μ

σ
τμ           (7) 

             
⎭
⎬
⎫

⎩
⎨
⎧

+Θ−=
Θ )ln(

0V
V

L
V

dt
d                               (8) 

where μ , τ, σ are the friction coefficient, shear stress, 
and normal stress respectively;  μ0  is a constant 
appropriate for steady-state slip at velocity; Vo, V are  
the frictional slip rates; Θ is a state variable, and a 
and b, L  are experimental parameters; L  representing 
the slip necessary to renew the surface contacts. In 
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case that dynamic friction is steady state behavior, 
dΘ/dt = 0, equation (5) can be rewritten as follow:    

)ln()(
0

0 V
Vba −+= μμ         (9) 

By using equation (9), a DDA program was 
developed to observe the friction-velocity 
dependence. In this analysis, the experimental 
variables a, b, L as reported by Dieterich (1979) and 
Ruina (1983) were used. Again, the same model of 
block sliding in Fig. 2 is studied. 

Fig.6 presents the respond of Block 2 when the 
friction at surface contact is constant, and the 
weakening-friction is considered as steady state 
behaviour.  Fig.6a and Fig. 6.b indicate that a when 
the sliding velocity increases, the difference of 
displacement of Block 2 also increase significantly. 

The displacement of blocks is accumulated after each 
step and it causes the difference also increase over 
time. Fig. 6.c presents the friction-velocity 
dependence. It shows that the amount of friction 
reduction is larger than 10% in case of the sliding 
velocity of 0.5 m/sec. However, this weakening of 
sliding resistance may depend on the stiffness of the 
system, stress condition, scale effect, etc.  
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Fig. 7. The respond of Block 2 when the weakening-
friction is as steady state, and sudden change to the 
sliding velocity; A=g 7.a) Displacement-time 
dependence. 7.b) The weakening-friction behaviour. 
 
On the other hand, the effect of weakening-friction 
behaviour on the block sliding were also performed 
by verifying the respond of Block 2 when the 
weakening-friction as steady state and sudden change 
(drop) to the dynamic friction (Fig. 7). With three 
different static frictions at the contact point 200, 300, 
and 450, when the weakening-friction is steady state, 
a reduction of friction of 12.6%, 7.34%, 3.02% 
respectively was found. With the same amount of 
reduction, a suddenly change of friction when sliding 
occurs was analysed. In these cases, the velocity is 
gradually changed as shown in Fig. 6.b. A good 
agreement of the displacements of Block 2 in Fig 7.b 
indicates that sudden drop model of friction can be 
used as the first approximation to express the effects 
of the weakening-friction behaviour.  
 
 Conclusions 
 
This research is an attempt to explain the dynamic 
friction behavior which is complicated in nature but it 
is considered to the most influencing factor for DDA 
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Fig. 6: Respond of Block 2 when the friction at 
surface contact is constant and steady state behaviour 
of reduction to changing amplitudes of acceleration; 
f = 1 Hz; φs =200; time step Δt= 0.005 sec. 6.a) 
displacement-time dependence. 6.b) The relative 
velocity –time. 6.c) the friction-velocity dependence.
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analysis. From the above analysis, the following 
conclusions can be drawn: 
 
1.  The block sliding behaviour was observed by 
using DDA. The validation of DDA program was 
also performed for calibration purpose. Then, the 
potential rotation of block depends on the geometric 
parameter and friction at the surface contact that 
represented by K value was also observed by DDA. 
However, this effect depends on the control 
parameter in DDA such as time step size, penalty 
parameter, assumed maximum of displacement. A 
research on the effects of these parameters to the 
potential rotation of block will perform in the further 
DDA research. 
 
2.  The research on dynamic friction in DDA 
indicated that dynamic friction is influenced 
significantly by block sliding especially in case of 
large displacement. Likewise, a considerable 
reduction of friction has occurred in order larger than 
10 % when the weakening-friction as steady state. 
However, this effect may depend on the other factors 
such as stress, scale effect, and other control 
parameters used in DDA. It also pointed out that the 
effect of weakening-friction behaviour is limited to a 
small range of sliding velocity. Consequently, a drop 
of weakening-friction behaviour to the velocity can 
be used for the first approximation.  
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Earthquake is one of the major triggers for rock slope failure and rockfall, which often cause heavy 
damage to our society. Simulation of the behavior of rock masses during earthquakes is vital for the 
sake of protecting our society against these disasters. The purpose of this study is to investigate the 
DDA behavior under dynamic condition. We simulated vibration response of a block on a virtual 
shaking table, and performed assembled blocks tests on a shaking table and compared with the 
simulation results by DDA. In consequence, it was found out that DDA can simulate dynamic 
response of blocks accurately when appropriate input parameters are applied with which frictional 
force between blocks works well. However, input parameters have a decisive influence on the 
accuracy of analysis and we expect that the open-close iteration in DDA analysis is related to this 
phenomenon. Thorough discussion is included in this paper. 

Keywords: DDA; dynamic analysis; earthquake problem; shaking table tests 
 
 

1. Introduction 
 
Earthquake is one of the major triggers for rock slope 
failure and rockfall, which often cause heavy damage to 
our society. The safety assessment for rock slopes 
during earthquakes is necessary so as to protect our 
society against these disasters, and numerical analysis 
methods are very useful to simulate behavior of rock 
masses during earthquakes. Finite element method 
(FEM) is extensively used as a numerical method for 
the grounds and rock masses and many vibration 
analysis systems with FEM have been developed. 
However FEM have limitations in regard to analysis of 
discontinuous rock masses because FEM treats objects 
as continuous media. In contrast, discontinuous 
deformation analysis (DDA) (Shi and Goodman 1984) 
is a numerical analysis method which treats objects as 
discontinuous media and works for analysis of 
behaviors of discontinuous rock masses. In addition, 
DDA is known to analyze accurately static and block 
falling problems and is expected to come into practical 
use. However, nobody has thoroughly investigated that 
a system of blocks under earthquake condition can be 
analyzed by DDA.  
The purpose of this study is to investigate DDA 
behavior under dynamic condition. We simulated 
vibration response of a block on a virtual shaking table, 
and did assembled blocks tests on a shaking table and 
compared with results of simulation by DDA to inspect 
the applicability of DDA under dynamic condition.  
 
2. A single block behavior under dynamic condition 
 
Investigation of the DDA behavior of a simple 
vibration problem is vital to inspect the applicability of 
DDA under dynamic condition. In this paper, we did 
sensitivity analysis of a block on a virtual shaking table 

vibrating horizontally to investigate the applicability 
DDA to vibration problem and the influence of input 
parameters on analysis results. 
 
2.1 Analytical condition 
 
Fig. 1 shows the analytical model. We input horizontal 
displacement time history to the lower block, a virtual 
shaking table, and compared results of DDA to an 
analytical solution of the response of a single block 
resting on the virtual shaking table (Kamai and Hazor 
2005). The input motion is shown in Fig. 2. The first 
0.5 sec. is ‘gravity turn-on’ routine (MacLaughlin and 
Sitar 1999) prior to the dynamic analysis. Table 1 
shows physical properties of block and parameters used 
in this analysis. In this analysis, we investigated the 
influence of mass of a block (m), time interval (h) and 
contact spring stiffness (kn) on the analysis results. 
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Fig. 1: Analytical model. 

0
0.1
0.2
0.3
0.4
0.5
0.6

0 1 2

Time(sec)

D
is

pl
ac

em
en

t(m
)

 
Fig. 2: Input motion. 
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Table 1: Physical properties of block and parameters 
used in the analysis 

0

0.2

0.4

0.6

0.8

0 1 2

Time(sec)

D
is

pl
ac

em
en

t(m
)

Agreement
Approx. agreement
Error
Analytical solution

 
Fig. 3: Classification of result of analysis. 

 
2.2 Method of comparison 
 
We did semi-quantitative assessment by comparing 
DDA results with the analytical solution of the upper 
block’s displacement plotted on the graph. Results are 
categorized as ‘Agreement’, ‘Approximately 
agreement’ and ‘Error’ by the accuracy (Fig. 3).  
 
2.3 Analysis results 
 
Fig. 4 shows the analysis results for different values of 
mass of the upper block (m) and contact spring stiffness 
(kn). This shows that appropriate contact spring 
stiffness is much lower than the Young’s modulus of 
the block and it increases in proportion to mass. Fig. 5 
shows that DDA results agree with the analytical 
solution well when kn/m is about 1.0×105. However, the 
range of appropriate stiffness value is limited to only 
one order, and error is large awfully if contact spring 
stiffness violates this appropriate range. 
Fig. 6 shows the results for different values of time 
interval (h) and contact spring stiffness (kn). This figure 
shows that error is very large with contact spring 
stiffness less than 1×103 kN/m without relation to time 
interval and that the smaller time interval is, the more 
the range of appropriate stiffness value broadens. 
However, too small time interval is inappropriate 
because the computations with such small time interval 
make DDA computation a time consuming analysis and 
a very small time interval makes the solutions unstable 
(Ohnishi et al 2005).  
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Fig. 4: Analysis results for different values of m and kn. 
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Fig. 5: Analysis results for different values of m and kn. 
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Fig. 6: Analysis results for different values of h and kn. 

m=0.0495ton. 
 
 
2.4 Discussion 
 
In this section, we investigate why accuracy changes 
variously depending on input parameters, in particular 
why error is large  awfully with input parameters 
violating appropriate range as in ‘Error’ case. 
2.4.1 Investigation data in detail 

Poisson's Ratio 0.2 
Friction Angle(°) 36.4 

Young's Modulus(kN/m2) 1.49×107 
Unit Weight(kN/m3) 21.56×10-1-21.56×102

Time Interval(sec) 5×10-5-1×10-2 
Contact Spring 
Stiffness(kN/m) 2×101-4×108 
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In order to find out the reason error is very large as in 
‘Error’ case, we investigate the analysis results in detail. 
Fig. 7 shows the horizontal and vertical accelerations of 
the upper block in ‘Agree’ and ‘Error’ cases. This 
figure shows that in ‘Agree’ case, the horizontal 
acceleration was calculated ±7.2m/s2=±gtanφ m/s2 and 
the vertical acceleration is calculated 0m/s2 which are 
equal to theoretical solution, through contact spring 
makes a little oscillation. In contrast, in ‘Error’ case, 
the horizontal acceleration is calculated 0m/s2 and the 
vertical acceleration is calculated -9.8m/s2 at the most 
of the time step, which are the accelerations of free-fall 
block. This result shows that the error is large awfully 
because frictional force does not work between two 
blocks and the upper block is floating in the air.  
 
2.4.2 Stability of solutions 
 
Stability of solutions and accuracy caused by the time 
integration system might yield large error as in ‘Error’ 
case. Hughes (1983) and Doolin and Sitar (2003) 
present that when we solve a system of equations such 
as Eq. (1) represents one-dimensional and undamped 
mass(m)-spring(k) model 
 

fddd =++ 22 ωξω &&&  (damping ratio: 0=ξ ) (1) 
where   

mk /=ω  (2) 
 
by the Newmark method ( 1,2/1 == γβ ), the spectral 
radius is represented as follows 
 

2,1max λρ =  (3) 

where 

2
2

112,1 AAA −±=λ  (4) 

( )( ) DA /2/2/11 2
1 +−= γΩ  (5) 

( )( ) DA /11 2
2 −−= γΩ  (6) 

21 Ωβ+=D , mkh /=Ω  (7) 
 
It is generally advisable in practice to satisfy slightly 
stringent conditions to make solutions stable. Hughes 
(1983) presents the follows conditions should be 
satisfied to prevent the roots [Eq. (4)] from bifurcating 
into distinct roots 
 

2
2

1 AA <  (8) 
 
The Newmark method satisfies Eq. (8) and the spectral 
stability requirement when the following conditions 
hold (Hughes 1983): 
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(a)Horizontal acceleration (kn =2×104kN/m) 
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(b)Vertical acceleration (kn =2×104kN/m) 
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(c) Horizontal acceleration (kn =2×105kN/m) 
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(d) Vertical acceleration (kn=2×105kN/m) 

 
Fig. 7: Horizontal and vertical acceleration of the upper 

block. Block mass and time interval are constant, 
m=0.0495ton and h=0.001sec. 
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Fig. 8: Spectral radius for Newmark integration. 

 
 

Unconditional  
10 <≤ ξ , 2

1≥γ , ( ) 4/2
2
1+≥ γβ  (9) 

Conditional 
10 <≤ ξ , 2

1≥γ , bifΩΩ<  (10) 

where  ( )[ ] 4
2/12

2
1

4
1 =−+=

−
βγbifΩ  (11) 

 
When 1,2/1 == γβ  are used, Eq. (9) are violated, 
and therefore Eq. (10) should be satisfied in DDA. The 
details are given in Hughes (1983) and Doolin and Sitar 
(2003). 
When the analysis model (Fig. 1) is simplified into one-
dimensional mass-spring model, the spectral radius of 
this system is illustrated in Fig. 8. We plotted on this 
figure all input parameters and spectral radius 
calculated from input parameters used in above analysis 
(Fig. 9). This figure shows that analytical accuracy does 
not correlate with spectral radius and many ‘Error’ 
cases satisfy Eq. (10). Thus it is difficult to conclude 
that stability of solutions and accuracy caused by the 
Newmark method yield large error in this analysis. 
 
2.4.3 Open-close iteration 
 
Contact judgment by open-close iteration might yield 
large error as in ‘Error’ case. In DDA, the penalty 
method is introduced to block-to-block contact and the 
contact spring prevents penetration of blocks. Then in 
the case of laminated block model used in this analysis, 
when contact force by contact spring is too large 
against block mass, contact spring pushes up the upper 
block well over open-criteria (Fig. 10) and contact 
condition is deemed to be non-contact even if it is 
‘contact’ actually. In consequence, even if open-close 
iteration converges, correct contact judgment is not 
done and this incorrect judgment yields a condition that 
does not make frictional force work as in the case of 
‘Error’. The vertical large force in ‘Error’ case (Fig. 7-
(d)) is caused by too large contact force by spring. In 
contrast, if contact spring stiffness is too small to push 
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Fig. 9: Distribution of spectral radius calculated from 
input parameters. 
 
up the upper block, error is large due to over 
penetration. Thus we believe that soft spring stiffness, 
but stiff enough to prevent penetration, should be 
applied to make frictional force work well and incorrect 
contact judgment by open-close iteration yields large 
error in dynamic analysis. 
 
3. Shaking table test and simulation by DDA 
 
We performed assembled blocks tests on a shaking 
table and compared with results of simulation by DDA 
to inspect the applicability of DDA under dynamic 
condition (Akao et al 2006).  
 
3.1 Shaking table test 
 
Fig. 11 shows assembled blocks which are composed of 
cubic concrete blocks, the size of each block is 
15cm×15cm×15cm and the density is 2.2ton/m3. Some 
sinusoidal input motions which had different frequency 
and amplitude were used. A typical input motion is 
shown in Fig. 12. Table 2 shows the cases of input 
motions and the results of behaviors of the top block in 
all cases. This table shows that the blocks had various 
behaviors, stable or topple, depending on input motions. 
Fig. 13 shows behavior of blocks at 5Hz-700gal 
vibration, the horizontal displacement of blocks 
gradually increased with sliding and rotation (locking).  
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Fig. 11: Experimental model for the shaking table test. 
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Fig. 12: Typical input motion (3Hz-400gal). 

 
Table 2: Results of block behavior in all cases 

Frequency(Hz) Amplitude(gal) Behavior 
3 400 Stable 
3 700 Topple 

5 400 Displacement 
without toppling 

5 700 Topple 
 
3.2 Simulation by DDA 

 
The analysis model is shown in Fig. 14 and physical 
properties of block and parameters used in this analysis 
are shown in Table 3. Table 4 shows the analysis results 
of the behaviors of the top blocks and they agree with 
results of tests. The result of simulation in the case of 
5Hz-700gal vibration is shown in Fig. 15. This figure 
shows that DDA can simulate sliding and rotation 
(locking) of block seen in the test. Fig. 16 shows the 
results of horizontal displacement and acceleration 
spectrum of the top block of DDA and experiments. 
From these data, horizontal displacement and 
acceleration spectrum can be expressed well by DDA. 
Thus, it was proved that DDA can simulate vibration 
response of assembled blocks well. However, how to 
determine input parameters was not investigated and 
further study is necessary. 

 
Fig. 14: Analytical model for simulation of the shaking 

table test. 

 
Fig. 13: Block behavior in the case of 5Hz-700gal 

vibration. 
 
 

Table 3: Physical properties of block and parameters 
used in the analysis 

Poisson's Ratio 0.2 
Friction Angle(°) 36.4 

Young's Modulus(kN/m2) 1.49×107 
Unit Weight(kN/m3) 21.56 
Time Interval(sec) 0.001 

Contact Spring Stiffness(kN/m) 20000 
 

Table 4: Analytical results of block behavior 
Frequency(Hz) Amplitude(gal) Behavior 

3 400 Stable 
3 700 Topple 

5 400 Displacement 
without toppling 

5 700 Topple  

Shaking table
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Combine the lowest block 
and the shaking table 

(a) 0 sec 

(c) 8.6 sec 

(b) 6.1 sec 

(e) 13.8 sec 

(f) 15.5 sec 

(g) 16.4 sec 

(d) 10.1 sec (h) 17.5 sec 
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 Fig. 15: Result of simulation in the case of 5Hz-700gal 
vibration 

  
 

4. Conclusions 
 
In this study, we inspect the applicability of DDA under 
dynamic condition by comparing DDA simulation with 
the analytical solution of a block behavior on the 
horizontal shaking table and with the results of 
assembles blocks test on a shaking table. From the first 
study, it was found out that frictional force between 
blocks should be represented accurately with the soft 
contact spring stiffness, but stiff enough to prevent 
penetration, to simulate block behavior under dynamic 
condition with high dimensional accuracy by using 
DDA. In regard to input parameters, we could get 
appropriate results when kn/m is about 1.0×105 and we 
think that this measure is valid for dynamic problem of 
a single block.  In addition, input parameters have a 
decisive influence on the accuracy of analysis and error 
is very large when input parameters are out of 
appropriate range. We note that this is not because 
system violates numerical stability condition caused by 
Newmark method, but because contact judgment of 
open-close iteration is not done appropriately. From the 
second study, it was proved that DDA can simulate 
vibration response of assembled blocks accurately. 
However, how to determine input parameters was not 
investigated.  Thus, it is difficult to assess the validity 
of DDA results for actual dynamic problem at this time. 
We need to explore how to determine contact 
parameters between blocks more in detail in order to 
apply DDA to multi-block dynamic problem.  
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Fig. 16: Comparing DDA result with experimental 

result (5Hz-700gal vibration). 
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In order to obtain the relations between the natural frequencies of elastic block structures and 
applied accelerations, the authors studied several cases of simple block structures under 
harmonic accelerations by Discontinuous Deformation Analysis (DDA) to prepare for a shaking 
table experiment under the centrifugal force of a complex block structure. The results show 
continuum and discontinum models are similar in the small deformation behavior. 

Keywords: Dynamic response analysis; DDA; Natural frequency; Amplification rate 
 
 

1. Introduction 
 
Dynamic response of an elastic body depends on 
natural frequencies of a structure and frequencies 
characteristics of an applied acceleration in general. 
Since, the authors studied earthquake response of actual 
rock slopes by DDA (Sasaki et al. 2004, 2005). But, 
there are many factors influenced for the response, 
those are elastic modulus, penalty, boundary conditions, 
applied acceleration frequencies characteristics and so 
on. Hence, it was very confused to explain the results. 
The purpose of this research is to obtain the relations 
between the natural frequencies of elastic block 
structures and applied harmonic accelerations to 
prepare for the shaking table experiments under the 
centrifugal force of complex block structures.  
 
2. Outline of the analysis 
 
The dynamic response analysis of elastic bodies with 
discontinuities includes three parts in theoretically. The 
first part is the response characteristic of elastic body to 
natural frequencies with arbitrary boundary conditions 
and the second part is frequencies characteristics of an 
applied acceleration. And the third part is collision of 
blocks with discontinuous planes.  
 
2.1 Governing equations of motions 
 
The governing equation of the potential energy sysΠ for 
large deformations of continuous and discontinuous 
elastic bodies is given by Hilbert et al. (1993): 

s y s b lo c k i i
P L
i j

j

m

i

n

i

n

Π Π Π Π= = +
⎛

⎝
⎜

⎞

⎠
⎟

===
∑∑∑ ( ) ,

111

  (1 ) 

The first term on the right side of Eq. (1) is the potential 
energy of the continuum part, and the second term is 
the potential energy of the contact between blocks. The 

first term is given on the finite deformation theory by 
Lubarda and Lee (1981): 
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The first term of Eq. (2) is the strain energy of the 
velocity field, the second term is the surface traction 
energy, and the third term is the energy of the inertia 
force and damping force, where, ρ 0 : density before 

deformation, ρ c : density after deformation, τ *
ij : 

Kirchhoff stress velocity, Dij : deformation velocity 
tensor,σ ij : Cauchy stress, &&u : acceleration, &u : velocity, 

ρ : unit mass, b: body force, c: viscosity coefficient, t : 
surface traction force, V: volume of a block, and Γ : 
surface area of a block. 
The second term on the right side of Eq. (1) is the 
potential energy of the contact between discontinuous 
planes, and is evaluated by minimum potential energy 
theory by using a penalty as follows: 
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where, kN: penalty coefficient in the normal direction, 
kT: penalty coefficient in the shear direction, 
( )j iu u n− ⋅ : amount of penetration in the normal 
direction, uT: amount of slip in the shear direction, and 
n: direction cosine of the contact plane. 
 
2.2 Discretizations by DDA 
 
DDA (Shi 1989) is formulated from Eq. (1) using the 
kinematic equations based on Hamilton’s principle and 
minimized potential energy and the equation of motion 
is expressed by: 
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Fig. 1: Unknowns and penalty of DDA (Shi, 1989) 
 

M u C u K u F&& &+ + =                 (4) 
where, M: mass matrix, C: viscosity matrix, K: 
stiffness matrix, F : external force vector, &&u : 

acceleration, &u :velocity, and u: displacement of the 
center of a block. 
 
2.3 Numerical integrations 
 
The kinematic equation of motion Eq. (4) is solved by 
Newmark’s β and γ method (Hilbert et al., 1993) 
by using parameters β = 0.5 and γ = 1.0, and the 
algebraic equation for the increase in displacement is 
solved for each time increment by the following three 
equations: 
~ ~K u F⋅ =Δ                           (5) 

where, 
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where, Δu : incremental displacement, K e : stiffness 
matrix of linear term, K s : initial stress matrix caused 
by rigid rotation, and )(tα : time history of earthquake 
acceleration. 

The relations between displacements, velocities and 
accelerations at an arbitrary point of a block at time t in 
step i are expressed by the following three equations, 
respectively. 
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2.4 Viscosity of a body and frictions 
 
The viscosity matrix C in equation (4) can be rewritten 
as follows in terms of viscosity η  and mass matrix M: 

MC η=                              (11) 

The physical meaning of viscosity η  is the damping 
of the elastic block itself, the viscosity of air around the 
rock surfaces and the vegetation on the surface of a 
rock slope (Sasaki et al. 2004). 
On the other hand, in earthquake response analysis it is 
conventional to prevent the reflection of seismic waves 
from the boundary to the blocks in the analysis area by 
using dash pot damping elements as shown in Fig. 2. 
We therefore introduce Voigt-type viscous damping 
elements between blocks under the contacts. 
The potential energy of the penetration between blocks 
considering contact viscous damping is expressed by 
Sasaki et al. (2005): 
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Fig. 2: Viscous damping on contact system  
 
3. Numerical examples 
 
According to the basic concept of numerical models 
under applied dynamic forces, in an elastic continuous 
analysis, small displacement is assumed for a model of 
finite element methods. An earthquake wave comes 
from the analytical regions at the same time for 
convenience. On the other hand, in discontinuous 
analysis for elastic bodies with large deformation by 
DDA, an earthquake wave comes from the base block 
and propagates to the upper blocks through penalty 
springs. Therefore, we applied an earthquake wave only 
on the base block and the frequency characteristics of 
the base block depends on the relationship of the 
applied wave frequency with boundary conditions as a 
resonance of an amplifications. And in order to obtain 
the influences of collisions by each block, a single 
columned, a multi columned and a staggered layered 
models are examined. 
The applied dynamic load are assumed to be harmonic 
sinusoidal with frequency of 2Hz, 4Hz, 10Hz, 20Hz, 
60Hz and a random earthquake wave.  
 
3.1 Single columned six layered model 
Fig. 3 shows the case with an input acceleration of 2Hz 
sinusoidal waves. Fig.4 shows the single column six 
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layered model. The applied force as acceleration is 
input at the center of upper point of the base block 
during from 0.1 second to 1.1second as 2 cycles. 
 

Input Accelaration(2Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time(sec)

A
c
c
e
la

re
ti
o
n
(c

m
/
se

c
^2

)

 
Fig.3: Input acceleration (2Hz sin wave) 

 

 
Fig.4: Single column six layered model 

 
Table1. Material properties of the models 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Table 1 shows material properties of the model. In 
order to get a resonance model between the base block 
and input applied acceleration, the elastic modulus of 
base block and the penalty are determined by trial 
calculations. Fig. 5 shows the acceleration response of 
each block. The amplification of acceleration ratio for 
the base block in the presented model is eight times of 
input acceleration and the upper blocks are eleven to 
fifteen time. The amplification of acceleration ratios are 
distribute large to small along to bottom to upper blocks. 
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Fig.5: Accelerations response of blocks 

 Comparison of Velocity(2Hz)
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Fig.6: Velocities response of blocks 

Comparison of Displacement(2Hz)
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Fig.7: Displacements response of blocks 

 
The time differences of the phase are ordered form 
bottom to upper blocks. Fig.6 and Fig.7 show the 
velocities and the displacements response of each block. 
The amplification ratios are same tendencies of the case 
of accelerations. Those results agree with the simple 
one degree of model theory.  

 
3.2 Staggered five layered model 
 
In ordered to obtain the influence of collisions between 
blocks in the horizontal direction, Fig.8 shows five 
layered staggered model. Fig.9 shows the acceleration 
response of the base, the middle and the top block. The 
base and the top block have same tendencies with the 
single column six layered model.  

 
Fig.8: Five layered staggered model 

Time interval 0.0005sec 
Input frequency 2Hz 
Elastic modulus(Base block) 200MPa 
Elastic modulus(Upper 160MPa 
Poisson’s Ratio(Base block) 0.2 
Poisson’s Ratio(Upper blocks) 0.3 
Friction angle of the rock φ =30 degrees 
Penalty coefficient (Kn) 160MN/m 
Penalty coefficient (Ks) 160MN/m 
Viscosity coefficient 0.05 
Velocity / Energy Ratio 0.81 
Unit mass (Base block) 20kN/m3 
Unit mass (Upper blocks) 12kN/m3 
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Fig.9: Accelerations response of blocks 
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Fig.10: Velocities response of blocks 
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Fig.11: Displacements response of blocks 

 
In order to avoid a letter of stitch at the change points 
of accelerations directions, acceleration responses are 
calculated by differentiating velocities directly. Fig.10 
and Fig.11 show velocities and displacements response 
of the base, the middle and the top blocks. The 
amplification ratios are in the same tendencies of the 
case of accelerations and there are no influences of 
collisions by side blocks. 
The influence of the collisions of the side blocks 
appears in a letter of stitch. The amplification ratios are 
in the same tendencies of the case of accelerations and 
there are no influences of collisions by the side blocks. 
 
3.3 Five columns six layered model 
 
In order to obtain the influence of collisions between 
blocks in the horizontal direction and compare with the 
single column and the staggered model, the five 
columns six layered model is analyzed. Fig.12 shows 
five columns six layered model. The material properties  
and input accelerations are the same as the single 

 
Fig.12: Five columns six layered model 
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Fig.13: Accelerations response of blocks 
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Fig.14: Velocities response of blocks 
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Fig.15: Displacements response of blocks 

 
column and the staggered models. Fig.13 shows the 
accelerations response of the base, middle and top 
block. Influences of collisions by horizontal blocks 
appear at the change points of accelerations directions 
of side blocks. This case, accelerations and velocities 
are calculated form displacements. Fig.14 shows the 
velocity response and the influences of collisions 
appear at the middle block. Fig.15 shows the 
displacements response and no influences of collisions. 
 
3.4 Random accelerations wave model 
 
In order to obtain the influences of random acceleration 
waves as earthquake, we applied EL-Centro (N-S) 
recorded wave for the single column six layered model. 
Fig.16 shows the accelerations of input point and the 
response of the base block of two kinds of elastic 
modulus as 1GPa and 2GPa respectively. The base 
block amplification of acceleration ratio is 0.5 to 3.0 
times of input accelerations. 
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Fig.16: EL –Centro (N-S) input and the base block 

accelerations response of the two models 
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Fig.17: Accelerations response of blocks 

 
In this case, the time interval is 0.005 second. Fig.17 
shows the accelerations response of the each block. 
There are no pulse shape patterns as shown Fig. 9 and 
Fig. 13 appearing at the middle part of block by 
collisions of blocks rotations. For this reason, the time 
interval of random waves input accelerations is ten 
times of the harmonic sinusoidal wave input cases. 

 
3.5 Shaking table experiments model 
 
Fig.18 shows shaking table experiments of a two 
dimensional model and blocks were piled in twenty 
layers and forty columns, the actual tested model was 
tree dimensional. Table 2 shows material properties of 
the experiment models and blocks were made by 
gypsum. 

 
Fig.18: Shaking table experiments model 

 
Table 2. Material properties of model 

Time interval 0.0005sec 
Input frequency 60Hz 
Elastic modulus(Base block) 2GPa 
Elastic modulus(Upper blocks) 120MPa 
Poisson’s Ratio(Base block) 0.15 
Poisson’s Ratio(Upper blocks) 0.35 
Friction angle of the rock φ =30 degrees 
Penalty coefficient (Kn) 120MN/m 
Penalty coefficient (Ks) 120MN/m 
Viscosity coefficient 0.05 
Velocity / Energy Ratio 0.81 
Unit mass (Base block) 78kN/m3 
Unit mass (Upper blocks) 1.26kN/m3 

Fig.19 shows acceleration of actuator input at base 
block. The acceleration applied was 60Hz and 30gal at 
first step, 80gal at second step, 100gal at third step, 
200gal at forth step and 300gal at five step. And Fig.20 
shows the acceleration response of base block. 
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Fig.19: Acceleration of input point 
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Fig.20: Acceleration response of the base block 
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Fig.21: Velocity response of the base block 
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Fig.22: Displacement response of the base block 
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Fig.23: Acceleration response of point No.5 
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Fig.24: Acceleration response of point No. 6 
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Fig.25: Acceleration response of point No. 7 

-30

-20

-10

0

10

20

30

0 0.5 1 1.5 2 2.5

Time(sec)

A
c
c
e
le

ra
ti
o
n
(c

m
/
se

c
^2

)

 
Fig.26: Acceleration response of point No. 8 
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Fig. 27: Displacements response of point No.4, 8, 12 

 
In this case, the base block amplification of acceleration 
ratio is about thirteen times of the input acceleration 
and the maximum acceleration is controlled in 
calculations at the same values of the actuator and the 
gravity forces by the centrifugal forces was 30G. Fig.21 
and Fig.22 show the velocity and the displacement 
response of the base block. Judging from these results, 
the natural frequency of the base block is estimated 
about 20Hz with the boundary conditions.  
Fig.23 shows the acceleration of point No.5 in the 
upper bock as shown in Fig. 18 and amplitude is almost 
same as the base block. 
Fig. 24 shows the acceleration of point No.6 as seven 
layers from the base block. The rate of amplitude is 
decreases by 1/15, compared with the base block. Fig. 
25 and Fig. 26 show the acceleration response of point 
No.7 and No.8.  
The shape of acceleration mode of the base block 
disappears and the most response of accelerations is 
caused by collisions between blocks as pulse shapes. 
Fig.27 shows the displacement response of point No.4, 
8 and 12 along the surface of model. The displacement 
of point No.4 as right hand side block, the deformation 
developed toward the left hand side as slope side at first, 
and finally turned over and developed toward the right 
hand side. And the displacement of point 8 and 12 are 
developed toward the left hand side monotonously.  
Comparison between a shaking table experiments under 
the centrifugal force and DDA, the DDA results are 
relatively conservative, which is the same as what  
Tsesarsky et al. (2002) pointed out and several blocks 
of the near slope side failed during the experiments. 

 
4. Conclusions 
 
The authors studied the actual natural slopes rock fall 
by earthquake. However, the real natural models of the 
boundary conditions and the input earthquake wave 
frequencies characteristics are complex and vague, so it 
is very difficult to understand and analyze the results. 
Hence, in order to obtain the factors influencing the 
results, we examined simple block models applying 
harmonic sinusoidal accelerations prepared for the 
shaking table experiments under the centrifugal forces 
and compared the results between the experiments and 
DDA. The result of wave propagations of the simple 
column model agrees with the small deformation theory 
of small acceleration. And the collisions by contacts 
between blocks influence the response of accelerations   
significantly for multi columned model, but no 
influence for the displacements and small for the 
velocities in harmonic and random wave accelerations. 
The unnatural stitch accelerations occur in accelerations 
response in small time intervals by collision between 
blocks for the multi columned models. This 
phenomenon can be improved to differentiate 
displacement results directly by controlling the time 
interval. 
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The movement of the landslide was simulated in DDA, and the rock property was estimated 
when the debris of the landslide form the natural dam in the valley. It is confirmed that the 
landslide is considered to begin to move when value of the cohesion of the block joint is under 
10 KPa and value of the frictional angle of the joint is less than 20 degree. These calculated 
properties of the joint agree with the general value of the joint of the landslide on this site. In 
addition, the velocity and the mode of movement of the landslide are examined. As a result, it is 
caught that the movement of the landslide began from the lower block and spread to the upper 
block gradually. DDA is useful to examine the sensitivity analysis of the landslide movement. 

Keywords: DDA; Landslide; Natural dam; Sanbagawa metamorphic belt; Japan 
 
 

1. Introduction 
 

When a landslide, situated on a valley side slope, 
slides downward, the valley is filled up with the debris. 
As a result, the lake which is created by the natural dam 
appears in the upper area of the dam. If the natural dam 
collapses, a debris flow occurs in the downstream and 
damages the downstream area. Therefore, the 
countermeasure to the landslide along a river is very 
important in order to maintain a river system. Although 
detailed investigation of the landslide are needed to 
draw up the countermeasure to the landslide, the 
numerical analysis about the activity conditions of the 
landslide is significant to draw up the plan of the 
countermeasure to the landslide (Takeuchi and 
Hamasaki, 2001). From the above view points, we tried 
sensitivity analysis by using Discontinuous 
Deformation Analysis (DDA) (Shi and Goodman 1984) 
in order to examine the factors which lead to the 
formation of the natural dam by landslide. There are 
few examples which solved a landslide problem in 
DDA (Hamasaki and Sasaki 2004). 
 
2. Study site  
 

Study site is located in Sanbagawa metamorphic belt, 
which is composed of green-schist and black-schist of 
Mesozoic, on Shikoku Island in Japan. Many landslides 
occur in Sanbagawa metamorphic belt because the 
surface rock of this area is deep weathered (e.g., Terado, 
1986). In recent years, these landslides are sliding at 
heavy rain.  

The target slope is located in the valley side slope 
where many landslides are found. We select a section 
of the slope for this study because the section of the 

slope has not been slid yet. The surface part of the rock 
has been sheared due to intense crushing and 
subsequent deep weathering. The average angle of the 
slope is 19°. The scale of the landslide is considered to 
be 550 m long, 200 m height, if the slope collapses. 
Slip surface of this landslide is thought to exist about 
50m depth from surface of the slope (Fig. 1).  

The difference in elevation from the valley bottom to 
the road is 15 m. The town exists downstream from the 
spot where the natural dam formation is expected. 
 
 

 
Fig. 1: Cross section of the study site 
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3. Modeling 
 
3.1 Simulation of formation of the natural dam by 
landslide 

 
If the landslide occurs on the valley side slope, a lot 

of debris will bury the valley bottom. The goal of this 
simulation is to clarify the parameters of the rock 
property of when the landslide debris fills the valley to 
the height of the road on the opposite side of the slope. 
Therefore, DDA simulation will be repeatedly carried 
out with converting the parameters until the DDA 
results will be agree with the qualification.  
 
3.2 Block Model of the landslide mass -Voronoi 
division- 
 

In this case which the DDA model is built up, model 
of the landslide mass should be divided into fragments 
with irregular shape because the rocks of the slope is   
intense crushing and deep weathering as previously 
described. Thus, we try to divide into construct the 
block model using the Voronoi division (Fig. 2). As a 
result, the landslide mass is divided into the 266 
fragments (Fig.3). 
 
 

 
Fig. 2: Division of the block using the Voronoi division. 
 
 

 
Fig. 3: Block model on this site for DDA using the 
Voronoi division. 
 
 
3.3 Parameters for the landslide 
 

The parameters using in the simulation are shown in 
Table 1. Unit weight of block and Young's module of it 

are decided from the general data on the landslide in the 
Sanbagawa metamorphic belt. Poisson ratio and 
coefficient of attenuation are established from the 
empirical data of the rock. Frictional angle of joint is 
varied from 10 to 20 degree.  Cohesion of joint is also 
varied from 5 to 10 KPa.    
 

Table 1. Parameters for the landslide. 
Value 

0.001
Total Steps 7000
Maximum Time Step (sec.) 0.1

Block Unit Weight (KN/m3) 21.0
Young's Modules (MPa) 200.0
Poisson Ratio 0.3
Unit Weight (KN/m3) 21.0
Young's Modules (MPa) 200.0
Poisson Ratio 0.3
Coefficient of Attenuation 0.05
Frictional Angle (degree) 10-20
Cohesion (KPa) 5.0-10.0
Tensile Strength (MPa) 0.0

Item
Displacement Allow RatioAnalysis

parameters

Joint

Slope
(no displacement)

 
 
 
4. Result of the simulation 
 
4.1 Examination of the parameters 
 

First, we tried sensitivity analysis by DDA in order 
to examine the parameters which are the cohesion of 
the block joint and the frictional angle of the joint, 
when the valley is buried up to the height of a road on 
the opposite side of slope. We confirmed that the 
landslide mass did not move downward, when value of 
the cohesion of the block joint is over 11 KPa, and 
value of the frictional angle of the joint is over 20 
degree. 
 
 

 
Fig. 4: Final forms of landslide by DDA 

(c=10 KPa, φ=20-15°) 
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Subsequently, we inputted 10 KPa as the cohesion of 
the block joint, and inputted 20 degree as the frictional 
angle of the joint (Fig.4; case 01).  In this case, the 
landslide mass moved downward. Although, the tip of 
the debris reached at river channel, it did not come to 
bury the valley bottom.  

When the cohesion of the joint is 10 KPa, and the 
frictional angle of the joint is 15 degree, the landslide 
mass moved downward (Fig.4; case 02). The debris 
buried the valley bottom, however, the tip of the debris 
did not reach the height of the road.  

In the case that the cohesion of the joint is 5 KPa, 
and the frictional angle of the joint is 15 degree, the 
landslide mass moved downward and the top of the 
debris reached the height of the road (Fig.5; case 03). 

Finally, in the case that the cohesion of the joint is 5 
KPa, and the frictional angle of the joint is 10 degree,    
the debris buried the valley completely (Fig.5; case 04). 

The above result was arranged in Table 2. 
 

 
Fig. 5: Final forms of landslide by DDA 

(c=5 KPa, φ=15-10°) 
 
 

Table 2. Results of simulations 
cohesion frictional angle

（KPa) （°）

case01 10.0 20 no

case02 10.0 15 no

case03 5.0 15 fill

case04 5.0 10 fill

result

 
 
 
4.2 Velocity of the landslide movement 
 

After parameters of the rock property were 
determined as case 03, the velocity of landslide 
movement is estimated.  

The landslide mass is divided into 3 parts as follows: 
no. 2-80 blocks as a lower block, no.81-170 blocks as a 
middle block, no.171-266 blocks as a upper block 
(Fig.6). The velocity of the  sections is calculated 
using the average speed of the all blocks of the each 
section (Fig 7).  
 
 

 
Fig. 6: Final forms of landslide by DDA 

 
 

Variation of the average movement velocity of the 
landslide mass is as follows: the peak of movement 
speed of the lower and middle blocks are recorded at 
step 11th, and in the upper block, it is recorded at step 
6th.  It is caught clearly that movement of the landslide 
have an impact from the lower block to the upper block. 
The velocity of the lower block picked up gradually 
until it reached the maximum velocity, and speed is 
conversely reduced gradually after the maximum 
velocity. Such variation of the velocity indicates the 
changes in the mode of movement of landslide. In the 
early stage, the mode of movement is tension. After 
maximum velocity recorded, the mode of it changes 
from tension to compression.  
 
 

 
Fig. 7: Average velocity of the each section of the 
landslide at the case03.  
 

On the other hand, in the middle and upper blocks, 
the velocity of the blocks fluctuated until it reached the 
maximum velocity, and subsequently the velocity is 
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decreased gradually. Such variation of the velocity 
shows that the tension and the compression are repeated 
in the middle and upper blocks from the early stages of 
movement to the end. This mode of movement is 
considered to agree with the actual landslide movement. 
 
 

 
Fig. 8: Velocity of the each block of the landslide at the 
case03.  
 
 

Moreover, 4 blocks was extracted from the upper to 
the lower sections at random, and the velocities of the 
each block were verified (Fig.8). 

The maximum velocities of each block were 10.5 
m/sec. (no.102; middle block), 8.6 m/sec. (no.2; lower 
block), 8.1 m/sec. (no.6; lower block), and 3.7 m/sec. 
(upper block). The maximum velocity was recorded in 
step 6th, and it was gradually attenuated the speed until 
the stop in the lower and middle blocks. On the other 
hand, in the upper block, the maximum velocity was 
recorded in step 18th. Such mode of movement shows 
that the upper block is influenced compression in the 
early stage of the landslide movement, and the mode of 
it changes from compression to tension in late stage of 
the movement.  
 
5. Concluding Remarks 
 

In this study, we carried out the sensitivity analysis 
by using DDA in order to examine the factors which 
affect the formation of the natural dam by landslide. 

The landslide mass did not move downward, when 
value of the cohesion of the block joint is over 11 KPa, 
and value of the frictional angle of the joint is over 20 
degree. 

The target was filled when the cohesion of the joint 
is 5 KPa, and the frictional angle of the joint is 15 
degree. In that case, the movement of the landslide 
began from the lower block and spread to the upper 
block gradually. 

DDA methods can be applied to landslide movement. 
In addition, the displacement process of inner structure 
of the landslide mass is also in agreement with the 
actual landslide movement. 
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Fracture propagation and fragmentation produced by explosive blasting in rock mass is an 
extremely complex process. Though, laboratory tests on scaled model have been a favorite 
approach over the past decade, it can only be used for simple cases (simple geometry, small size, 
simple detonation configuration, etc) due to constraints on cost and reliable measurements. So 
numerical simulations become an essential complementary tool to investigate the complex wave 
and fracture propagation phenomena during the blasting process.  In this paper, the 
discontinuous deformation analysis (DDA) is used to simulate the blasting effect on rock mass, 
to understand the initiation and extension of fractures and eventually the fracture network 
generation of the rock mass when certain regions of the specimen reach a critical value. A 
random joint property distribution based on the Weibull distribution is introduced to model the 
material variation due to the random micro-cracks. The dynamic fracture analysis due to 
different borehole pressure waveforms (peak pressure, duration, rising time and decaying time) 
is conducted to verify the fracture patterns of rock mass relating to various conditions. The 
numerical simulations in general are in good agreement with the theoretical results and close to 
the relevant experiment findings. The results shown in the paper demonstrate a promising DDA 
capability in dynamic wave and fracture propagation analyses of rock mass due to blast load. 

Keywords: Discontinuous deformation analysis; Weibull distribution; Blasting; Fracture 
propagation 

 
 

1. Introduction 
 
Drilled boreholes are widely used for many engineering 
applications, including drilling and blasting, stimulating 
oil and gas wells, hydraulic fracturing for geothermal 
reservoirs, breaking apart rocks with an expansive 
demolition agent (Sang 2003). Although borehole 
pressure has been well known by researchers for 
decades for resource recovery and construction, the 
mechanism by which rock is broken apart under 
pressure in a borehole is still not understood well, 
especially when the borehole is under dynamic loading 
like blasting. The laboratory scaled blast tests have 
provided some important guidelines for field practice 
through the observation of the behavior of down-scaled 
specimens (Rossmanith et al. 2005), also valuable 
theoretical study is proceeded based on the theory of 
elastic wave propagation and fracture mechanics 
(Rossmanith and Uenishi 2006). But the numerical 
simulation for modeling the total fracture process is still 
very limited.  

The discontinuous deformation analysis (DDA) 
has been widely used to model the motions of blocky 
masses. As the blocks in a DDA model are all 
independent with each other, the nodes on the interface 
of the blocks are originally assigned double nodes. 
Each block boundary can be easily considered as a 
potential crack, and the crack opening or sliding can be 
determined based on appropriate strength criteria.  So 

the DDA is very suitable to be used for fracture 
propagation analysis.  

The purpose of this paper is to use the DDA to 
investigate on how the borehole pressure waveform in 
rock affects the dynamic fracture propagation and 
patterns in the scaled blast test. It is necessary to 
consider the fracture effects associated with the 
material properties and external forces to control rock 
fracturing. As rock is an inhomogeneous material, 
fracturing can be treated as a stochastic process. The 
material heterogeneity effect is studied by assigning 
rock joints with different tensile strengths conforming 
to the Weibull distribution. The effect of the stress-
loading rate on the fracturing process will be also 
studied.  
 
2. Unique features of the DDA 
 
The original "Discontinuous Deformation Analysis 
(DDA)" was introduced by Shi (1988). As a new 
discrete element method, many studies on the DDA 
have been carried out over the last decade, and its 
applications have been extended to many rock 
engineering areas (Yin et al 2002; MacLaughlin et al. 
2003; Hatzor et al. 2004). 
Compared with the other numerical methods, the DDA 
has several unique features on rock mass analysis 
which can be generalized as follows: 
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(1) Its block system seems to resemble the distinct 
element method but it also more closely parallels the 
finite element method in the whole problem solving 
procedure. As a displacement-based implicit method, it 
can provide satisfying accuracy. 
(2) The blocks forming the “elements” of the “mesh” 
can be any shape or size, even contain holes, which are 
all independent with each other. The nodes on the 
interface of the blocks are originally assigned double 
nodes and there is no need to insert zero-thickness 
interface elements with double nodes along each line of 
the block system as commonly used in the FEM.  
(3) The whole block system can be considered as a 
continuous field before block separation appears, just 
like in a typical FEM analysis. All blocks are glutted 
together during the analysis when the inter-block stress 
is less than the joint strength. Block relative movements 
start to occur when the inter-block stress exceeds the 
joint property (i.e. opening when the normal stress 
exceeds the tensile strength, and sliding when the shear 
stress exceeds the shear strength based on Coulomb’s 
friction law). 

Based on the above features, it is ideal to use the 
block boundary as a potential crack in DDA. A 
developed DDA program special for the crack 
propagation analysis is constructed. A series of 
numerical simulations are carried out to study the rock 
fracture propagation in the next sections. 
 
3. Numerical simulation and model description 
 
3.1 Model description 
 
A numerical model with borehole was constructed by 
the DDA. It consists of a blast hole in rock with a free 
outer boundary, as shown in Fig. 1. The radius of the 
model and borehole were 0.4m and 0.03m, respectively. 
The models are divided into quadrangle blocks 
illustrated in Fig. 2. 1800 blocks with separate joint 
boundaries are considered. Several measured points 
have been set along the positive direction of x 
coordinate for the stress and displacement output. The 
parameters and calculation conditions are listed in 
Table 1. 

To generate the various applied borehole pressure 
waveforms, a general form of the applied pressure pulse 
function (Ito, 1968) was applied as the loading history 
in the program: 

t t
bP P e eα βξ − −⎡ ⎤= −⎣ ⎦                               (1) 

where Pb denote the maximum pressure pulse, α and β 
are constants for the changes in the rising time 

 

 
 

Fig. 1: Geometry of the analysis model 
 
 

 
 

Fig. 2: DDA blocks layout for analysis model 
 
 
 

Table 1: Parameters for the analysis model 
Parameter Value 

Problem type Plane strain 
Density (kg/m3) 2650 
Poisson’s ratio ν 0.3 

Elastic modulus E (GPa) 60 
Maximum pressure pulse 

(MPa) 
30 

Friction angle of joint ( ° ) 30 
Cohesion of joint (MPa) 66 

Average tensile strength of 
joint (MPa) 15 

Time step Δt (μs) 0.5-2 
Total analysis time (2-5)×loading times

till results stable  
Factor of successive over-
relaxation iteration (SOR) 1.6 

Coefficient of uniformity m 2, 5, 20 and 500 
 
 

Rock mass 

Blast hole 
Free boundray 

Infinite detonation velocity 

Rout 

P(t)
Rin 
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and decaying time. Fig. 3 shows the applied pressure-
time history with maximum pressure at time t0 and 
different  β/α ratios.  
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Fig. 3: Pressure-time curves for applied pressure pulses 
 
3.2 Material heterogeneity 
 
As a geological material, heterogeneity is the most 
intrinsic character of rock mass which can be tested in 
the mechanics experiments. The results show that the 
rock sample has very large dispersion on its strength 
behavior. In this study, the material heterogeneity is 
modeled with the Weibull distribution.  

Although the heterogeneity of rock is 
characterized by heterogeneity in both the strength and 
elastic modulus, it is difficult to determine both non-
homogeneities experimentally. Therefore, it is 
reasonable to consider the joint strength of the rock 
mass as a function of microstructures to account for the 
heterogeneity while using a constant elastic modulus. 
To consider this material heterogeneity, random 
numbers satisfying the Weilbull’s distribution were 
generated to give the spatial distribution of the 
microscopic properties in the analysis model. 

The two-parameter Weibull distribution could be 
expressed as: 

1

( ) exp
m m

m T Tf T
μ μ μ

− ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
               (2) 

where μ is the mean value, m is the shape parameter 
describing the probability distribution parameter T 
which can be obtained as: 

( )1/ln( (0,1)) mT Uμ=                         (3) 
where U(0,1) represents the random data between 0 and 
1 generated by Monte Carlo method. 

The average value E(T) can be expressed as: 
1( ) 1E T
m

μ ⎛ ⎞= ⋅ Γ +⎜ ⎟
⎝ ⎠

                          (4) 

where Γ is the gamma function. Different μ is used to 
keep the same value of E(T) which makes the numerical 
models under the same strength conditions. 

The tensile strength of rock joint is chosen to 
conform to the Weibull distribution. Fig. 4 shows the 
Weibull distribution with the shape parameter m and 
the mean value 15 MPa. From this figure, it can be seen 
that the presence of the shape parameter m allows 
Weibull function to take a wide variety of shape. The 
shape parameter m can be defined as the heterogeneity 
index. A smaller m implies more heterogeneous and 
m=∞ means material is homogeneous. 
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Fig. 4: Probability density of Weibull distribution 
 

In our study, three cases for m=2, 5 and 20 were 
performed to examine the influence of rock mass 
heterogeneity on fracture patterns.  
 
4. Fracture propagation simulation results and 
discussion 
 
4.1 Fracture propagation simulation 
 
The rising time t0 varies between 10, 50 and 250μs with 
β/α=1.5 and 30 to investigate the dynamic fracture 
processes due to the applied pressure waveforms. For 
simplicity, decaying time is two time that of rising one 
when β/α=1.5 while 6 times that of rising one if β/α=30. 

The formation of the fracture patterns in all cases 
will experience the process of cracks initiation, 
propagation and arrest. First, the radial tensile fractures 
start from the vicinity of the compressive failure zone. 
After that, the tensile stress field causes the radial 
cracks to run, which is followed by stress releases 
around the running cracks. The differences in the crack 
growth are mainly due to pulse and shape of the applied 
pressure, specimen dimension and the distribution of 
the material imperfections. Finally, all the cracks arrest 
and the final fracture patterns forms. The attenuated 
waveforms may be still active in the material for a long 
time, but it has no influence on the final cracks patterns.  

Although the same maximum pressure was applied 
to all of the models, the stress field in the rock model 
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varied significantly with increases in the rising time. 
The different stress fields resulted in different fracture 
processes for each model. When t0=10 and 50μs, the 
stress field generated a compressive fracture zone 
around the borehole with radial tensile cracks in its 
vicinity which arrest quickly. When t0=250μs, radial 
tensile cracks developed in the vicinity of the borehole 
and propagate continuously to form long cracks. The 
results of the final fracture patterns in scaled blast 
model under different conditions are shown in Fig. 5. In 
every time step, the program will automatically check 
all joint boundaries with the Mohr’s and cut off criteria. 
For the gray back color specimen, all the joint boundary 
lines are drawn gray at first. If the strength boundaries 
reach the criteria, it indicates a failure of the rock mass 
in the region, cracks will initiate indicated by black 
lines in the next time step. 

 
 

 m=2    

 m=5    

m=20  

β/α=1.5                                       β/α=100 
 

(a) 
 

m=2   

m=5   

m=20  

β/α=1.5                                       β/α=100 
 

(b) 
 

m=2   

m=5   

m=20  

β/α=1.5                                       β/α=100 
 

(c) 
 

Fig. 5: Fracture patterns: 
 (a) t0=10us; (b) t0=50us; (c) t0=250us  
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4.2 Numerical result discussions 
 
4.2.1 Initial loading rate on the fracture processes 
 
Fig. 5 shows that the fracture processes are markedly 
affected by the rising time of the pressure that is 
applied to the borehole wall.  In Fig. 5(a), intense short 
cracks around the vicinity forms with several cracks 
propagating a little longer. The fast stress release 
affects crack propagation and results in shorter cracks. 
While in Fig. 5(c), the interval of the cracks is larger 
and stress released between the cracks has little effect 
on the growth of adjacent cracks which results in longer 
crack extensions. This implies that the fracture 
processes are closely associated with initial pressure 
loading rates applied to the borehole. A high stress-
loading rate increases the number of radial cracks and 
leads to intense stress release around the running cracks; 
at lower stress-loading rates, the number of cracks and 
crack arrest caused by stress released at adjacent cracks 
were reduced but led to longer crack extension (Hirata 
et al., 1999).  
 
4.2.2 Influence of the β/α 
 
The parameter of β/α controls the decaying time of the 
waveforms. Under the same rising time loading, more 
energy affects on the specimen if the decaying time is 
longer. But from the results in Fig. 5, it indicates that 
only when the rising time is small, the final patterns 
will be different. As seen in Fig. 5(a) and (b), both the 
number and length of the cracks increase compared 
with the case under the short decaying time. But when 
the rising time becomes longer as in Fig. 5(c), there 
were little significant differences in the fracture zone; 
only the length of cracks increased as the decaying time 
increased. These findings indicate that the fracture 
patterns were affected to a greater extent by the rising 
time than the decaying time. Therefore, it is possible 
that if the rising time becomes significantly long, then 
the maximum extension of the tensile radial cracks will 
not be very dependent on the increase in the decaying 
time. This result agrees well with the known fracture 
processes of work obtained using static borehole 
pressures. For static borehole pressures, the crack 
extension depends on the maximum value of the 
applied pressure. 
 
4.2.3 Influence of the heterogeneity 
 
The shape parameter m from small to large decides the 
rock mass from totally heterogeneous to uniform. From 
Fig. 5, it shows that there have great differences on the 
final fracture patterns under different m. This indicates 
that the heterogeneity of rock mass can strongly affect 
fracture processes and fracture patterns. When m is 
small, the number of the cracks increases substantially 
and fracture patterns become very chaotic (Dally et al., 

1975), the final fracture patterns are hard to estimate 
and this sufficiently account for the effect of the large 
extent of the material dispersion. When m=20 as shown 
in Fig. 5 (c), the number and length of the cracks 
become similar as the simulation when m=∞, only the 
shape and position of the cracks are different.  
 
4.2.4 Effect of the maximum pulse 
 
The variance of the waveforms mainly depends on both 
the loading time and loading value. In this section, a 
larger maximum pressure pulse is considered to observe 
its influence. The case in Fig. 5 (b) when β/α=30 is 
taken as a comparison. All other parameters are the 
same but the maximum pressure pulse becomes twice 
that of the original case. One more case for m=500, 
which corresponds to a uniform material,  is modeled.  
 
 

 

 
(a)                                   (b)  

 

 

 
(c)                                   (d) 

 
Fig. 6: Fracture patterns for a larger maximum pulse 

with β/α=100 
(a) m=2; (b) m=5; (c) m=20; (d) m=500 

 
The final fracture patterns are shown in Fig. 6. The 
fracture patterns differ in the shape and position 
compared with that in the Fig. 5 (b). More cracks 
initiate and propagate longer. When the attenuated 
pressure waves hit the free surface, it reflected back as 
a tensile stress wave towards the center of the borehole. 
Spalling is possible in certain areas if the resulting 
stress amplitude is stronger than the critical fracture 
strength of the material. This indicates that when the 
maximum pressure pulse is large, it will become a 
primary influence on the final fracture patterns. The 
effect of the reflection waves should be cautiously 
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considered.  Spalling and pie-shape cracks will occur 
due to the large reflected tensile stress. When m=500, 
the material of rock mass becomes more homogeneous. 
This can be seen in Fig. 6 (d) the fracture pattern is 
nearly symmetrical.  
 
5. Conclusions 
 
In studying what happens in a real blast, it has been 
common to use the numerical methods to simulate the 
fracture processes on a laboratory scaled blast model. In 
this paper, numerical studies are carried out for various 
applied pressure forms and material heterogeneity to 
investigate their influences on the dynamic fracture 
processes in rock by the DDA approach.  

The simulation shows that the fracture patterns are 
mostly affected by the rising time than the decaying 
time. A higher stress-loading rate increased the number 
of radial cracks, but the rapid stress released from 
adjacent cracks affected crack extension and resulted in 
shorter cracks. At lower stress-loading rate, few cracks 
initiate but propagate longer. The heterogeneity of rock 
mass can strongly affect fracture processes. The 
number of the cracks increased as the shape parameter 
m decreased while the length of the cracks increased as 
the shape parameter m increased. Finally, the effect of 
the maximum pulse is considered. The larger pulse 
value will generate more severe fracture patterns and its 
reflection effect will become important. Spalling and 
pie-shape cracks are observed due to the reflection of 
the waveforms.   
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The discrete element method (DEM) has established itself as a very useful numerical method for modeling particle 
assemblies. It is an effective and convenient tool to investigate the complex behavior of granular materials.  
The simple shear test is used widely in geotechnical research and practice. Understanding the limitation of simple shear 
experiments in laboratory, this paper presents a complementary micromechanics-based approach that performs numerical 
simulations of quasti-static shear deformation of an assembly of polydisperse spheres in the simple shear test. A three 
dimensional (3D) DEM model of a particle assembly with wall boundaries is used to obtain the macroscopic stress-strain 
behavior during simple shear tests. Constant volume and constant normal pressure simple shear tests are performed under a 
wide range of parameters.  Detailed information is obtained about the evolution of shear stress and strain associated with the 
micromechanics occurring at the particle scale. The simulation work includes two major parts: sample preparation and 
sample testing.  
The study investigates the non-coaxial behavior of granular materials in simple shear tests. It shows that the principal axes of 
stress and strain rate are generally not coincident during simple shear deformation. This paper also explores the stress-
dilation relation for shear deformation of frictional granular materials. These results show that there is an inverse 
relationship between the top wall’s vertical displacement and applied vertical pressure during simple shear tests. The future 
objective is to incorporate these observations into constitutive models. 
 
Keywords: Discrete element method; Three-dimensional model; Non-coaxility; Dilatancy 
  
1. Introduction 
 
The simple shear test is used widely in 
geotechnical research and practice. During this test, 
the principal stress rotation is the main aspect of 
this loading (Ishihara 1983). The mechanical 
behavior of granular materials under this loading 
condition has been long observed and recognized in 
soil tests using experimental devices and numerical 
simulation (Yu & Yuan 2005, 2006; Yang 2006; 
Jiang 2003, 2005) . But it was difficult to determine 
the principal stress direction in the laboratory tests 
without using certain assumptions (Roscoe 1965). 
Understanding the limitation of lab experiments, 
this paper presents a complementary 
micromechanics-based approach that performs 
numerical simulations of quasti-static shear 
deformation of an assembly of polydisperse 
spheres in the simple shear test. It is shown that the 
principal axes of stress and strain rate are generally 
not coincident during simple shear deformation. It 
is also evident that constitutive relations cannot be 
sufficiently formulated in the principal stress space 
unless non-coaxial behavior is taken into account. 
It is therefore important to examine the effects of 
the non-coaxial behavior and incorporate such 
effects in constitutive models.  
 
2. Theoretical model 
 
The discrete element method (DEM) has 
established itself as a very useful numerical method 
for modeling particle assemblies. It is an effective 
and convenient tool to investigate the sophisticated 
behavior of granular materials. In this method the 
interaction of the particles is viewed as a transient 
problem with states of equilibrium developing 

whenever the internal forces balance (Cundall 1979; 
Strack & Cundall 1984). The principle of DEM is 
to track in a time stepping simulation, the trajectory 
and rotation of each element in a system to evaluate 
its position and orientation (Asmar & Langston 
2002; Langston 1995), and then to calculate the 
interactions between the elements themselves and 
also between the elements and their environment, 
The interactions will then subsequently affect the 
element positions. The equations (1) to (5) show 
the normal particle interaction (particle to particle 
and particle-wall) and the equilibrium of motion.  
 

nKF nΔ=                              (1) 
 

2

2
10

1 p
k

k

x F
t m =

∂
=

∂ ∑                     (2) 

 
2

2
10

1 p
k

k
M

t I
θ

=

∂
=

∂ ∑
                     (3) 

  

)(5.0
1

tttttt

ttt

xxxx
txxx

Δ+Δ+

Δ+

++=
Δ+=

&&

&&&&
   (4) 

           

)(5.0
1

tttttt

ttt t

Δ+Δ+

Δ+

++=

Δ+=

θθθθ

θθθ
&&

&&&
    (5) 

 
Where nK is the stiffness of particles or walls, 

nΔ is the overlap between the particles or the 
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particle with wall, 0m is the mass of particles, t is 

the time, tΔ is the time step, is determined by the  
maximum stiffness and smallest mass of particle, 

0I is the moment of inertia, k is the number of 

contact, θ,x are the transitional and rotational  
displacements; and :, MF are the contact force 
and moment acting on particle.  
 
The contact force, particle-particle and particle-
wall, considered in this model include elastic, 
friction and damping forces. All these forces are 
classified as normal and tangential components 
based on the direction of the acting force. The 
resultant force produced on the particle is the total 
of all these forces and any external forces from 
boundary. In this simulation, total normal force and 
total shear force acting on the boundaries are 
calculated. By dividing these forces by the areas on 
which they act, the average normal stresses and 
average shear stresses are obtained.  
 
In this paper, an investigation of granular material 
behavior in the simple shear test is reported, the 
principal stress direction, principal strain increment 
direction and dilation during simple shear 
deformation are examined.  
 
3. DEM tests 

   
3.1. Sample preparation 
 
In this simulation, particle radium has an 
approximately normal distribution between 0.6 cm 
and 1.8 cm. The mechanical properties of all the 
particles are given in Table 1. These parameters 
unless indicated otherwise, are used for all the 
simple shear simulation.  
 
Table 1: Materials properties in simulation 

 
During testing actual particle packing arrangement 
is expected to have a significant influence on the 
shear behavior. The resulting packing’s 
heterogeneity and response to testing 
depend on the techniques used in the sample 
preparation phase. So the sample generating 
process should be carried out carefully.  
 
There are many possible procedures for generating 
an initial configuration of sample before applying 
simple shear tests on it. As shown in Fig 1, all 

particles are allowed to drop randomly under 
gravity into a container. This container will form 
the ultimate simple shear test box. 
 

 
 

Fig 1: Sample preparation in filling phase 
The number of particles dropped at a time is 
limited by the cross sectional area of this container. 
In order to reduce the non-homogeneity of the 
sample, all the particles are randomly dropped in 
such a manner that no frictional force is allowed to 
develop within the particles and between the 
particles and the walls. Both friction coefficients 
are set to zero.  
 

 
Fig 2: Sample preparation in compacting phase 

 
 

Once all the particles have settled, the top wall is 
introduced and the compression is carried out by 
lowering the top wall to a certain height, as shown 
in Fig 2, this picture shows the particle’s position 
during compacting phase. The other five walls are 
kept fixed during this time. Then the top wall is  
stabilized at this specific position; the sample is 
given enough time to achieve a state of new 

DEM parameters 
and material 

properties 
Selected value 

Number of particles 4000 
Frictional 

coefficient of 
particle and wall 

0.6 

Stiffness (Gpa) 10 
Time-step (s) 0.0002 
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equilibrium with all particles velocities 
approaching zero.  
 
During the filling phase, gravity is acting upon the 
particles, which means that the lower layers are 
inevitably denser than the upper layers within the 
sample; in order to reduce this non-homogeneity, 
gravity is released. The gravity release is initiated 
during compaction. Eventually the sample will 
settle down and the normal stresses of particles 
acting on walls will converge to a stable state. At 
this stage the sample is saved as the initial 
configuration for the shear tests, the six walls of the 
container will act as the shear box in simple shear 
testing. Once the shearing starts, the friction will be 
turned on till the simulation stops. 
 
During compacting, the stresses stabilized quickly 
after gravity is released. After many tests, it can be 
verified the final stress state of the sample is 
influenced by the compacting force but not by the 
gravity release time. In this paper, the initial stress 
state of sample used in constant volume test and 
constant normal pressure test is same, K0 
representing the initial ratio of horizontal normal 
stress to vertical normal stress acting on the sample, 
both of them are 0.52.  Fig 1, 2, 4 and 7 are all the 
front views for xoz plane, this is a 3D simulation 
with the sphere positions projected onto the 2D 
page.  
 
 
 4. Numerical results and discussion 
 
In this paper, constant volume and constant normal 
pressure simple shear tests are performed under the 
same initial state. 
 
The simple shear condition is performed by 
rotating the two vertical walls at a constant angular 
velocity. At the same time, the top and bottom wall 
are translated with a compatible horizontal velocity 
in the opposite directions. As shown in Fig 3, in 
which the dashed line indicates the initial sample 
position. This is also the principle of simple shear 
test used in the laboratory.  In this simulation the 
average normal stresses and average shear stresses 
on the boundaries are calculated.  
 
 

 
Fig 3: Scheme in simple shear test 

 
4.1 Constant volume test results 
 
Fig 4 shows the configuration of this simulation in 
constant volume simple shear tests, this picture is a 
front view for xoz plane, it shows the particle’s 
velocity vector during the shearing. 

 
 

Fig 4: Constant volume simple shear test 
 

It can be seen from Fig 5 that with increasing shear 
strain, the ratio of shear stress to normal stress 
rapidly rises to a peak value first and then gradually 
decreases. When shear strain is developed to 0.35, 
the stress ratio is stable around the value of 0.36, 
after that the stress ratio oscillates slightly around 
this value. This similar result is obtained in 
constant normal pressure simple shear test, as 
shown in Fig 8. 
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Fig 5: Ratio of shear stress to normal stress 

 
The orientation of the major principal stress 
inclined to horizontal plane during the constant 
volume shearing is presented in Fig 6. In this case, 
initially, the principal stress direction is 90 degrees 
to horizontal plane because the K0 is 0.52. With the 
increasing shearing strain, it decreases to 45 
degrees and rotates counter-clock wise. In constant 
volume test, which keeps the top wall’s height 
constant in order to achieve the constant volume 
condition during the shear deformation, the 
principal strain increment direction is fixed at 45 
degree inclined to horizontal plane. It can be seen 
that the principal stress direction is not coincident 
with the principal strain increment at the beginning 
of shear.  
 

 
 

 
 

 

 
 
 

 
 

 
 
 

Fig 6: Principal stress direction inclined to 
horizontal plane 

 
4.2 Constant normal pressure test results 
 
With the same sample, constant normal pressure 
simple shear test is carried out under the same 
compacting pressure as in section 3. Fig 7 is a front 
view for xoz plane, in which the particle’s velocity 
vector is shown during this simulation. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7: Constant normal pressure test 
 

 
From Fig 8 it can be seen that the stress ratio of 
shear stress to normal stress during the shear 
deformation is similar to that in constant volume 
test. Both the top wall and bottom wall are 
increased to a peak point followed by a falling 
trend.  
 

 
 
 
 

 
 
 
 
 

 
 
 

 
 

Fig 8: Ratio of shear stress to normal stress 
 
In constant normal pressure test, the top wall and 
bottom wall are relaxed, both of them can be 
moved up or down by the force acting on them. 
From Fig 9, it can be seen that in the constant 
normal pressure simple shear test the sample 
dilated slightly at the beginning of shearing, as the 
sample was sheared further, the vertical 
displacement of both top and bottom wall increased 
and the volume of the sample started to expand. 
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Fig 9: Vertical displacement  
 

From Fig 10 it can be seen that the principal stress 
and principal strain increment direction are not 
coincident during the constant normal pressure 
simple shear tests. The initial K0 is 0.52, the 
principal stress direction is 90 degree inclined to 
horizontal plane, the principal stress increment is 
45 degree inclined to horizontal plane. With 
increasing shear strain, the principal stress direction 
decreased to 45 degree in an anti-clock wise 
direction, the principal strain increment direction 
oscillates near 45 degree inclined to horizontal 
plane.  
 
 

 
 

 
 

 
 

 
 
 
 

 
 

Fig 10: Principal stress direction and principal 
strain increment direction inclined to horizontal 

plane 
 
5. Conclusion 
 
This paper investigates the non-coaxial behavior of 
granular materials in simple shear tests using DEM. 
It shows that DEM is a valid and convenient tool to 
be used this area. It is shown that the principal axes 
of stress and strain rate are generally not coincident 
during simple shear deformation. This paper also 
explores the stress-dilation relation for shear 
deformations of frictional granular materials. The 
result shows that there is an inverse relationship 
between the top wall’s vertical displacement and 
applied vertical pressure during simple shear tests. 
The future objective is to incorporate these 
observations into constitutive models. 
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As an effective numerical simulation method, DDA is used in the stability evaluation of rook 
mass widely although it has some limitations. The failure of rock mass is due to crack 
propagation between rock maases and the failure within the rock. In the existing DDA methods, 
the first factor is taken into account usually. Some researchers consider the second factor using 
fracture mechanics. But remeshing makes the computation complex, and sometimes even 
difficult. In this paper, a discontinuous sub-block meso-damage evolution model is proposed. In 
the new model, each block is divided into smaller sub-blocks. There are two kinds of contacts 
between sub-blocks. One is continuous and the other is discontinuous. The continuity condition 
can change along the sub-block contacts and the continuous contacts can convert into 
discontinuous ones using Mohr-Coulomb criterion. The two kinds of contacts are modeled 
using the Augmented Lagrangian Method. The failure of rock mass is a progressive process. 
There is damage in rock mass before it loses stability. So the meso-damage mechanics is 
introduced into the new model. The tensile damage and shearing damage in the sub-block are 
considered. 

Keywords: Discontinuous sub-block; Augmented Lagrangian Method; Meso-damage; Rock 
mass 

 
 

1. Introduction 
 
Rock masses are always dissected by joints, faults and 
other discontinuities which control the failure and 
sliding of the mass. Most rock masses are 
discontinuous over a wide range of scales, from 
macroscopic to microscopic. In sedimentary rocks the 
two major sources of discontinuities are bedding planes 
and joints, the intersection of which form the so-called 
blocky rock mass (Terzaghi 1946). Excavation of an 
underground opening in a blocky rock mass disturbs 
the initial equilibrium, and the stresses in the rock mass 
tend to readjust until new equilibrium is attained. 
Failure occurs when the stresses can no longer readjust 
to form a stable, load resisting structure. This may 
occur either when the material strength is exceeded at 
some locations, or when movements of rock blocks 
preclude the development of a stable geometric 
configuration (Michael 2004). Numerical method is an 
effective way to solve the failure of rock mass. With 
numerical methods, the response of rock masses to 
loading and unloading is modeled. These methods 
include the Finite Element Method (FEM), the 
Boundary Element Method (BEM) and the Discrete 
Element Method (DEM). Although rock mass 
discontinuities can be modeled in a discrete manner 
with FEM and BEM methods using special joint 
elements (Goodman 1976; Crouch 1983), the 
descriptions of discontinuities are usually difficult and 
there are often restrictions on the degree of 
deformation permitted. 

The Discontinuous Deformation Analysis (DDA) 
method is a new method which was proposed by Shi in 
the late 1980s (Shi 1988). Computer programs based 
on the method were developed and some applications 
were presented in the thesis, as well as in more recent 
papers (Shi 1989, 1990; Ke 1994; Yeung 1994). Large 
displacements and deformations are considered under 
both static and dynamic loadings. Some extensions to 
the method are presented later  (Chihen 1996; Cheng 
1998). 
The failure of rock mass is due to crack propagation 
between the rocks and the failure within the rock. In 
the existing DDA methods, the first factor is taken into 
account usually. Some researchers consider the second 
factor using fracture mechanics (Chihen 1996). The 
failure of rock mass is a progressive process and there 
is damage in rock mass before it loses stability. But up 
to today, the meso-damage mechanics is not introduced 
into the DDA method. 
At the outset, this paper reviews some of the basic 
concepts of the DDA method. Then, with the failure 
and damage in the rock block considered, a 
Discontinuous Sub-Block Meso-Damage Evolution 
Model for Rock mass is brought up. 

 
2. A brief introduction to DDA 
 
In the DDA method, the blocks can be of any convex 
or concave shape. When blocks are in contact, 
Coulomb’s law applies to the contact interfaces, and 
the simultaneous equilibrium equations are selected 
and solved at each loading or time increment. The large 
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displacements and deformations are the accumulation 
of small displacements and deformations at each time 
step. Within each time step, the displacements of all 
points are small, hence the displacements can be 
reasonably represented by first order approximations. 
 
2.1 Block deformations and displacements 
 
By adopting first order displacement approximations, 
the DDA method assumes that each block has constant 
stresses and strains throughout. The 
displacements ( , )u v at any point ( , )x y in a block i , 
can be related in two dimensions to six displacement 
variables 

1 2 3 4 5 6 0 0 0( , , , , , ) (      )T
i x y xyD d d d d d d u v r ε ε γ= =

 
                        (1) 

where 0 0( , )u v  is the rigid body translation at a 

specific point 0 0( , )x y  within the block, 0r  is the 
rotation angle of the block with a rotation center at 

0 0( , )x y , and xε , yε and xyγ  are the normal and 
shear strains in the block. The complete first order 
approximation of block displacements takes the 
following form 
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This equation enables the calculation of the 
displacements at any point ( , )x y  within the block (in 
particular, at the corners), when the displacements are 
given at the center of rotation and when the strains 
(constant within the block) are known. In the two-
dimensional formulation of the DDA method, the 
center of rotation with coordinates 0 0( , )x y   coincides 

with the centroid with coordinates ( , )c cx y . 
 
2.2 Simultaneous equilibrium equations 
 
In the DDA method, individual blocks form a system 
of blocks through contacts among blocks and 
displacement constraints on single blocks. Assuming 
that n  blocks are defined in the block system, the 
simultaneous equilibrium equations can be written in 
matrix form as follows 

11 12 13 1 1 1

21 22 23 2 2 2

31 32 33 3 3 3

1 2 3

n

n

n

n n n nn n n

K K K K D F
K K K K D F
K K K K D F

K K K K D F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

L

M M M O M M M

L

       

(4) 
where each coefficient K is defined by the contacts 
between blocks i  and j  . Since each block i  has six 

degrees of freedom defined by the components of iD   

in equation (1), each ijK  in equation (4) is itself a 

6 6×  sub-matrix. Also, each iF  is a 6 1×  sub-matrix 
that represents the loading on block i .  
The simultaneous equations (4) were derived by 
minimizing the total potential energy of the block 
system. The ith  row of equation (4) consists of six 
linear equations 

0,       1,  2,  ,  6
ri

r
d
∂∏

= =
∂

L                      (5) 

where the rid  is the deformation variable of block i . 
The total potential energy is the summation over all the 
potential energy sources, i.e. individual stresses and 
forces. The potential energy of each force or stress, and 
their derivatives are computed separately. The 
derivatives 

2

,       ,   1,  2,   ,  6
ri sj

r s
d d
∂ ∏

=
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L               (6) 

are the coefficients of unknown sjd  of the equilibrium 

equations (4) for variable rid . All terms of equation (6) 

form a 6 6×  sub-matrix, which is sub-matrix ijK  in 

equation (4). Equation (6) implies that matrix K  in 
equation (4) is symmetric. The derivatives 

(0) ,       1,  2,   ,  6
ri

r
d
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− =

∂
L                   (7) 

are the free terms of equation (5) which are shifted to 
the right hand side of equation (4). All these terms 
form a 6 1×  sub-matrix, which is added to the sub-
matrix iF . 
 
2.3  The open-close iteration 
 
The DDA method assumes all blocks are connected 
through sp rings with a stiffness of P. The penetrated 
point at the contact will be pushed back along the 
shortest path by the stiff spring. It is necessary to 
impose the no-tension and no-penetration constraints. 
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A contact spring is added when blocks are in contact 
and is removed when blocks are separate. Iteration 
should be realized by adding and/ or removing springs 
in a trial-error manner until the convergence condition 
is met. This iteration is named as “Open-Close” 
iteration (Max, 1995). 
There are three types of contact: penetration, opening 
and sliding. Mohr-Coulomb criterion is applied on the 
interface between blocks: 
(1) if 0nR Pd= − ≤  , no spring is applied; 

(2) if tans nR C R ϕ> + , only normal spring is 
applied; 
(3) if 0 tans nR C R ϕ< ≤ + , springs are applied in 
two directions , and no sliding is allowed. 
 
3. Discontinuous sub-block model 
 
Discontinuous Sun-Block model is the extension of the 
origin DDA method. In the Discontinuous Sub-Block 
model, the displacement of sub-block and the 
simultaneous equilibrium equations of the sub-block 
system are same as the origin DDA method. Each 
block is divided into smaller sub-blocks artificially as 
the sub-block analysis method. This can increase the 
accuracy of the DDA method and its ability to resolve 
stress variations. Differently, there are two kinds of 
contacts between sub-blocks in Discontinuous Sub-
Block model. One is continuous and the other is 
discontinuous. The continuity condition can change 
along the sub-block contacts and the continuous 
contacts can convert into discontinuous ones using 
Mohr-Coulomb criterion. The two kinds of contacts are 
themselves modeled using the Augmented Lagrangian 
Method. Thus the continuous problem, discontinuous 
problem and their combination all can be solved by 
Discontinuous Sun-Block model. 
  
3.1 Contacts between sub-blocks 
 
In the existing DDA methods, open-close iteration can 
be performed only on contacts which are on the joint 
between the blocks. The failure in the rock block can 
not be modeled. Some researchers consider the second 
factor using fracture mechanics (Chihen 1996). But 
remeshing makes the computation complex even 
difficult. In Discontinuous Sub-Block model, rock 
mass is divided into rock blocks and the rock blocks 
are divided into smaller sub-blocks which is so small 
that we can think it as homogeneous body in meso-
scope. The contacts on the joint in macro scope are 
defined as discontinuous contacts, and the other 
contacts are defined as continuous contacts. In the 
open-close iteration, the continuous contacts can 
convert into discontinuous ones using Mohr-Coulomb 
criterion, but not vice versa. 
 

3.2 Adapted open-close iteration 
 
In the existing DDA methods, open-close iteration can 
be performed only on contacts which are on the joint 
between the blocks. So the failure in the rock block can 
not be modeled. In Discontinuous Sub-Block model, 
considering the crack between the sub-blocks within 
the rock block. So a adapted open-close iteration can 
be described as follows: 
(1) if the contact is continuous and n TR Pd τ= − ≤ −  , 
the normal spring is removed; 
(2) if the contact is discontinuous and 0nR Pd= − ≤ , 
the normal spring is removed; 
(3) if the contact is continuous and s cR τ> , the shear 
spring is removed, and the friction is applied; 
(4) if the contact is discontinuous and 

tans nR C R ϕ> + , the shear spring is removed, and 
the friction is applied; 
 
 
(5) if the contact is continuous and 0 s cR τ< ≤ , the 
springs are applied in two directions, and no friction is 
allowed; 
(6) if the contact is discontinuous and 
0 tans nR C R ϕ< ≤ + , the springs are applied in 
two directions , and no friction is allowed. 
 
4. Discontinuous Sub-Block Meso-Damage 
Evolution Model 
 
Damage is an essential characteristic of rock mass. It 
appears in the rock block before the failure of rock 
mass. Modeling the rock sub-block’s failure with 
meso-damage mechanics is an effective method. In 
Discontinuous Sub-Block Meso-Damage Evolution 
Model, the effect of the sub-block’s damage to the rock 
mass failure is reflected by introducing the meso-
damage mechanics. 
 
4.1 Definition of damage variable 
 
In meso-scope view, rock sub-block is anisotropic. The 
scalar quantity damage variable can satisfy the need. In 
Discontinuous Sub-Block Meso-Damage Evolution 
Model, the tensile damage and the shear damage are 
considered. Therefore, two damage evolution equations 
are established, and each one has its damage variable 
separately. In tensile damage evolution equation, the 
tensile strain is taken as its damage variable. And in the 
shear damage evolution equation, the shear strain is 
taken as its damage variable.  
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Fig. 1: Elastic damage constitutive curve for rock under 

 uniaxial tensile load. 
 
4.2 Tensile damage evolution equation 
 
The elastic damage constitutive curve for rock under 
uniaxial tensile load is assumed as shown in Fig.1. 
Accordingly, the form of the damage variable can be 
described as follows: 
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            (8) 

where, λ is the remnants strength coefficient. 0tε is 

the tensile strain according with elastic ultimate. tuε is 
the ultimate tensile strain. ε  is the equivalent tensile 
strain and it can be defined as the following form 

22
x yε ε ε= − + −                                 (9) 

where, xε  and yε are the dominating tensile strain in 

X  and Y direction separately. 
 
4.3 Shear damage evolution equation 
 
Homoplastically, based on the rock’s elastic damage 
constitutive curve under  uniaxial compress load as 
shown in Fig.2, the corresponding form of the damage 
variable can be described as follows: 
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                            (10) 

where, 0cε  the max dominating compress strain when 
the max dominating compress stress reach its uniaxial 
compress strength. 

 
Fig. 2: Rock’s elastic damage constitutive curve under 
           uniaxial compress load. 
 
5. Conclusions 
 
In this paper, a new method –Discontinuous Sub-
Block Meso-Damage Evolution Model is brought 
forward based on the basic theory of DDA method. 
The meso-damage in the sub-block and the crake 
within the rock block are considered in the new model. 
Not only the discontinuous problems, but also the 
continuous can be solved with the same method 
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under high in-situ stress 

 
SHI Guangbin1,2   HE Min1,2 

 1Xi′an University of Technology, Xi′an 710048, China 
 2Northwest Investigation Design & Research Institute, Xi′an 710065, China 

 
Laxiwa powerhouse is a lager cavern located in high in-situ stress region with stresses ranging from 

10MPa to 30MPa. Faults f10, f12 and f24 are revealed in region A of cavern upstream wall. By lower 

hemisphere joint plane projection, Faults f10, f12 and f24 can form key blocks with excavation face. 

The block volume is 2103m3, area of excavation face is 468m2. During cavern excavation, block 

deformation keeps increasing slowly under action of excavation. The maximum rate of rock 

deformation reaches 1.22mm/d in a monitoring cycle (7 days). By analysis with theory of block 

movement, the sliding type is two-face slide (they are f10 and f12). Under cohesion force C=0.0 and 
friction angle ϕ =21.8 °, the factor of safety is 1.30; based on block deformation monitoring and 

stability analysis, only conventional support to block is necessary. After monitoring for 598 days, the 

block deformation attains 38.9mm. The present average rate of rock deformation is 0.0018mm/d, and it 

is convergent s, which shows the block is stable. From this example, if the factor of safety for the block 

is satisfied, and block deformation does not influence other structure, block deformation during 

excavation may be allowable, and no special reinforcement measures are necessary for blocks. 

Keywords: Laxiwa power house; lager cavern; high in-situ stress region; block deformation; monitor 

 
1 Introduction 
 

The powerhouse of Laxiwa hydropower station 
consists of the main powerhouse, transformer 
chamber, surge-chamber tunnel, which lay out in a 
parallel manner and the clearances of the tunnels are 
50.0m and 36.0m. The arrangement plan is shown 
in Figure 1. The excavation section of three large 
tunnels is 311.75m×30.0m×74.84m 
(length×width×height) for the main powerhouse, 
232.60m×29.0m×51.5m (length×with×height) for 
transformer tunnel, and Φ29.6m×69.0m (diameter × 
height) for surge-chamber tunnel. 

Considering the factors of fault, fracture, the 
direction of the maximum in-situ stress and the 
block characteristic, the trend of tunnels axis is 
determined as NE25° and the overburden depth of 
the tunnels is about 150m～466m. 

The geological conditions are as follows: 
More than 90% of surrounding rock is I, II grade 
and III grade is less than 10%; the fault and fracture 
are not development with a small scale and good 
trait and a characteristic of hardness structural 

surface. 
   3D in-situ stress measurement indicates that the 
maximum principal stress reaches 29.0MPa with a 
trend of SN and a dip angle of 25°, dipping to the 
river valley; the maximum intermediate principal 
stress is about 15MPa with a trend of NEE~SEE 
and a dip angle of 20°, dipping to the mountain. The 
minimum principal stress is about 10MPa and 
almost vertical. It is concluded that the in-situ 
stresses of the project area are very high. 

The main powerhouse was excavated from 9 
Nov 2003 and finished in September 2006.The 
tunnel is divided into nine layers for blasting 
excavation and the excavation and anchorage 
support sequences are shown in Figure 2 in details. 
The upstream wall of the tunnel numbering area A 
is exposed to faults f10, f12 and f24, as shown in 
Figure 3.and the characteristics of f11 and f12 are 
identical with an interval of 5 m ~8m.  

The supporting system for the wall includes 
1500KN prestressed anchorage cable with an 
interval of 4.5m×6.0m and a length of 20m, bolts 
with diameter of 32mm and an interval of 
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3.0m×3.0m and a length of 9.0m; bolts with 
diameter of 28mm and a interval of 3.0m×3.0m and 
a length of 4.5m, steel fiber shotcrete with a 
thickness of 15cm. 
 

 
Fig.1  Cavern layout 

 

 

 
Fig.2   cavern excavation sequence 

 
2 Fault properties 
 

The strikes of the major faults such as f10, f12 
and f24 are shown in Table 1. Structure face of f10, 
f11, f12 and f22 is 5cm～10cm in width and 1cm～

5cm for f24; 1cm width for L202. There are filling 
calcium or crushed stone in structure face. The 

influence thickness of lower half space of f12 is 2 
meters. If the apex height of block is bigger than 5 
meters, its cohesion C=0.04MPa～0.05MPa, and 
friction angle ϕ =21.8 °~33.0°; smaller than 5 

meters or equal to 5 meters, its cohesion 
C=0.02MPa～0.03MPa, and friction angleϕ =19.2 

°～21.80°. 
 

H
. R
0
＋
2 2
0

f11

H
.R
0
＋
1 6
0

f24

 

Fig.3   fault and joint in Region A 
Table 1  fault and joint parameters 

fault trend Dip 
direction 

dip 

f10 NW305° SW 63° 

f12 NW340° NE 63° 

f24 NE30° NW 53° 

f22 NW355° SW 30° 

L202 NE50° SE 84° 

 
3 Analysis of block deformation characteristics  
3.1 Design of block deformation monitor 

The excavation of the fourth stage of the main 
powerhouse, from the elevation of 2238.0m to 
2247.0m, was completed on June 15, 2005, when 
Faults f10, f11, f12 and f24 were brought to light. 
Faults f11 and f10 are basically parallel. According 
to the strike of f10 and f12, it is estimated that these 
two faults may intersect at one point at the elevation 
of 2217.0, higher than the ultimate design 
excavation elevation of 2195.6. It is indicated that 
Faults f10, f12 and f24 can form key blocks by 
lower hemisphere joint plane projection. In order to 
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investigate the deformation and stability of the 
block during next excavation stages, a set of 
multipoint displacement meter (M402-XZ1) was 
installed on the upper left corner of the block 
(shown in Figure 4) and the location of four 
anchorage points of the multipoint displacement 
meter are 2.0 m, 5.0 m, 15.0 m, 30.0m away from 
the head respectively. 

 

 
Fig.4  Location of multipoint displacement meter 
 
3.2 Characteristics of block deformation 
  

The record of the multipoint displacement meter 
started on August 22, 2005, when the excavation of 
the first five stages has been completed. So the 
meters recorded the unloading deformation induced 
by the excavation from the sixth stage to the ninth 
stage. The monitored displacement is plotted in 
Figure 5. The displacement induced by the 
excavation of eighth stage and ninth stage is 
19.98mm and 10.84mm respectively and the mean 
daily rate of change is 0.40mm/d and 0.12mm/d. At 
the beginning of the seventh stage, the maximal 
daily mean rate of change reaches 1.22 mm/d at an 
individual monitoring period (a week). The 
deformation begins to converge at the time of the 
excavation of the ninth stage and daily displacement 
rate of change is 0.0018 mm/d at present. By April 
12, 2007 (598 days after installation), the total 
measured displacement is 38.9mm. 

In the light of routine, the excavation of the fifth 
stage and sixth stage has great influence on the 
deformation of the measuring point. Because the 
multipoint displacement meter began to record 
when the excavation of the fifth stage has 
completed, no displacement can be recorded 

certainly. However, the total displacement is just 
2.42mm during the excavation of the sixth stage. It 
is so small and much less than the displacement 
during the excavation of seventh stage and eighth 
stage, just 12% of the displacement during the 
excavation of the seventh stage and 22% of the  
displacement of the excavation, respectively.  Why 
is this? There may be mainly two causes as follows: 
 

 
Fig.5  progress curve of M402-XZ1  

 
(1) The block or fault are brought to light gradually   

It is known from Figure 4 that the space face of 
the block II formed by f22, f12 and L202 was not 
exposed when the excavation of the sixth stage was 
completed. But after the excavation of the seventh 
stage was finished, the space face of the block II 
was exposed completely. and faults f12 and f10 
with a width 5 cm ~ 10 cm, the elasticity modulus 
of filling medium is only 2.0GPa, just 11% of the 
rock mass modulus 18GPa in other zones and also 
the structure places developed between fault of f11 
and f12; the modulus of rock mass in the zone are 
about 10.0GPa, lower than that of other zones. 
Along with excavation unloading, the deformation 
of the structure surface and the weak zone can 
obviously increase and some structure surfaces even 
can open, which can be found in the tunnel (intake 
tunnel) vertical to the main powerhouse wall, shown 
in Figure 6. The excavation of the eighth stage is 
only close to block 02. Its excavation must affect 
the deformation of block 02. While block 02 is in 
block 01, the deformation of block 02 must affect 
block 01. So the block or fault may produce an 
evident effect on the deformation of rock.   
(2) Effect of energy accumulating and releasing  

In the condition of high in-situ stress, 
excavation caused stresses in rock mass to discharge 
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and redistribute. Because granite is hard rock with 
high elasticity modulus and good integrity, with 
excavation of overlying rock masses, the geo-stress 
of the surrounding rock adjust continually and may 
induce energy accumulating in the underlying rock. 
When the rock in those zones was excavated, the 
energy will release suddenly and induce large 
deformation of overlying rock. It can be verified 
that during excavation of the seventh stage, cracks 
were yielded in the shotcrete between stage 4 and 
stage 6 and cracks were mainly located in the zones 
between faultsf 11 and f12 with a width 
of1.0~2.0mm and a length of 35m. 

The reason of the deformation of the rock mass 
in zones A is not slip displacement along the 
structure , but deformation induced by excavation 
releasing, which can be explained by stress/strain 
analysis by finite element and stability analysis 
using block theory as follows. 
 

 
Fig.6   fault or joint  open  

 

 

Fig.7   shotcrete  crack 
   

4 Deformation analysis using finite element 
 

To quantify the deformation induced by 
excavation unloading from step 5 to step 9, 3-D 
finite element analysis is implemented. The 
following sections give a brief description of 
analysis model and results. 

 
4.1 Analysis model 
 

  Fault f12, f10, f12 and other faults is modeled 
with equivalent joint elements. The rock is modeled 
with hexahedral element with 6 nodes or 
tetrahedron with 4 nodes. The 3-D finite element 
mesh is shown in Figure 8. The specified 
parameters of rock mass are given: 15GPa～18GPa 
for rock modulus, c=1.3 MPa for rock cohesion, 
ϕ =52°for internal angle of rock mass and The 

modulus of equivalent joint element is 
about2GPa～8GPa. 
 
4.2 Analysis of deformation 
 
   The deformation induced by excavation 
unloading from step 6 to step 9 is illustrated in 
Figure 9: curve  labeled for measuring data, curve ①

 labeled for compu② tation results with finite 
element. It can be seen from that measuring 
displacement and computing displacement during 
period of excavating step 6 to step 9 is consistent on 
the rule. With consideration of faults, the total 
displacement reached 77 mm and without 
consideration of faults, the total displacements 
reached 21 mm. The difference between the two 
results is about 21 mm. It can be concluded from 
that the influence of excavation on the deformation 
of the surrounding rock is obvious. 
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Fig.8   3-D mesh of analysis model 

 

 

Fig. 9    Comparison between the calculated 
displacement and the measured displacement 

5 Analysis of block stability 
5.1 Analysis of joint stereography projection 
 

Stereography projection of f12, f10 and f24 is 
illustrated in Figure 10 and stereography projection 
of f12, L202 and f22 is illustrated in Figure 11. It 
can be known that JP1 is located in the upper half 
space of f10 and f12 and lower half space of f24 
and JP2 is located in the upper half space of f10 and 
L202 and lower half space of f22. So the code for 
JP 1 is 001 and the code for JP 2 is also 001. Both 
JP1 and JP2 are not null from Figures 10 and 11 and 
also both of them are included in SP of upstream 
wall. It is concluded that block 01 and block 02 
exist and are movable. The sliding mode of block 
01 is sliding along f10 and f12 and the sliding mode 
of block 02 is sliding along f12. 

 

 
Fig. 10  Stereography projection of JP1 

 
 

Fig. 11  Stereography projection of JP2 
 

Block 01 has a volume of 2103 m3, an 
excavation face area of 473m2 and an apex height of 
13.3 m and Block 02 has a volume of 126 m3, an 
excavation face area of 100m2 and an apex height of 
3.8m. The sketch of two blocks is illustrated in 
Figures 12 and 13 respectively. 
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Fig.12   sketch of block 01 

 
Fig.13  sketch of block 02 

 
5.2  Design of anchorage system 
5.2.1 Stability criteria for blocks 
 

There is no clear criteria for blocks now and in 
order to evaluate the stability of the blocks, with the 
reference of Classification & design safety standard 
of hydropower projects, Technical code for building 
slope engineering and design code of hydropower 
slope engineering, the design allowable safety 
factor is defined as [k]=1.25 

 
5.2.2 Design of anchorage system 
 

The stability of up wall of the tunnel is 
determined by the stability of block 1 and block 2 
and the stability of block 1 and block 2 is the main 
basis for anchoring measures. Analysis of block 
stability under different shear strength parameters is 
implemented without consideration of in-situ stress 
and water pressure. The results are illustrate in 
Tables 2 and 3. 

 
Table 2  Safety factor of block 01 

Safety factor  
No
. 

Cohesio
n 
C 

(MPa) 

Frictio
n angle
ϕ  
(°) Without 

anchorag
e 

With 
anchorag

e  
1 0.0 21.8 1.29 1.94 

2 0.0 33.0 2.09 2.83 

3 0.04 21.8 2.02 2.67 

4 0.04 33.0 2.82 3.56 

5 0.05 21.8 2.20 2.85 

6 0.05 33.0 3.00 3.74 

 
Table 3  Safety factor of block 02 

Safety factor  
No. 

Cohes
ion 
C 

(MPa)

Frict
ion 
angl

e 
ϕ  
(°) 

Without 
anchorag

e 

With 
anchorag

e  
1 0.0 19.2 0.18 1.27 

2 0.0 21.8 0.20 1.37 

3 0.02 19.2 0.43 1.52 

4 0.03 21.8 0.46 1.63 

5 0.02 19.2 0.56 1.65 

6 0.03 21.8 0.60 1.77 

 

y
y

y
y

 

Fig.14  sketch of anchorage system 
(1)-Cable,T=1500KN, length=20m, spacing 

4.5m×6.0m； 
(2)-Bolt, diameter 32mm, length =9.0m, spacing 

3.0m×3.0m； 
(3)-Bolt, diameter 28mm, length =4.5m, spacing 

3.0m×3.0m. 
There are some results from Tables 2 and 3: 
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（1）Block 01 
Without anchorage, if C=0.04MPa~0.05MPa, 

the safety factor is about 2.09~3.00, larger than the 
design allowable safety factor 1.25; if C=0.0, the 
safety factor is about 1.29~20.9, also larger than the 
design allowable safety factor 1.25; the block is 
stable and only conventional measures are needed. 
The detail anchorage system is shown in Figure 14 
and after anchoring, the safety factor is about 
1.94~3.74. 
(2）Block 02 

Without anchorage, if C=0.0MPa, the safety 
factor is about 0.18~0.20, smaller than the design 
allowable safety factor 1.25; if C=0.02~0.03MPa, 
the safety factor is about 0.43~0.60, also smaller 
than design allowable safety factor 1.25; with 
system anchorage measures, the safety factor 
reaches 1.27~1.77, larger than design allowable 
safety factor 1.25. 

It can be concluded that the two blocks are 
stable and can not slide. The deformation is the 
reason of excavation unloading. 
 

6 Anchorage design of tunnel portal 
 

It can be seen from Figure 3, there is an intake 
tunnel with a diameter of 8.2 m through the lower 
half space of f12, its excavation may induce 
instability of the. Some bodies should be reinforced 
in the section of AB in the tunnel entrance. But the 
authors think that it is not necessary, because the 
intersection part of the intake tunnel with blocks are 
small with a volume 4.0m3 (shown in figures 15~17) 
and also the blocks are stability from analysis above. 
However in the course of excavating the section AB, 
blasting Charge volume should be controlled and 
also should strengthen support in the tunnel portal. 

 
7 Conclusions 

 
The following conclusions can be drawn from the 

above analysis: 
(1) The deformation of rock mass in zone A is 

due to excavation unloading instead of sliding. 
(2) Blocks with routine anchorage system are 

stable 

(3) In the condition of high in-situ stress, 
excavation unloading leads to apparent increase of 
rock mass and sometimes, the deformation change 
rate reaches 1.2mm/d. But if blocks are stable and 
the deformation does not influence the safety of 
other structures, it should allow block to deform to 
some extent and no other reinforcement measures 
are needed. 

 

 
  Fig .15  3-D perspective 

 

 
 Fig. 16  3-D solid 

 

 Fig .17   cut  part 
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Fig.18  Strengthening support to tunnel portal 

(1)- Bolts with diameters of 32 mm, length 
=6.0m,spacing 2.0m×2.0m  
(2)- “I”shape steel，one of every 1.0 metre 
(3)- Bolts with diameters of 32 mm, length =9.0m 
spacing 1.0m×1.0m 

 
Fig .19  system support  to tunnel portal  

(1)- Bolts with diameters of 32 mm, length 
=6.0m spacing @ 4.0m×4.0m 

(2)- Blots with diameters of 28 mm, length 
=4.5m spacing @ 4.0m×4.0m 

(3)- Blots with diameters of 32 mm, length 
=9.0m spacing @ 1.0m×1.0m 
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Automatic generation of 2D physical cover in numerical manifold method (NMM) is very 
important for engineering applications even it is a difficult subject. This paper analyzes the data 
structure of CAD graphics files, and designs an effective integration interface between 
AutoCAD software and NMM program. Besides, this paper implements the automatic 
generation of mathematical cover through dividing the whole area by regular equilateral 
triangles. These efforts greatly improve the computational efficiency and accuracy of NMM 
program.  
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1. Introduction 
 
Numerical manifold method(NMM) can compute the 
movements and deformations of structures or 
materials(Shi 1992), and it has been applied in the 
construction process of some great hydroelectric power 
stations in China such as Laxiwa hydroelectric power 
station in Qinghai province and Jinping hydroelectric 
power station in Sichuan province. The applications of 
NMM program in these occasions demonstrate its 
predominant capability of structure analysis.  
Generation of physical cover in the pre-processing 
period is the foundation of subsequent NMM 
computation. The research on the automatic generation 
of physical cover is very important for engineering 
application even it is a difficult project. The first 
difficult one is to design an effective integration 
interface between CAD systems and NMM program, 
and the second is how to generate mathematical cover 
automatically. This paper analyzes the data structure of 
CAD graphics files, designs an effective integration 
interface between AutoCAD software and NMM 
program, and then implements the automatic generation 
of mathematical cover through dividing the whole area 
by regular equilateral triangles. 
 
2. Analysis of NMM Program 
 
NMM program is made up of three major sections, 
including pre-processing section, computation section 
and post-processing section. Pre-processing section is 
to accomplish the generation of physical cover, which 
consists of model-establishing and mathematical mesh 
generation; Computation section is to compute the 
stress and strain of the model under the function of 
different kinds of load conditions in use of NMM;  
Post-processing section is to display the computing 
results in graphics which helps the analysis.  

 
 

 
Fig. 1: Process of NMM program. 

 
 
Computation section is almost mature, most of the time 
of program applications is spent in pre-processing 
period and post-processing period. Especially, in the 
present, the construction of engineering analytical 
models is very time-consuming and of low efficiency 
because the modeling functions which NMM program 
provides itself are very limited and engineers are not 
familiar with them. Currently there are many software 
that can produce object models, such as AutoCAD, I-
DEAS, SolidEdge and Pro/E, etc. AutoCAD is the most 
popular software in the field of architectural and 
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mechanical design. It has very powerful graphic editing 
functions which facilitate engineers a lot and has 
become their favorite CAD software in China(Xu 2003). 
Thus modeling in AutoCAD can prevent much 
repeating work. Therefore, research on the effective 
integration between AutoCAD software and NMM 
program replaces that of the development of NMM 
program’s modeling functions in this paper. 
The first thing to do is to analyze the data structure of 
the input files of NMM program. NMM program’s 
input files include two types of files: file MC for 
geometry information storing and the other for physical 
parameters storing. A geometry information file MC 
which is converted from a DXF file generated by 
AutoCAD contains three parts of data which is stored in 
a specific way as follow: 
· Geometry data of the entity: Geometry data of 

entities’ boundaries and joints and their materials 
· Geometry data of special points: Geometry data of 

fixed point, load points, measure points and hole 
points. 

· Mathematical cover division parameter. 
 
3. Implementation of Integration 
 
3.1 AutoCAD File Format 
 
AutoCAD is a universal graphics software whose file 
formats includes DWG, DWB and DXF. DXF files 
enable the interchange of drawings between AutoCAD 
and other programs such as programs written in senior 
programming language or other CAD systems. 
Although DXF is not a standard, but as a result of the 
popularity of AutoCAD software, DXF grew to be one 
of the mainstream graphics data interchange standards.  
Essentially a DXF file is composed of pairs of codes 
and associated values. The codes, known as group 
codes, indicate the type of value that follows. Using 
these group code and value pairs, a DXF file is 
organized into sections, including HEADER, 
CLASSES, TABLES, BLOCK, ENTITIES and 
OBJECTS, which are composed of records, which in 
turn are composed of a group code and a data item. 
Each group code and value are on their own line in the 
DXF file(Xu 2003). For example, the first line of one 
group code is “8” which indicates LAYER, and the 
second line is “0” which indicates the LAYER’s 
number is 0. The information that we need is mainly 
geometry information which is located in the section of 
ENTITIES(Qin 2004). Take a simple graphics—a line’s 
DXF file for example, part of the file content is as 
follows: 
 
……    // omission of the previous content 
0    // indication of a new section 
SECTION 
2 

ENTITIES    // section of ENTITIES 
0 
LINE    // indication of the entity of a line  
5 
2B 
330 
1 F 
l00    // subclass indication  
AcDbEntity  
8    // layer where the entity is located. 
0    // number 0 layer 
62    // color of the line 
7    // white 
100    // subclass indication 
AcDbLine 
10    // indicates that the next line is X coordinate of the 

// beginning point of the line 
108.7645299018547   
20    // indicates that the next line is Y coordinate of the 

// beginning point of the line 
165.6432764085351  
30    //indicates that the next line is Z coordinate of the  

//beginning point of the line 
0.0 
11    // indicates that the next line is X coordinate of the 

// end point of the line 
287.1809547623936 
21    // indicates that the next line is Y coordinate of the 

// end point of the line 
354.9818475835924 
31    // indicates that the next line is Z coordinate of the 

// end point of the line 
0.0 
0 
ENDSEC    // indication of the end of the section 
…… 
0 
EOF    // end of file 
 
 

 
           Fig. 2: A white line in AutoCAD 

3.2 Implementation of Integration 
 
What integration should accomplish is to abstract the 
geometry information of the model and endow them 
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with material parameters. Considering the different 
characteristics of AutoCAD DXF files and NMM 
program input files, this paper designs an effective 
method to implement integration. Since most of the 
engineering drawings are two-dimensional, we only 
consider 2D applications and neglect 3D occasions(Zhu 
2002, Suresh 2003). When engineers are drawing a 
model, different types of entities are represented by 
different colors or different explanative texts. The 
integration tool in this paper recognizes the differences 
by colors, that is: for different joints and boundaries, 
material 1 uses color 1, material 2 uses color2, material 
3 uses color 3; Special points are represented by special 
graphics shapes. This paper uses small circles of 
specified radius to represent special points, and the 
coordinate of the center of the circle is that of the 
special point, different kinds of special points are 
discerned by different colors as well. 
When programming on the platform of VisualC++6.0 
to read a DXF file, different geometry information is 
abstracted according to the recognition of the 
differences of group code key words and the relative 
positions in a DXF file, then it is written into a new file 
MC according to the format of the input file of the 
NMM program. Besides, at the end of the new file, the 
mathematical cover division parameter is specified to 
be a default value. If the computation and analytical 
results are not satisfying, it can be modified. 
 
 

 
Fig. 3: Process of the integration program 

4.  Automatic Generation of Physical Cover 
 
Since equilateral triangles are optimized mesh elements, 
this paper adopts the method of dividing the whole area 
by equilateral triangles automatically, then joints or 

block boundaries of different shapes divide a 
mathematical cover into two or more completely 
disconnected domains shown in figure 4 and figure 5, 
these domains form physical cover which is the 
foundation of NMM computation(Shi 1997, Shi 1992). 
 
 

 
  Fig. 4: Mathematical cover generation 

 

 
    Fig. 5: Physical cover generation 

 
 
Analysis steps are as follows: 

(1) Model construction in AutoCAD, and save as 
DXF files 

(2) Convert DXF files to input files of NMM 
program 

(3) Physical cover generation 
(4) Analysis on data generated by physical cover, 

and form graphics display. 
This paper takes two examples to illustrate the 
integration process in engineering analysis applications. 
The first one is to analyze a destructive model of 
deformation of an arch, and the second one is to 
analyze a destructive model of deformation of rocks 
with horizontal thin layers. The first one illustrates 
NMM’s capability of dealing with conventional 
situations with big blocks, and the second one 
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illustrates NMM’s special capability of dealing with 
very thin structures effectively.  
 
4.1 A Destructive Model of Deformation of An Arch  
 
In this example, the arch to be analyzed consists of 
seven big blocks. Four fixed points are located in the 
left and right side of the arch, and the load point is 
located in the center of the third block from left to right. 
After the process of AutoCAD modeling and file 
format conversion, mathematical cover and physical 
cover of the model are generated automatically, finally, 
the deformation result is displayed. 
 

 
Fig. 6: Model construction of an arch in AutoCAD 

 

 
Fig. 7: Automatic generation of mathematical cover 

 

 
Fig. 8: Analytical model generated by physical cover 
 

 
Fig. 9: Deformation analysis 

 
 

4.2 A Destructive Model of Deformation of Rocks 
With Horizontal Thin Layers 
 
In this example, the rocks to be analyzed consist of 
eight horizontal thin layers. Ten fixed points are located 
at the bottom of the supporter of the rocks, and the load 
point is located in the middle of top rock layer. After 
the process of AutoCAD modeling and file format 
conversion, mathematical cover and physical cover of 
the model are generated automatically, finally, the 
deformation result is displayed. 
 

Fig. 10: Model construction of rocks with layers in     
AutoCAD 

 

 
Fig. 11: Automatic generation of mathematical cover 

 

180



 

 
Fig. 12: Analytical model generated by physical cover 
 

 
Fig. 13: Deformation analysis 

 
 
5.  Conclusions 

Based on the analysis and comparison of DXF file 
format of AutoCAD software and the input file format 
MC of NMM program, this paper designs an effective 
interface tool for connecting two different systems on 
the platform of VisualC++6.0, and implements the 
effective integration between two systems. Besides, this 
paper implements the automatic generation of 
mathematical cover through dividing the whole area by 
regular equilateral triangles. Automatic generation of 
2D physical cover comes into being after the 
implementation of the work above. These efforts will 
save much time in the pre-processing period of NMM 
program, and will improve the computational efficiency 
and accuracy of it. 
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This paper presents a discontinuous approach for describing failure in geomaterials using the 
PUM/X-FEM taking into account for the pore water effect. For undrained case, it has been 
assumed that shear band initiation and propagation is related to the induced pore pressure at the 
tip. Once the shear band is initiated, the softening behavior is governed by the instantaneous 
loss of cohesion due to the increase of sliding. Hence, the proposed onset/propagation criterion 
of shear band (discontinuity) is based on a pore-pressure jump. The orientation is based on an 
averaged gradient of incremental displacements at the tip of the progressing shear band. This 
approach has been implemented in the Finite Element Program PLAXIS, and utilized to model 
failure of geomaterials. The verification study of the proposed the initiation/propagation 
procedure has been performed for biaxial test, shear test and passive retaining wall problem. 

Keywords: Shear band; discontinuity; Undrained geomaterials; Softening; PUM/X-FEM 
 
 

1. Introduction 
 
Modeling of failure in geomaterials requires an 
adequate description of shearbanding phenomena. 
Discontinuous approach provides a tool that describes 
displacement jumps across the shear band in a proper 
way. Recently, the previous PUM/X-FEM framework 
as described in Septanika et al (2005a) has been 
extended by taking into account for undrained behavior 
in fully saturated media and the pore pressure effects. 
As pointed out by e.g. Meschke and Dumstorff (2004), 
the onset/propagation criterion appears to play an 
important role towards a robust modeling of 
progressive growth of the shear band. In addition to the 
previous studies (Vermeer et al 2004, Septanika et al 
2005a, 2005b) this paper is focused on shear band 
initiation/propagation in undrained geomaterials. 
Undrained instability in geo-material can be observed 
either due to the shear induced pore pressure or due to 
the instantaneous loss of cohesion. Shear induced pore 
pressure can be a crucial factor to govern the strain 
softening behavior of the geomaterial but not 
essentially a real material (cohesion or frictional angle) 
softening itself. Apparently, undrained instability does 
not only cause the displacement jump at the shear band, 
but also the jump in pore pressure. Within the shear 
band additional pore pressure development might be 
observed, i.e. induced by the large shear deformation in 
the localized zone. Keeping this in view, a new onset 
criterion has been considered based on pore-pressure 
jump at the localized zone. The orientation is 
approximated based on an averaged gradient of 
incremental displacements at the tip of the progressing 
shear band. The developed PUM/X-FEM framework, 
the proposed initiation/propagation and the orientation 

algorithms have been implemented in the PLAXIS 
Finite Element Code for Soil and Rock Analyses. This 
paper shortly describes the mainframe of the developed 
discontinuous approach for modeling (progressive) 
failure in undrained geomaterials. 
 
2. Background 
 
The undrained behavior of fully saturated media is 
characterized by a change in the excess pore pressure. 
The total stress consists of the effective stress part in 
the soil skeleton and the pore pressure part in the pore 
water (Terzaghi 1943). Shear induced pore pressure can 
be a crucial factor to govern the failure behavior of the 
geomaterial.  
 
2.1 PUM/X-FEM for fully saturated media 
 
The point of departure is the two separate weak 
equations (as defined in e.g. Wells and Sluys 2001) 
governing the equilibrium of a body Ω which bounded 
by the boundary Γ and crossed by discontinuity Γd  
 

Γ∫=∫ Ω
ΓΩ

dd u
u

tNB TTσ                                                 (1) 

Γ∫=Γ∫+∫ Ω
Γ

Γ
ΓΩ+

ddd u
ud

tNtNB TTT Hσ                           (2) 

Where B = s∇ N, N is a shape function matrix, σ is the 
Cauchy stress tensor in a vector notation, tu is external 
traction forces along the boundary Γu and t is the 
tractions at discontinuity Γd, HΓ is the Heaviside 
function and Ω+ is the so-called active region. For 
undrained media, the total stress σ consists of the 
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effective stress part σ’ and the pore water part σw. Note 
that by assuming the change of pore pressure is related 
to the volumetric strain of the continuum, one can 
eliminate the pore pressure degrees of freedom. After 
substitutions of the stresses into the above weak 
equations and linearization, one arrives at the 
incremental-iterative finite element formulation  
 

⎭
⎬
⎫

⎩
⎨
⎧

Δ
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ b
a

KKK
KK

u
bb

u
ab

u
ba

u
ab

u
aa  =  

⎭
⎬
⎫

⎩
⎨
⎧

b

a

R
R

                           (3) 

 
Ku

aa = ∫
Ω

BT Du B dΩ                                                 (4a) 

Ku
ab = (Ku

ba)T = ∫
+Ω

BT Du B dΩ                                (4b) 

Ku
bb = ∫

Γd

NT Tu N dΓ                                                 (4c) 

Ra = ext
af  – int

af                                                              (4d) 
Rb = ext

bf  – int
bf                                                              (4e) 

 
where Δa and Δb are the increments in the regular 
nodal displacements and the enhanced displacements 
(jumps), Du represents the elastic stiffness matrix for 
the undrained case, ext

af  and int
af  represent the external 

and internal forces according to the regular degrees of 
freedom, while ext

bf  and int
bf  are the forces corresponding 

to the enhanced degrees of freedom. 
 
2.2 Constitutive model 
 
Without referring to any particular plasticity model, the 
governing equation for the intact soil continuum, 
discontinuity and the pore water can be formulated as 

. ,σ  = De ( .
ε - . pε ), . pε =

σ∂
∂g.

λ ,  f = f(σ,q) ≤  0            (5) 

.
t  = Te ( Γ

.
b - p

Γ

.
b ),   p

Γ

.
b = Γ

.
λ

t∂
∂μ ,  φ =φ(t, κ) ≤  0            (6) 

.
wσ = 

n
K w .

vε                     (7) 

where .
ε  and . pε are the strain rate and the plastic part 

of the strain rate, 
.
λ  is the rate of plastic multiplier, f 

and g are the yield function and the plastic potential 
function, q is an internal variable (to accommodate e.g. 
hardening behavior), De is the elastic stiffness matrix, 
Te represents the pseudo stiffness matrix of the 
discontinuity, bp

Γ represents the “plastic part” of the 

jump, bΓ represents the total jump, Γ
.
λ  is the rate of 

plastic multiplier at discontinuity, φ and μ are the 
discrete yield function and the plastic potential function 
of discontinuity, κ is an internal variable (related to e.g. 
the state of sliding/cracking at discontinuity), Kw is the 

bulk modulus of water, n is the porosity and .
vε is the 

rate of volumetric strain.   
 
2.3 Onset stresses and tractions 
 
It is worth to mention that the stresses and tractions at 
the onset of shear band have to be properly determined 
to maintain the global equilibrium. For the continuum, 
the total onset stress σ0 is determined from the effective 
part σ’0 and the pore water part σw0 (which can be 
determined using standard plasticity analyses) 
 
σ0 = σ’0 + σw0                                                              (8) 
 
Similarly, the total onset traction t0 at discontinuity can 
be also divided into the effective part t’0 and the pore 
pressure part tw0 
 
t0 = t’0 + tw0                                                                 (9)   
 
 
3. Onset/propagation criterion 
 
The onset criterion for the undrained case is based on a 
sudden jump of the pore pressure in the localized zone 
with respect to continuum pore pressure. Due to 
shearing Δγ induced pore pressure Δp will be developed 
in the continuum, which can be generally expressed as  
 
Δp ~ α.Δγ                                                                   (10) 
 
For the Mohr-Coulomb based plasticity models, the 
constant α depends on the shear modulus G, Poisson’s 
ratio ν, friction angle ϕ and dilation angle ψ. In the 
localized zone at the tip of the shear band, the amount 
of shearing will be much larger than outside the 
localized zone. The corresponding induced pore 
pressure Δplocalized will be much higher than the average 
Δp in the continuum. Hence, for undrained case it is 
assumed that the shear band will be initiated and 
propagated when the tip region undergoes plastic 
deformation and the following criterion is met 
 
Δplocalized ≥ M. Δp                                                      (11) 
 
where M is a user-defined threshold value.  
 
For determination of the shear band orientation, an 
incremental displacement function ΔV ≡  ΔV(x) is first 
generated based on the nodal solutions {ΔVi}. The 
Gaussian value at (ξ,η,ζ)  is then interpolated using the 
element  shape function matrix N, i.e. 
 
ΔV(ξ,η,ζ) =  N {ΔVi}                                                (12) 
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The orientation simply follows from the derivatives of 
ΔV with respect to the spatial coordinates. To obtain 
more reliable information for the initial orientation, the 
incremental displacements around the tip have been 
averaged using a Gaussian weight function (see also 
Septanika et al 2005b). 
 
4. Numerical examples 
 
The following examples are based on the results of 
current implementation and purposed to illustrate its 
capability in modeling shear band initiation and 
propagation in undrained geomaterials. The soil 
plasticity model is according to the standard Mohr-
Coulomb model in the PLAXIS Finite Element Code 
for Soil and Rock Analyses. To model the softening, it 
is assumed that the cohesion cΓ at discontinuity is 
decreased linearly by the increase of sliding, i.e. cΓ = c0 
– hc.|bs| with c0 is the initial cohesion of the continuum, 
hc is the softening modulus at discontinuity and |bs| is 
previous attained maximum sliding of the shear band. 
For the simplicity, the analyses have been performed 
using 6-noded triangular plane-strain elements.  
 
4.1 Biaxial test 
 
In the homogeneous stresses situation the shear band 
will occur spontaneously, since the onset criterion will 
be reached at all points at the same times. In the present 
approach, the start point of the shear band (the trigger 
point) can be set manually or automatically. In case of 
homogeneous stresses, the shear band will be straight 
and its orientation is related to the frictional angle of 
the continuum. For biaxial test, the sample is first 
loaded isotropically under drained condition, in which 
the vertical stress and the lateral stress are equal σv = σh 
= σ. Then the lateral stress σh is kept constant at 100 
kPa while the top surface is pushed downward by 
means of prescribed displacement (under undrained 
condition). The applied force is linearly decayed by the 
increase of the sliding along the shear band, according 
to the presumed linear softening model. The force at the 
peak is related to the vertical stress at the onset of 
plasticity (i.e. when cΓ = c0) and the residual force is 
governed the lateral stress σh. Fig. 1(a)-1(c) show the 
deformed mesh in a biaxial test, the pore pressure 
distribution at the residual state and the corresponding 
force-displacement curve. The pore pressure outside the 
shear band is decreasing to its residual value, while 
inside the band additional pore pressure is generated in 
accordance with the localized shear deformation at the 
band. The residual state is achieved when cΓ = 0 and σv 
~ σh (i.e. with the width of 6 m, the applied vertical 
force at the residual state is around 600 kN). 
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Fig.1(a): Deformed mesh in biaxial test,  
       (b): Pore pressure at residual state  

  (c): Force-displacement curve. 
 
4.2 Shear test 
 
The second example considers shear band formation 
during a shear test in which the pre-peak stress state is 
characterized by a homogeneous distribution of the 
shear stress. For this purpose the sample is first loaded 
by a constant shear stress τ (with σv = σh = 0), after that 
the top surface is pushed to the right by means of 
prescribed displacement (under undrained condition). 
Similarly as before, the stresses during the softening are 
governed by Δc. The corresponding deformed mesh 
pattern, the pore pressure contour and the force-
displacement curve are shown in Fig. 2(a)-(c). Due to 
the fact that no lateral stress is being imposed and 

Fv (kN) 

|u| (m) 

(a) 

(c) 

(b) 
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generated, the applied force will decay to the residual 
cohesion (slightly above zero).  It is clearly seen that 
the pore pressures are very dominant in the region 
being crossed by the shear band  
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Fig.2(a): Deformed mesh in pure shear test, 
                (b): Pore pressure contour at residual state, 

                   (c): Force-displacement curve.           
 
 
 
 

4.3 Passive wall problem 
  
The third example considers shear band formation in 
passive soil-retaining wall case. Due to soil weight 
effect the vertical stress varies linearly with depth and 
during K0-procedure lateral stresses are generated 
based on K0 values.  The free right edge is pushed to 
the left by means of prescribed displacement. Under the 
present condition, small portion of shear band will be 
initiated starting at the toe of the wall. Then it 
propagates slowly up to few elements, until suddenly a 
spontaneous formation of the shear band will occur. 
Leading to a slightly curve shear band nearby the toe, 
followed by a more or less straight shear band up to the 
top surface as shown in Fig. 3(a). The corresponding 
pore pressure distribution at the residual state and the 
force-displacement curve is shown in Fig. 3(b)-(c). The 
pore pressure in the region around the toe is strongly 
affected by the imposed boundary condition. However, 
at the shear band significant residual pore pressure is 
also observed. Outside the band and the toe region 
relative smaller residual pore pressures are observed. 
Note also that the global distribution of pore pressure 
outside the shear band is affected by the 
inhomogeneous state of onset stresses. The force at the 
peak is related to the stresses at the onset of the shear 
band (i.e. when cΓ = c0) and the residual force 
corresponds to the stresses for c = 0. 
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Fig.3(a): Deformed mesh in passive wall test,  
                 (b): Pore pressure at residual state,   
                 (c): Force-displacement curve. 
 
5. Conclusions 
 
This paper presents a discontinuous approach based on 
the PUM/X-FEM mainframe, considering undrained 
behavior in fully saturated geomaterials. Undrained 
effect is included by assuming that the total stress is the 
sum of the effective part and the pore pressure part. In 
addition to the drained case, a new onset/propagation 
criterion for the shear band has been added based on 
pore-pressure jump criterion. The shear band is inserted 
element wisely as soon as the pore pressure jump 
exceeds the presumed threshold value. The orientation 
of the shear band is determined based on the gradient of 
the incremental displacement function. The 
applicability of the proposed approach has been 
illustrated by considering some standard cases of 
(progressive) failure in geomaterials. In the near future, 
more study will be performed regarding the extension 
onto the coupled deformation-pore pressure problem 
(such as consolidation) and the application of the 
developed PUM/X-FEM mainframe in simulating real 
situations. This research is supported by the Dutch 
Technology Foundation STW (Project DCB 6368). 
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The 3-D mode distinct element method (3MDEM) is an efficient numerical method to 
simulate the mechanical behaviors of small and finite deformation in both continuous 
medium and discontinuous ones. It is developed from the distinct element method, and 
has the advantage of fewer degree of freedom and higher precision. The failure process of 
Meihua Arch Dam in 1981 is simulated by 3MDEM. Results demonstrate that the cause 
of the rapid collapse of the dam is the upward sliding of the dam body along the 
peripheral joint, which lacks of enough shear resistance, under the load of the thrust due to 
the pressure of the reservoir. 

Keywords: discrete element method (DEM); discontinuum; numerical computation 
 
 
1. Introduction  
To simulate the failure process of an arch 
dam-foundation system, numerical methods are 
required to obtain accurate deformation and stress in 
small-deformation phase, and to reasonably deal with 
motion of the block system in post-cracking phase. The 
continuum mechanics methods, such as Finite Element 
Method, Boundary Element Method, Mesh-less 
Method, etc., are not good at simulating block systems, 
because: ① these methods can not update the contact 
mode between discontinuous interfaces during block 
motion. ②these methods can not detect new contact 
between blocks. ③ these methods can not analyze 
block systems with many discontinuous interfaces, 
especially when blocks can slide along these interfaces 
with fairly large deformation, therefore unable to 
simulate the whole failure process of dams. 
Discontinuum mechanics methods, such as DDA and 
DEM, which can reasonably take finite displacement 
and finite rotation into consideration, overcome the 
above limitations. However, the accuracy and 
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efficiency of these methods are not good enough in 
simulation of small deformation of continuous medium. 
So, developing an effective method simulating the 
whole failure process of block system from continuous 
status to discontinuous one, and from small 
deformation phase to finite displacement one is an 
attractive work. Numerical Manifold Method (NMM) 
is one of these efforts, but at present it is only applied 
in two dimensional and simple problems. 

Contact force-contact 
displacement relationship

Stress-deformation 
relationshipForce, 

moment, 
stress

Motion and 
deformationTranslation 

equation

Rotation 
equation

Deformation 
equation

Displacement 
boundary conditons

Force boundary 
conditions

Composite 
moment

Generalized 
force

Composite 
force

 

Fig. 1 Flow diagram of 3MDEM  
 

On the basis of the distinct element method brought 
forward by Cundall (Cundall, 1988, Hart, et al. 1988), 
3-D mode discrete element method (3MDEM) (Zhang 
et al. 2007) is proposed for simulating the whole failure 
process of hydraulic structures from continuous status 
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to discontinuous one, and from small deformation 
phase to finite displacement one. It has high 
computation efficiency and good numerical stability. 
The computation flow diagram of 3MDEM is 
illustrated in Fig 1. 
 
In this paper, the whole failure process of Meihua Arch 
Dam simulated by 3MDEM is presented. Meihua Arch 
Dam (Nu et al. 1995), located in Fujian Province in 
south-east China, is a cylinder-shape arch dam with 
fixed center and constant outer radius of arch ring, and 
with a height of 22m and a crest length of about 72.6m. 
It was built as a masonry structure composed of cement 
mortar and rags, and peripheral joints between the dam 
body and its artificial concrete abutment had been set, 
whose surfaces were coated with bitumen and 
polyvinyl chloride with the coefficient of friction of 
maybe only 0.3. The dam collapsed in September 1981, 
shortly after completed in May of the same year 
without any warning sign. Residual base foundation in 
both bank after collapsed are shown in Fig 2. Field 
investigations indicated that the failure occurred 
possibly due to the upward and downstream sliding of 
the dam along a peripheral joint. The computation by 
3MDEM simulates the failure process of the dam, and 
the analysis results agree well with the field 
investigations. 

 
a. Left abutment 

 
b. Right abutment 

Fig. 2 Residual base foundation in both abutments after 
collapsed 

2. Comparison of simulation results by Abaqus, 
3DEC and 3MDEM 
 
The block mesh of the Meihua arch dam by 3MDEM is 
shown in Fig. 3. Average block size is 1m. According 
to the construction materials of Meihua Project, the 
blocks of dam body have a modulus of elasticity of 
8GPa, a Poisson’s ratio of 0.3 and a density of 
2360kg/m3.  
 
In order to compare with FEM Software ABAQUS, 
(Cui 2001) and DEM Software 3DEC(Hou et al. 2005) 
under small deformation phase, the strength in 
peripheral joint and dam interface are selected large 
enough at first. In this case, the foundation is assumed 
with rigid block in all ABAQUS, 3DEC and 3MDEM. 
The gravity load and reservoir water pressure are taken 
into account and applied to the arch dam body at one 
step. 

  
Fig. 3 arch dam computation block mesh 

（Point A: displacement monitoring point） 
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In 3MDEM, only one layer block is employed with the 
21 deformation modes. No tetrahedron difference 
element is needed. The results of 3MDEM, ABAQUS 
and 3DEC are illustrated in Fig. 4. The computation 
results of the stresses and displacements are in 
concordance with each other. The result shows that 
3MDEM is an efficient method for continuum 
simulation.  
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(b) arch stress in upstream surface (+: tensile stress) 
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(c) vertical stress in upstream surface (+: tensile stress) 
Fig. 4 Comparison of simulation results by ABAQUS, 

3DEC and 3MDEM 
 

In order to get good enough results, hexahedron 20 
nodes element with the size of about 1m is used in 
ABAQUS. Tetrahedron element with size of 0.2m is 
needed in 3DEC. The number of degree of freedom is 
three times the node numbers in ABAQUS and 3DEC, 
while in 3MDEM, the number of degree of freedom are 
27 times the number of blocks. The comparison of 
degree of freedom and time step are listed in table 1. It 
demonstrates that 3MDEM is an efficient numerical 
method to simulate the mechanical behaviors of small 
and finite deformation in both continuous medium and 
discontinuous ones. 

 
Table 1 Comparison of Computational efficiency 

method Degree of 
freedom 

Time step(s) 

FEM 19584  
3DEC 448974 2.213×10-5 

3MDEM 7425 1.0×10-4 

 
3. displacement and stress of Meihua Arch Dam 
Since the peripheral joint of Meihua arch dam did not 
reach the top of the dam. The interface between the 
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dam body and the artificial concrete foundation except 
for the top layer is modeled as the peripheral joint. To 
simulate the strength of the dam body, the tensile 
strength, cohesion and friction coefficient of all 
interfaces between dam body blocks are set as 0.6MPa, 
0.6MPa and 1.0, respectively. Due to the coating of 
asphalt along the peripheral joint, the cohesion and 
tensile strength of peripheral joint is set to zero, while 
the friction coefficient f of the peripheral joint is 
chosen as 0.75 or 0.7 to study the effects on stability. 
The reservoir water pressure is loaded by five steps, the 
elevation of water are 38.25m, 40.75m, 44.50m, 
47.20m and 50.20m, respectively the corresponding 
depth of water are3.75m, 6.25m, 10.0m, 12.7m, 15.7m.  
 
The displacement histories of point A in the top left of 
the arch (shown in Fig. 3) is illustrated in Fig. 5. When 
f=0.75, with increasing water level, the displacements 
of point A are rapidly convergent and stable. But the 
final displacement of point A is fairly large and 
increasing rapidly when the elevation of water reaches 
50.20m. This phenomenon may mean that the arch dam 
approaches critical situation when f is equal to 0.75 and 
under full reservoir. When f=0.7, the displacements of 
Point A remain stable until the elevation of water 
exceeds 47.20m. But when the elevation of water 
reaches 50.20m, the displacements of point A are no 
longer convergent, namely collapse of the arch dam. 
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（b） f=0.7 

Fig. 5 displacement of point A under different f 
 

The displacement vectorgraph is shown in Fig. 6. 
When dam is stable, for example under f=0.75 and full 
reservoir, the displacement along the peripheral joint is 
small and the magnitude gradually decreases from 
bottom to top. But when dam becomes unstable, such 
as under f=0.7 and full reservoir, the displacement 
along the peripheral joint is very large and the 
magnitude gradually increases from bottom to top. 
Some sliding along peripheral joint occurs. The vectors 
in the right of Fig.6 is reference vectors (unit :m). 

0.01
 

(a)  f=0.75，full reservoir, after stability 

0.02
 

(b)  f=0.70，full reservoir， end of computation 
Fig. 6 displacement vectorgraph in dam face 

 
The crack pattern of the dam interfaces is shown in Fig. 
7. Under the full reservoir and f=0.75, the peripheral 
joints are all failed, but the top layer interface between 
arch dam body and foundation still keeps intact. The 
dam is stable. But when f=0.7, all interfaces between 
arch dam body and foundation are all failed. The dam 
began to slide upward along the peripheral joint. 
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(a)  f=0.75，full reservoir, after stability 

 
(b)  f=0.70，full reservoir，end of computation 

Fig. 7 cracking pattern of the interface 
(Bold lines indicates craks.) 

 
The stress contours are shown in Fig. 8 and Fig. 9. 
when f = 0.75, the dam keeps stable. Due to the 
opening of the peripheral joint, the bearing capacity of 
cantilevers reduces. Some loads are transferred to the 
arches. So, the upstream horizontal stresses are larger 
than that of intact dam (without peripheral joints) 
shown in Fig. 4, and upstream bottom vertical tensile 
stresses vanish.  
Comparing the result of f=0.75 and f=0.7, the stress 
redistribution is very significant due to the damage of 
the dam. In detail, upstream horizontal stress and 
vertical stress increase with the damage process.   

 

（a）f＝0.75 

 

（b）f＝0.70 
Fig. 8  full reservoir, horizontal stress in upstream 

 

（a）f＝0.75 

 

（b）f＝0.70 
Fig. 9 full reservoir，vertical stress in upstream 

 
4. Failure process of Meihua Arch Dam 
 
To speed up the simulation process, f=0.6 and full 
reservoir load case are analyzed to simulate the failure 
progress, which are shown in Fig. 10. In Fig. 10, (a-1) 
and (b-1) are zoom out of left abutment of (a) and (b). 
Under the load of water pressure, the dam body moves 
upward along the peripheral joint at first (fig. 10 (b-1)). 
Then bottom blocks are pushed to downstream. The 
bottom blocks movement makes the upper arch rotating 
to upstream lightly. At last, all blocks are pushed to 
downstream. 
 
The failure mechanism of Meihua Arch Dam can be 
concluded: Under the load of the water pressure, when 
the shear resistance of the peripheral joint is less than 
the shear stress along the peripheral joint, the dam 
body slides upward along the peripheral joint. This 
movement causes further the vertical stress in the 
bottom area exceeds the tensile strength and the 
horizontal cracking of lower dam body occurs. Then, 
redistribution of stresses makes the arch stress exceed 
the tensile strength and the lower arches collapse. This 
failure pattern expands upward. This eventually leads 
to whole dam failure. 
 
It is also noted that the arches is broken firstly in the 
middle part. Then the whole dam fails like the opening 
of the door, same as one eyewitness’s description.  
 
In short, Meihua Arch Dam failure is mainly due to the 
peripheral joints due to improper design. 
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(a)                      (a-1) 

 

(b)                     (b-1) 

 
(c)                     (d) 

Fig. 10 Failure process of Meihua Arch Dam 
 

5 Conclusion  
 
(1) As an efficient numerical method to simulate the 
mechanical behaviors of discontinuous problems, 
3MDEM can model finite translation and rotation of 
blocks, hold a new contact detection method (Zhang 
Chong, et al. 2006), simulate linear and nonlinear 
behavior of block material and nonlinear interface and 
analyze static and/or dynamics problems. It has a great 
potential for the analysis of static or dynamic stability 
against sliding of concrete dams and/or slopes. 
 
(2) In small deformation phase, 3MDEM can give as 
good result as FEM. While in small deformation phase, 
3MDEM can simulate failure process similar to 3DEC. 
 
(3) The failure process of Meihua Arch Dam in 1981 is 
simulated by 3MDEM. Results demonstrates that the 
thrust due to the reservoir load leads to the upward 
sliding of the dam body along the peripheral joint 

which has not enough shear resistance, thus causing the 
rapid collapse of the dam.  
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In the original DDA formulation (Shi, 1988), a linear displacement function is used for blocks. 
Accordingly, stress and strain within each block are assumed constant and this is an 
inappropriate representation of stress/strain state for a real block. In the present paper, the 
authors propose to use a simple internal discretization scheme which, is based on Delaunay type 
mesh generation scheme. This approach was used to calculate the stress and strain distributions 
within each block. The DDA formulation was obtained based on a Finite Element discretization.  
The well known elasto-plastic yield criterion of Mohr-Coulomb was incorporated into the 
modified DDA code using a discrete time system. The numerical implementation of the 
criterion involves an elastic trial for the stress increment at the first computational step for each 
element. The corresponding stresses are then evaluated and if they violate the yield criteria (i.e. 
if the stress state lies above the yield function in the generalized stress space), plastic 
deformations take place. In this study, only the elastic part of the strain increment can contribute 
to the stress increment. The obtained results were compared against analytical results as well as 
the results obtained from the well known commercial software (FLAC, Itasca Consulting). A 
fairly good agreement was achieved between DDA results, analytical solution, and FLAC 
results. 

Keywords: DDA, Triangular Discretization, Jointed Rock Mass, Elasto-Plastic modelling 
 
 

1. Introduction 
 
Numerical methods in geomechanics can be classified 
into two main groups: continuum methods and 
discontinuous methods. Examples of continuum 
methods are; the finite element method (FEM), the 
boundary element method (BEM), and the finite 
difference method (FDM). These methods are now 
fully developed and have been successfully used in 
many applications. These classical methods, however, 
face great difficulties when dealing with discontinuous 
media. Rock mass discontinuities can be modeled in a 
discrete manner with FEM and BEM methods using 
special joint elements (Jing and Hudson 2002). 
However, these methods are incapable of simulating the 
behavior of blocky media, in particular discontinuous 
rock mass. On the other hand, discontinuum methods 
such as discrete element method (DEM) introduced by 
Cundall (Wang et al 2000), and discontinuous 
deformation analysis (DDA) established by Shi (1993), 
are now well developed and can be used to simulate the 
behavior of the discontinuous media. The discontinuous 
deformation analysis (DDA) method is a promising 
discontinuum modeling technique which has great 
potentials for modeling of blocky systems. Large 
displacement and deformation are considered under 
both static and dynamic loading conditions. Various 
modifications to the original DDA formulation have 
been reported in the rock mechanics literature (Lin et al 

1996; Kin et al 1999). In the original DDA formulation, 
a first order polynomial displacement function was 
assumed for block deformation, which do not allow for 
variable stress/strain distribution within a block. This 
approximation precludes the application of the first 
order polynomial function to problems with significant 
stress variations within blocks. To overcome this 
shortcoming, many researchers have adapted various 
approaches to overcome this shortcoming of DDA 
(Chang et al 1996; Koo and Chern 1996; Ma et al 1996; 
Shi 1996; Jing 1998; Chen et al 1998; Hsiung 2001). 
This paper presents the implementation of a nonlinear 
material behavior model into the DDA algorithm 
employing triangular elements within the DDA blocks. 
The new code was developed in C++ environment and 
to demonstrate the capability of the modified DDA 
code the typical example of stress distribution around 
circular tunnels at depth was analyzed. The analysis 
results were compared against analytical and other 
commercial program results. The following sections 
describe the implementation procedure and the analysis 
results. 
  
2. Displacement approximation 
 
In the displacement-based finite element method the 
primary unknown quantity is the displacement field, 
which varies over the problem domain. In two 
dimensional plane strain situations, the displacement 
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field is characterized by two global displacement 
vectors u and v, in the x and y directions respectively. 
In this study a three node triangular element was used 
for discretization of discrete DDA blocks. The major 
advantage of these elements is their simplicity and 
flexibility in terms of mesh generation. 
 
 

 

1 

3 

2 

x 

y 

 
Fig. 1: Geometry of the three-node triangular element. 
 
Each element consists of 3 nodes and has 6 degrees of 
freedom in the x and y directions. The displacement 
vector for the employed element can be written as 
below: 

[ ] [ ]T3v2v1v3u2u1uiD =            (1) 

The displacement function of the three-node triangular 
element can be written in the following fashion: 

y3bx2b1bv
y3ax2a1au

++=
++=

                                (2) 

The 6 unknown coefficients 321 a,a,a  and 

321 b,b,b can be expressed in terms of nodal 
displacements by substituting the nodal coordinates into 
the above equations. The element is positively oriented 
when three nodes are arranged counter-clockwise and 
the total displacement field of the element, e, can be 
written as blow: 
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3. DDA formulation based on three-node triangular 
element 
 
In the discontinuous deformation analysis method, the 
equilibrium equations are established by minimizing 
the total potential energy induced into the system and 
solved. The total potential energy, tΠ  of a system with 
N number of nodes has the following form (Shi 1993): 
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In Eq. (6), C is the energy produced by friction force. 
Elements Kij and Kii in the coefficient matrix, given by 
Eq. (6), are 2×2 submatrices and elements di , fi 
are 12×  submatrices. By minimizing the total potential 
energy function, tΠ , which is written based on system 
forces and stresses, the equilibrium equations can be 
derived. The global system of equations has the form of: 

[ ] [ ] [ ]ttt FDK =                                                     (8) 

For a system with N node, the global stiffness matrix 
will be 2N×2N in size.  In Eq. (6) the off-diagonal 
contributions to the system matrix will exist only if the 
blocks are in contact.  In other words, the existence of 
sub-matrices Kij and Kji is the result of contact between 
two elements. The following sections briefly 
demonstrate the determination of various sub-matrices 
required to set up the global equilibrium equation 
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3.1 Stiffness matrix 
 
The strain energy eΠ due to the elastic stresses of 
element e can be written as: 
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Hence, by minimizing the above energy function with 
respect to the displacement variables the stiffness term 
associated with elastic stresses can be calculated as 
below and added to the global [ ]tK  matrix: 

 

[ ] [ ] [ ][ ] [ ] [ ]i(s) i(r)
(e)TT(e) KXdxdyBEBX →∫∫      

31sr, L=                                                     (11) 

where, 

i(1), the number of the first node of element. 
i(2), the number of the second node of element. 
i(3), the number of the third node of element. 

It should be noted that the elements in [ ]iB  matrix 
contain 21 nn yx terms, where n1 and n2 are non-negative 
integers. It should be realized that the, integration of Eq. 
(11) is not straightforward. The higher the order of the 
polynomial functions, the more difficult the integrating 
would be. Shi (1996) proposed the 2D and 3D simplex 
integration scheme, which allow for the integration of 
high order polynomials. The presented research has 
adopted the integration method proposed by Shi.  

 
4. Elasto-plastic behaviour 
 
The basic principle in analyzing the elasto-plastic 
behaviour is to decompose the total strain into two 
components and express it in terms of elastic and 
plastic strain components as below: 

pεeεtε +=                                                         (12) 

Hooke's law is used to relate the stress rates to the 
elastic strain rates. Substitution of Eq. (12) into Hooke's 
law leads to: 

[ ] [ ] )( pteeee DD εεεσ −==                         (13) 

According to the flow rule theory of plasticity (Hill, 
1950), plastic strain rates are proportional to the 
derivative of the yield function with respect to the 
stresses. This means that the plastic strain can be 
represented as vectors perpendicular to the yield surface. 
This classical form of the theory is referred to as 
associated plasticity. However, for Mohr-Coulomb type 
yield functions (Eq. 14), the theory of associated 
plasticity leads to an over prediction of dilatancy.  
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Therefore, in addition to the yield function, a plastic 
potential function, g, is introduced. The case g = f is 
denoted as associated plasticity. In general, the plastic 
strain rates are written as: 

σ
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in which λ is the plastic multiplier.  
 
The above equations can be used to obtain the 
following relationship between the effective stress rates 
and strain rates for elasto-plasticity (Smith & Griffith, 
1982; Vermeer & de Borst, 1984): 
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The parameter α is used as a switch. If the material 
behaviour is elastic, the value of α is equal to zero, 
whilst for plasticity, the value of α is equal to unity. 
To implement the Mohr-Coulomb criteria into DDA, 
for each element initially the elastic stress component is 
computed and added to the previous stress components. 
Accordingly, stress increments are calculated by 
application of Hooke’s law to the total strain increment 
for the step and principal stress components, σ1, σ3 are 
calculated and ordered. If these stresses violate the 
composite yield criterion (Eq. 14), a correction must be 
applied to the stresses to determine the new stress state. 
 
5. Verification of the modified DDA 
 
This section presents the application of the modified 
DDA to a typical example of circular tunnel in an 
infinite medium with elasto-plastic behaviour. In this 
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verification example displacement field was evaluated 
for the case of a circular tunnel in an infinite elasto-
plastic medium subjected to a constant in-situ stress 
field. The problem geometry as depicted in Figure 4 
and the analytical solutions to the problem are taken 
from 1(Jaeger  and Cook 1976). 

The extension of yielded zone around opening, Ro, is 
given analytically based on the solution given by 
Salencon (1969): 
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In the above equation a is the opening radius and C and  
φ  are cohesion and friction angle respectively. Other 
parameters are defined as below: 
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P0 = initial in-situ stress, 
Pi = internal pressure 
 

The radial stress at the elastic-plastic interface is given 
by: 
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and tangential stress, radial stress, and radial 
displacement within the elastic zone are described by 
the following equations: 
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where r is the distance from the field point (x,y) to the 
center of the opening. The stresses and radial 
displacement within the plastic zone are given by: 
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where 

ψ
ψ

sin1
sin1

−
+
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ψ= Dilation angle, ν= Poisson’s Ratio, G = Shear 
modulus 
 

In the given analytical solution P1 and P2 are far field 
stress components in the x and y directions.  

 

 
Fig. 2: Cylindrical hole in an infinite elastic medium 

(Jaeger  and Cook 1976). 
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Fig. 3: DDA model of a Circular tunnel in an infinite 

elastic medium. 

 
In order to verify and further illustrate the capabilities 
of the modified DDA, the well known commercial code 
FLAC (Itasca Consulting) was used. The DDA model 
and applied boundary condition are shown in Figure 3. 
A similar model was analyzed with the FLAC code and 
DDA results were compared against analytical and 
FLAC results. 
The input data used in the DDA analysis are as below: 
 
 E = 5 GPa, ν=0.2, 102100 −==== PPyx σσ MPa 
and =r  1m, Cohesion = 0.5 MPa, Friction angle = 30° 
and Dilation angle = 0° 
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Fig. 4: Comparison of ru  distribution for the circular 
tunnel in an infinite Mohr-Coulomb medium. 

 

Figure 4 compares the radial displacement distribution 
obtained from the analytical solution, FLAC, and the 
modified DDA code. With regard to the obtained 
results, the displacement field calculated by the 
modified DDA agrees well with analytical solution. 
Additionally, the extension of yielded/plastic zone was 
evaluated by the modified DDA, FLAC, and analytical 
solution. From the analytical solution the radius of 
plastic zone was calculated to be 2.505 m (Eq. 17) 
(from the opening center). The radius of yielded zone 
calculated by the modified DDA is about 2.56 m which 
is in good agreement with the analytical solution. 
Moreover, in the FLAC the extension of failure zone 
around opening was calculated to be about 2.78 m. A 
summary of results obtained by DDA and FLAC are 
illustrated in Figure 5. 
 

 
Fig. 5: Calculated radius of plastic region around the 
opening by a) modified DDA, and b) FLAC 
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4. Conclusions 
 
The main purpose of using a finite element mesh within 
each block is to improve its deformation capability. By 
adding the finite element mesh into each block it is 
possible to take advantages of the continuum mechanic 
principles used in FEM and the discontinuum 
mechanics used by the DDA method. Coupling 
continuum and discontinuum mechanics allows for 
simulation of complex problems involving material 
fracturing, dynamic behavior and nonlinear behavior. In 
this study, a more powerful version of DDA method 
was developed using the three-node triangular elements 
and Mohr-Coulomb constitutive law. This enhanced the 
deformation capability of DDA significantly, thus, 
making it a more suitable tool for accurate calculations 
and practical applications. In this study the successful 
application of the modified DDA to problem with 
known solutions was demonstrated. The calculated 
results show close agreement with the results obtained 
form theoretical solutions and a commercial program. 
However, it is believed that more verification and 
refinement of the new DDA is required. Considering 
the discontinuum modeling capabilities of DDA, the 
modified code, with further verifications, has great 
potential for modeling of practical problems. 
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In the Riedel shearing test, the soil specimen is put on the two boards, and the board is removed 
in shearing direction. This test is a technique for investigating the influence that causes it for the 
ground level by damaging the bed rock. However, it is difficult to observe the damage shape 
and the strain distribution from the shearing test. Then, the numerical analysis was performed 
by using the hybrid-type penalty method. HPM applies the concept of the spring of RBSM in 
Lagrange multiplier and assumes independent displacement field to each sub-domain. This 
paper reports the Riedel shearing test and numerical analysis by using the mesh dividing 
method in HPM. 

Keywords: Riedel shearing test; Hybrid-type penalty method (HPM); mesh dividing method 
 
 

1. Introduction 
 
We proposed the hybrid-type penalty method (HPM) 
which applied the concept of the penalty method to the 
principle of hybrid-type virtual work. This model has 
succeeded the advantage of RBSM (Rigid Bodies-
Spring Model) that discrete limit analysis can be 
performed efficiently and the accuracy of an elastic 
solution improves. 
In the hybrid displacement model, the compatibility of 
the displacement is loosened a little and it introduces 
into variational formulation, using Lagrange multiplier 
to the subsidiary condition. In HPM, the concept of the 
spring of RBSM is applied to the Lagrange multiplier. 
Compatibility of the displacement on the intersection 
boundary is approximately introduced using the penalty 
function as a spring constant. So that, HPM can assume 
a displacement field independent in sub-domain. 
Therefore, HPM doesn't share degree of freedom by the 
node like FEM, and the node is used only to recognize 
the configuration of sub-domain. 
We analyzed the crack initiation problems using linear 
displacement field which has rigid displacement and 
strain for arbitrary point in the sub-domain. In this 
analysis, the displacement for the elastic problems had 
the same accuracy as the constant strain element of 
FEM, and the collapse load for the elasto-plastic 
problems had the same accuracy as the limit load of 
RBSM existed. 
HPM assumes a displacement field independent in sub-
domain and because compatibility requirements of the 
intersection boundary on adjacent sub-domain are 
secured by using the penalty method, the displacement 
field can be assumed regardless of the shape of sub-
domain. However, excellent accuracy was not obtained 
when shape other than the triangle were used at the 
linear displacement field, and the division of arbitrary 
shape was difficult. To solve such a problem, it 

proposes the method of applying the second-order 
displacement field where the inclination of the strain 
was added to HPM. 
First, the brief formulation of this model is presented. 
Secondly, an analysis example is illustrated. 
 
2. Governing equation and hybrid-type virtual work 
 
2.1 Governing equation 
 
Let  , with  , be the reference 
configuration of a continuum body with smooth 
boundary  and closure . Here  
is the  dimensional Euclidean space. 
 

 
Fig. 1: Reference configuration  and smooth 

 boundary  
 
The local form of the equilibrium equation for a 
deformable body can be written by 
 
  in           (1) 
   in           (2) 
 
where  is the body force per unit volume, 

 is the Cauchy stress tensor respectively. 
Here  is the vector space of 
symmetric rank-two tensor and  is the standard base 
vector of , so that the stress tensor becomes 

, where  denotes a tensor product. 
 is a displacement field of particles with 
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reference position . We write  and denote the 
infinitesimal strain tensor by 
 

          (3) 
 
where  is the differential vector operator,  

 shows the symmetry part of . 
In what follows, we assume that the boundary 

. 
 
          (4) 
 
Here  where displacement are prescribed 
as 
 
            (5) 
 
Where as  where tractions  are 
prescribed as 
 
            (6) 
 
Here  is the field normal to the boundary . The 
constitutive equation to the elastic body is provided as 
follows by the use of the elasticity tensor . 
 
            (7) 
 
2.2 Virtual work equation (weak forms) 
 
We let  denote the space of admissible displacement 
field, define as 
 
          (8) 
 
And, let  denote the space of admissible virtual 
displacement field, define as 
 
          (9) 
 
We can now use Equation (1) and integrate volume of 
the body to give a weak statement of the static 
equilibrium of the body as, 
 

          (10) 
 
A more common and useful expression can be derived 
to give the divergence of the vector  as, 
 
        (11) 
 
Using this equation together with the Gauss theorem 
enable Equation (10) to be rewritten as, 
 

 (12) 
 
This equation is virtual work equation. If  is the 
weighing function, this is a weak forms. It is  

and  where denotes the Sobolev space  of 
function possessing space integrable derivatives. 
 
2.3 Hybrid-type virtual work equation 
 
Let  consist of M sub-domains  with the 
closed boundary  as shown in Figure 2. 
 

 
Fig. 2: Sub-domain   

 
That is, 
 

  here,          (13) 

 
In what follows, we assume that the closure 

. 
 

 
Fig. 3: Common boundary  of sub-domain  

and  
 
We let  denote the common boundary in two sub-
domain  and  adjoined as shown in Figure 3, 
define as, 
 
           (14) 
 
Relative to  and  which are the displacement on 
the intersection boundary  in sub-domain  and 

, 
 
  on          (15) 
 
This subsidiary condition is introduced into the 
framework of the variational expression with Lagrange 
multipliers  as follows: 
 
          (16) 

 
where  shows the variation of . 
The hybrid type virtual work equation can be described 
as follows about N intersection boundary. 
 

 

 
             (17) 
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Physical meaning of the Lagrange multiplier  is equal 
to the surface force on the intersection boundary . 
 
           (18) 
 
where  and  are the surface force on the 
intersection boundary  in sub-domain  and . 
 
3. Discretization equation 
 
3.1 Lagrange multiplier and penalty 
 
Physical meaning of the Lagrange multiplier  is equal 
to the surface force on the intersection boundary as 
described in Section 2. Generally, in a hybrid-type 
variational principle, this multiplier is dealt with as an 
unknown parameter. 
Since it has the meaning that Lagrange multiplier  is 
the surface force on the boundary  in sub-domain 

 and , the surface force is defined as follows: 
 
           (19) 
 
Here,  shows relative displacement on the sub-
domain boundary , and it is shown in two 
dimensional problem as follows. 
 
          (20) 
 
where,  are relative displacement in the 
normal and the tangential direction to the sub-domain 
boundary . Similarly,  are Lagrange 
multipliers in the normal and tangential direction of the 
surface forces. The hybrid type penalty method can be 
described as follows by penalty function  use as 
coefficient . 
 
            (21) 
 
3.2 Discretization equation by matrix form 
 
When equation (17) is rewritten by the matrix form to 
make the discretization equation, it is possible to 
describe it as follows: 
 

     (22) 
 
In a plane stress of two dimensions, each coefficient is 
as follows: 
 

 ,  

 ,  ,  ,  

 
Here,  and  are the elastic coefficient and Poisson 
ratio.  and  show the body force in the direction of  
and ,  and  are the displacements of the direction of 

 and ,  and  are virtual displacement in the 
direction of  and ,  are the given surface force in 
the normal and tangential direction on the boundary. 
The displacement shown by the second order function 
in Equation (23) is substituted for Equation(24). 
Similarly, we assumed virtual displacement as follows: 
 
          (23) 
          (24) 
 
To make the discretization equation, equation (23) and 
equation (24) are changed as follows. 
 
  ,         (25) 
 
Therefore, the following expression is obtained. 
 
          (26) 
 
here, 
 
  
 
The following is obtained by substituting these relation 
for Equation (22). 
 

         (27) 
 
Since Virtual displacement  of equation (27) is 
arbitrary, we obtain the following discretized equations. 
 
            (28) 
 
Here,  and  are as follows. 
 
           (29) 

            (30) 

 
The discretization equation of this model becomes a 
simultaneous linear equation shown in equation (28). 
Left coefficient matrix  consists of stiffness in the 
sub domain and subsidiary condition on the intersection 
boundary for the adjacent sub-domain. The 
discontinuous phenomenon of opening etc. can be 
expressed without changing degree of freedom by 
changing the value of   of equation (27) to zero. 
 
4. Nonlinear Numerical algorithm 
 
In this paper, it was corrected that Yamada's rmin 
method was able to be used for the open stress problem, 
and applied to a nonlinear analysis of HPM. Here,  is 
the yield function,  is the surface force,  is the 

203



 

incremental surface force, the increment rate  satisfies 
the following expressions. 
 
            (31) 
 
Moreover, when equation (31) is satisfied, the plasticity 
strain increment and the state of the stress are updated 
according to the flow rule. 
This increment ratio  is calculated based on yield 
criterion, and calculates all the surface force. In this 
paper, the load increment ratio calculates re-contact 
after the tension destruction and the tension destruction. 
The tension destruction is shown as follows. 
 
            (32) 
 
At the same time, re-contact after the tension 
destruction becomes equation (32) by using relative 
displacement. 
 
            (33) 
 
Here, when relative displacement is zero, it is assumed 
to be re-contact. A minimum increment ratio at the 
increment ratio calculated above is assumed to be a 
load increment ratio. At this time, when the current 
value and the value after the increment are assumed to 
be  and , 
 
           (34) 
 
The surface force after the increment is sure to exist 
right above or in yield surface. 
Here, load  is divided into some increment loads . 
At this time, if the load value in an arbitrary step is 
assumed to be , and the load increment ratio is 
assumed to be , residual load  is shown 
equation (35). 
 
           (35) 
 
When the initial increment load is assumed to be , 
the residual increment loads of  step are as follows. 
 
          (36) 
 
The penalty value of the boundary is assumed to be 
zero when the tension destruction is caused in an 
arbitrary boundary and the flow of surface force is 
intercepted. The surface force of the boundary is 
distributed to a related sub-domain as opening force. 
The opening force in boundaries of S turn is calculated 
by the next equation. 
 

          (37) 
 
The residual load is added to the distributed opening 
force and the increment calculation in the next step is 
done. The iterative calculation is done until all initial 

loads and opening force are used completely. Total 
 of the load increment ratio is shown in equation 

(38). 
 

           (38) 
 
It is assumed convergence in . Moreover, the 
same technique as the rmin method in a conventional 
load increment method is used except for the opening 
force. 
 
5. Mesh dividing algorithm 
 
5.1 Calculation of strain energy 
 
In this paper, the shearing strain energy was used for 
the index of the mesh dividing. The method of 
calculating the shearing strain energy is described as 
follows. The shearing strain energy is calculated by 
using shearing strain  and area  in sub-domain. 
 

 Shearing strain energy =          (39) 
 
Total strain energy is calculated by using stress, strain 
and area in each sub-domain. 
 

 Total strain energy =          (40) 
 
The mesh dividing is done in sub-domain where the 
strain energy becomes the maximum in all sub-domains. 
 
5.2 Convergence determination of mesh dividing 
 
The convergence determination of mesh dividing is 
judged because of the error margin of the average 
shearing strain energy of a sub-domain and the 
maximum shearing strain energy of all sub-domain. 
 

     (41) 
 
 
6. Comparison with Riedel shearing test 
 
6.1 Experimental result 
 
The test equipment is shown in Figure 4. The boundary 
condition is shown Figure 5. During tests, the board on 
the side is removed. And, the specimen makes only the 
influence by the board shear direction. The specimen is 
shown in Figure 6. 
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Fig. 4: Test equipment    Fig. 5: boundary condition 

  
(Plane-view)                        (Side-view) 

(Silicon) 

 
(Clay) 

Fig. 6: Specimen 
 
The test result of the silicon model is shown in Figure 7. 
The crack that occurred in a base progressed with spiral 
shape with increase of displacement. 
 

(Side-view)

(Front-view)
(Plane-view)

 
Fig. 7: Result of silicon model 

 
The test result of the clay model is shown in Figure 8. 
The crack that occurred in the model side has expanded 
with increase of displacement. Moreover, the crack of 
the surface of the model became going side by side 
shape according to an increase in displacement. 
 

  
(thickness=5.0cm)            (thickness=10.0cm) 

Fig. 8: Result of clay model 
 
 
 
 

6.2 Numerical Result 
 
The analytical model is shown in Figure 9. This 
analysis gives displacement from the use of a plane 
model to the model side. Moreover, an initial model is 
shown in the left picture, and the mesh dividing model 
is shown in the right picture. In addition, an analytical 
model of RBSM and FEM used for the comparison 
with HPM is shown in Figure 10. 
 

   
(First step)                  (30 steps) 
Fig. 9: Analytical model (HPM) 

 

   
(FEM-Model)             (RBSM-Model) 

Fig. 10: Analytical model (FEM and RBSM) 
 
The displacement mode of HPM showed the same 
tendency as RBSM and FEM as shown in Figure 11. 
Moreover, the tendency to which displacement was 
localized in the displacement boundary part became the 
same. 
 

    
(HPM-First step)                  (HPM-30 steps) 

    
(FEM-Model)             (RBSM-Model) 

Fig. 11: Displacement mode 
 
The crack pattern by the 2 dimensional nonlinear 
analysis is shown in Figure 12. The crack initiation by 
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FEM distribute widely. However, HPM and RBSM 
were localized in the displacement boundary part. 

   
(HPM-First step)        (HPM-30 steps) 

   
(FEM-Model)             (RBSM-Model) 

Fig. 12: Crack mode 
 
The maximum shearing strain is shown in Figure 13. 
The area where the maximum shearing strain was high 
became the same type as the test result. The maximum 
shearing strain was localized along with the division of 
the mesh. And, the same tendency as FEM could be 
shown by a small number of elements. 

   
(HPM-First step)        (HPM-30 steps) 

   
(FEM-Model)            (Experiment result) 

Fig. 13: Maximum shearing strain 
 
7. Conclusions 
 
This paper reported the result of the Riedel shearing test 
and a numerical result for the nonlinear analysis by 
using the mesh dividing method. HPM divides a whole 
area into sub-domain, and the displacement field is 
defined independently in each sub-domain. At this time, 
the node of the area doesn't have degree of freedom 
from the use only to recognize shape like FEM. 
Therefore, the middle node need not be installed like 
FEM. This means an arbitrary area can be subdivided 
as shown by the example of the numerical analysis as 

the node doesn't worry. That is, in the problem that 
strong nonlinear appears locally, it is thought that the 
improvement of accuracy can be attempted by dividing 
again partially. 
1. HPM using mesh dividing method was able to 

obtain the same tendency as FEM by a small 
number of elements. 

2. The dividing of the element was repeated in the area 
where the crack had occurred a lot during tests. 
Moreover, the tendency to which the shearing strain 
was localized can be obtained. 

3. The shape of the area where the elements are 
refined showed shape similar to the area where the 
going side by side crack had been caused during 
tests. Moreover, the direction of displacement show 
the same tendency with the area where the high 
shearing strain was generated by 45 degrees in the 
direction. 

 
The study in this paper was conducted based on a plane 
model. It is scheduled to analyze it according to a solid 
model in the future. 
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In this paper, the topological properties of 3D blocks are described, and 3D topological data 
model is proposed. An algorithm of automatically identifying rock blocks is then presented. 
Based on object-oriented approach, a block tracing program is developed to identify rock blocks. 
In the program, the discontinuities in rock mass are treated as flat planes with or without finite 
size. Using the geometrical and topological information of joints as input data, the block tracing 
program can identify all possible 3D blocks (convex or concave) through four steps, namely, 
intersection calculation, tree cutting, 2D block tracing and 3D block tracing. The volume of 
rock blocks can be easily calculated by using of 3D simplex integration without dividing it into 
small blocks. An example is used to demonstrate and verify the effectiveness and accuracy of 
block tracing program that can identify both convex and concave polyhedron and calculate their 
volume. This block tracing program can be used as a pre-process for discrete element method 
(DEM), block theory, discontinuous deformation analysis (DDA) and manifold method (MM). 

Keywords: Rock blocks, 3D topological data model, Block tracing program, Block size 
 
 

1. Introduction 
 
The rock masses are, by nature, discontinuous materials 
that contain many discontinuities such as fractures, 
joints, faults, shear planes and shear zones, which 
intersecting rock divide the rock mass into blocks with 
a great variety of sizes and shapes (Fig. 1). The rock 
block sizes (block volume or joint spacing) and block 
shapes are extremely important parameters influencing 
the behavior of rock masses in underground opening 
and surface cuttings.  
 

 
 

Fig. 1: Rock blocks formed by joints (from 
www.rock.mass.net) 

 
There are mainly two kinds of joints, joint sets that 
compose of parallel oriented joints, and random 
(irregular) joints that do not belong to any joint set. The 
block sizes are result of the joint spacing, the number of 

joint sets, and the size and persistence of the joints. 
Block shape depends mainly on the differences between 
the joint set spacing. Dearman (1991) presented typical 
block shapes or jointing patterns where regular jointing 
exists. In most cases, however, there is no regular 
jointing pattern. Random joints further complicate the 
block sizes and shapes. The sizes and the shapes of the 
rock blocks surrounding an underground excavation 
may also determine whether the rock masses will 
behave as a continuous material, or as a discontinuous 
material. Correspondingly the most suitable numerical 
methods of analysis, the continuum modeling or 
discontinuum modeling, are chosen to investigate the 
stability of underground excavation and slope.  
 
Because measurements mostly are made on 2-
dimensional surfaces and 1-dimensional borehole, it is 
difficult to measure block size directly. So some crude 
estimations of block sizes are proposed by several 
researchers. Block sizes are typically estimated by 
following indices, Block Volume (Vb), Rock Quality 
Designation (RQD), Volumetric Joint Count (Jv), and 
Block Size Index (Ib). These indices are also a 
reduction ratio of the strength of intact rock. But these 
methods do not quantify the actual block size and block 
size distribution.  
 
Several numerical methods including block theory 
(Goodman 1985), discrete element method (Cundall 
1988), discontinuous deformation analysis (Shi 1988) 
and manifold method (Song 2006) are used to study the 
stability problems. But accurately identifying rock 
blocks and determining their properties (size, mass, 
volume etc) are critical success factors of numerical 
simulation of slope failure or tunnel collapse. 
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The block generation language by Heliot (1988) and 
rock block identification algorithm developed by 
Warburton (1983), both as pre-processor of 3DEC code, 
used infinitely large discontinuous faces and could 
detect only convex blocks. Maerz and Germain (1996) 
used the semi-infinite joint sets to cut a fixed volume of 
space (rock mass) into rock blocks. The assumption in 
calculating rock block volume is that all blocks are 
convex. Jing (2000) introduced finite size of joints in 
his block constructing system, but only regular face 
(rectangular) of blocks were identified. Lu (2002) 
proposed block identification algorithm that could find 
both convex and concave polyhedra, but no block 
volume calculation was provided. So in this paper, a 3D 
topological data model is firstly proposed. Then a 
general block tracing program is developed to identify 
rock block with complex geometry (convex or concave). 
Thirdly rock block size determination is discussed. 
Finally an example is used to verify the correctness and 
accuracy of block tracing program. 
 
2. 3D data model of rock blocks 
  
Rock blocks (polyhedra) have two kinds of properties: 
topological properties such as number of vertices, edges, 
faces and their relationships; and metric properties that 
include mass, weight, volume, lengths of edges and 
areas of faces etc.  
 
The number of rock blocks and their size distribution 
are affected by fracture or joint’s size, orientation, and 
spacing. The joints are usually considered to be smooth 
and planar, with either regular (rectangular, circular or 
elliptical) or irregular shapes and of finite or infinite 
size (compared with the scope of target space). Joints 
may parallel, overlap or intersect with each other and 
intersected edges and vertices are formed. Fig. 2 shows 
typical intersection patterns of three planes.   

 
Fig. 2: Possible intersection patterns of three planes 

(modified from Sunday Dan, 2001) 
 
Topology is a unified high-level abstraction of 
geometrical information. Adjacency topology describes 
the adjacency of topological primitives such as vertices, 
edges, faces, and solids. In this paper, some basic 

concepts of combinatorial topology are introduced and 
a hierarchy of data model is proposed. According to 
properties of rock mass, four abstract objects, point, 
line, surface and body, are used to represent their 
geometric properties related shape, size and position. 
These objects are built of four topological primitives 
namely vertex, edge, face, solid, i.e. 0,1,2,3 simplexes. 
Based on study of geometrical and topological 
properties of 3D rock blocks, a 3D topological data 
model is proposed to describe rock blocks (Fig. 3). 
 

 
Fig. 3: 3D data model of rock blocks 

 
3. Block tracing program 
 
Discontinuities such as fractures, joints divide rock 
mass into many rock blocks. So the rock blocks have 
parts or whole surfaces of fractures as their surfaces. 
Some fractures can be intersected by many other 
fractures, forming many closed face loops that may 
serve as surfaces of newly formed blocks. There are 
four steps to identify 3D rock blocks. (1) Intersection 
calculation: All the intersected edges and vertices are 
calculated using the geometrical data of fractures. (2) 
Tree Cutting: This paper develops a tree cutting 
program to delete wire edges or dangling planes 
because they are non-manifold. (3) 2D block tracing: 
Extended from 2D block tracing program of DDA (Shi, 
1988), a 2D block tracing program is developed and 
used to find face-loops for all given surfaces. (4) 3D 
block tracing: Based on the 3D topological data model 
of 3D rock blocks, the 3D block tracing is finally built 
to identify rock blocks (both convex and concave 
polyhedra). The flowchart of 3D block tracing program 
is shown in Fig. 4. 
 
4. Block Size Determination 
 
The block sizes are result of the joint spacing, the 
number of joint sets, and the size and persistence of the 
joints. It is time-consuming to calculate volume of 
individual blocks. When irregular joints exist, it is more 
 difficult to determine the actual size and shape of 
formed blocks. So an equivalent block volume is 
usually used to simplify the determination of block 
sizes and shapes. On the contrary, the block tracing 
system, using joint sets or random joint as input data, 
can identify all blocks with complex geometry (convex 
or concave) and can accurately compute the actual 
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volume of block by 3D simplex integration method (Song 2007). 
 

 
Figure 4: Flow chart of 3D block tracing program

 
4.1 Block Volume from Joint Spacing 
 
This method uses joint spacing of regular joint sets to 
determine block volume. The joint spacing or average 
joint spacing is perpendicular spacing between joints 
with the same joint set.  When three joint sets intersect 
with each other and divide the rock masses into blocks 
(Fig. 5). The block volume can simply calculated from 
joint spacing (Palmstron 1996). 

3sin2sin1sin
321

γγγ ××
××

=
SSSV                (1) 

 
Where  γ1,γ2,γ3 are the angles between joint set, and  
 S1, S2, S3 are the spacing between individual 
joints in each joint set. 
 

 

 
Fig. 5: Joint set and joint spacing 
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(4) 3D Block Tracing 

(1) Intersection Calculation 
 

(2) Tree Cutting 

(3) 2D Block Tracing 
 

Input fracture data (planes) 
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Compute Intersected vertices of 
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4.2 Block volume from 3D simplex integration 
 
Suppose a general block has n polygon surfaces. A 
general polygon surface, no matter convex or concave, 
can be triangulated into m triangles (Pj1Pj2Pj3) 
mentioned above in block tracing program.  Choose an 
arbitrary point as P0, inside or outside the block, usually 
at origin (0,0,0), the volume of the block can be an 
algebraic sum of 3D simplex integration on each 
tetrahedron P0 Pj1Pj2Pj3 by equation (2).  
 

∑∑ ∑∑
= = = =

==
n

i

m

j

n

i

m

j
jpppp JVV

jjjj
1 1 1 1

)(
6
1

3210
                (2) 

 
Where J is Jacobi determinant. 
 
 
5. Examples 
 
To verify block tracing program is to check 1) all 
formed block are identified without block left, 2) the 
geometrical parameters are accurately calculated. So in 
this paper, a simple example is used to verify the 
correctness and accuracy of 3D block tracing program. 
Take a cube of 2 units in length, 1 in height and 1 in 
width as a master block. Then cut the cube with 10 
fractures with finite size (Fig. 6(a)). In the intersection 
calculation step, 4 lines are intersected by 2 fractures 
and cube.  But the 4 intersected lines can not form any 
block. Therefore they are removed by tree-cutting 
program. Finally six blocks, 2 concave and 4 convex 
polyhedra, are identified (Fig. 6(b). The topological 
information and geometrical information are listed in 
table 1. From the table, we can find that the total 
volume of 6 small blocks (2 concave and 4 convex 
polyhedra) is equal to original volume of cube. The 
geometrical parameters of blocks are accurately 
calculated. Volume calculation using 3D simplex 
integration quantitatively verifies the accuracy of block 
tracing program. This example demonstrates that the 
block tracing program can effectively and accurately 
identify all the blocks formed by fractures. 
 

 
 

Fig. 6: An example of block identification: (a) a cube 
cut by 10 finite size fractures (b) Identified 6 blocks (4 

convex and 2 concave polyhedra). 
 

 
Table 1: Topological and geometrical data of identified 

blocks and original cube 
 
Block Type Face Edge Vertex Volume

block 1 convex 6 12 8 0.137450 

block 2 convex 6 12 8 0.102550 

block 3 convex 5 9 6 0.048000 

block 4 convex 6 12 8 0.090000 

block 5 concave 12 28 20 0.822550 

block 6 concave 10 24 16 0.799450 

SUM - - - - 2.000000 

Cube convex 6 12 8 2.000000 
 
6. Conclusions 
 
Based on analyzing of the topological properties of 3D 
rock blocks, this paper proposes the 3D topological data 
model and develops a new block tracing program that 
can identify both convex and concave polyhedra. Using 
the geometrical and topological information, any 
polyhedron with complex geometry can be traced 
through four steps, intersection calculation, tree cutting, 
2D block tracing and 3D block tracing. An example 
demonstrates and verifies that all blocks can be 
identified successfully with no small block left. The 
actual block volume can be accurately computed by 
using of 3D simplex integration, a computationally 
efficient method. This block tracing program can 
provide more accurate information of rock masses for 
final design and optimization of excavation and support 
onsite. It can also be used as a pre-process tool for 
3DEC, DDA, MM, etc. 
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3-D Mode Discrete Element Method 

 
ZHANG CHONG1,2, JIN FENG1, WANG RENKUN2, FENG XUEMIN2 

 
1 State Key Laboratory of Hydroscience and Engineering，Tsinghua University，Beijing, 100084, China 

2 Chengdu Hydroelectric Investigation & Design Institute of SPC, Chengdu, 610072, China 
 

For block systems that satisfy small strain, finite displacement and finite rotation conditions, a 
3-dimensional mode deformable discrete element method (3MDEM) is presented. It is an 
efficient numerical method to simulate mechanical behaviors of nonlinear, large deformation 
and dynamic problems. First, the equations including the motion and deformation are derived. 
Second, under the small deformation condition, the motion of deformable blocks can be 
decomposed into rigid body motion and deformation. Third, based on several deformation 
modes, the deformation of blocks can be expressed by the combination of deformation modes, 
which can be decoupled under given conditions. Regarding the deformation simulation of 
blocks, 3MDEM is more efficient than 3DEC developed by ITASCA. Numerical verification 
shows that the displacements and stresses obtained by 3MDEM is coherence with that obtained 
by FEM under the condition of small deformation. Under the large deformation condition, the 
simulation results of structures by 3MDEM agree well with that by 3DEC. 

Keywords: Discrete element method (DEM); Discontinuum; Numerical method; Finite 
deformation 

 
 
1. Introduction 
 
The Discrete or Distinct Element Method (DEM) was 
first proposed by Cundall (Cundall, 1971) to study 
slope stability problems in jointed rock masses. In this 
method the rock messes is simulated as a system of 
interacting rigid blocks in two-dimensional. This 
method was then extended by Cundall et al. (Cundall 
1988; Hart et al. 1988; Cundall 1980; 3DEC manual) to 
deformable elements and to three-dimensional. Many 
other investigators also studied this method in various 
aspects (Williams et al. 1985, 1987; Bardet et al. 1985; 
Butkovich et al. 1988, etc.). In China, Wang et al. 
applied this method in the numerical analysis of jointed 
rock masses and successfully simulated the natural 
break-down process of rock body (Wang, et al 1991). 
Zhang et al. applied this method to study slope stability 
problems in rock mechanics, to perform static and 
dynamic stability analysis of arch dams, and introduced 
corresponding engineering criterion to evaluate the 
instability potential (Zhang et al 1997; Zhang et al 
2006) 
 
The DEM distinguishes itself from the FEM by 
modeling its objects as systems of discontinuous bodies 
that interact with each other. Bodies may be rigid or 
deformable. Based on Newton’s second law, kinetic 
equation is built, and an explicit time-marching scheme 
is used to solve the equations of motion directly, which 
can be used to simulate the structure real-time 
responses from small deformation phase to final failure 
of systems. 
 

In three-dimensional DEM deformable algorithms, a 
finite difference tetrahedral meshing technique is 
generally adopted to model individual blocks, within 
which physical quantities such as mass and resultant 
forces are distributed to the nodes. The nodal 
displacements are then used as basic unknowns to 
establish the global equations, which are explicit 
progressively solved in time domain. For engineering 
problems in large-scale structures such as simulation of 
a dam-foundation system, this method may require a 
quite large number of nodes in addition to a very small 
time step to obtain a reasonable result. 
 
Ideas based on modal decomposition have been 
induced to simplify the deformation within a discrete 
element or block.( William et al. 1985, 1987; Shi 1992). 
The 3MDEM has been built as an efficient method to 
model bodies of complicated shape that deform in a 
simple manner (Zhang 2007). In this paper, we assume 
the translation and rotation of blocks is finite, but the 
strain is fairly small, so it is reasonable to suppose that 
the density, volume and inertia moment of blocks will 
remain constant during the total deformation progress. 
A 3-D formulation of mode discrete element method 
(3MDEM), which can be adopted to solve large-scale 
engineering problems more efficiently and a modal 
method to simplify stress-strain relationship inside 
discrete blocks is presented. 

 
2. Kinematics equations 
 
The motion and deformation of an individual block can 
be decomposed into three type motions in small 
deformation condition, there are block translation, 
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rotation and deformation. This paragraph will only give 
the description of block rotation and deformation 
because the translation is too easy, which is not 
necessary to be further analyzed. Regarding the 
assumption of small deformation for each individual 
block, the density, volume, moment of inertia of each 
block will remain constant.  
 
Generally, in dealing with multi-body systems, three 
types of coordinate systems are required. The first is 
global coordinate system that is fixed and represents a 
unique standard for all blocks in the systems. This 
coordinate system will be named frame a, whose base 
vector is ea and coordinate is described by lowercase 
letter x, y and z. In addition to this frame, we assign a 
body frame to each block which is named frame b, 
whose base vector is eb and coordinate is described by 
capital letter X, Y and Z. This frame is located in the 
gravity centre of each block, and the orientation of 
coordinate is chosen to parallel with principal axis of 
inertia of each block. The third frame is superposition 
with frame b for each block at the beginning of each 
time step and its orientation remains steady in the time 
step. This frame is called reference frame and named 
frame b’. 
 

The symbol
C D

iv  is defined as ith component 
exhibited in frame D of the derivative in frame C of 
vector v. 

 
2.1Rotation of a block 
 
Considering the fixed-spindle rotation of a block from 
time t to t+Δt, the block rotates degree θ around 
axis p. The vector p is the unit vector of rotation axis. 
 
Generally, transformation matrix 

b bA ′
 between frame 

b and frame b’ is:  
 

cos I (1 cos ) sinb b TA pp pθ θ θ′ = + − +3   （1) 
 

Where p  is skew symmetric matrix given by 

p

P

P0
Q

O

θ
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b1
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b3

 
Fig 1 fixed-axis rotation of a block 

 

3 2

3 1

2 1

0
0

0

p p
p p p

p p

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

           (2) 

 
In which p1, p2 and p3 are the components of the vector 
p. 
 
The angular velocity vector of the block is ω, whose 

corresponding skew symmetric matrix is ω . 
According to multi-body dynamics (Hong Jiazhen, 
1998), ω  can be written as: 
 

b bb b bA Aω ′ ′=                     (3) 
 

Subsituted intoEq. (1), then Eq. (3) can be written as: 
 

(1 cos )( ) sinb T Tp pp pp pω θ θ θ= + − − −  (4) 
 
From Eq. (4), the angular velocity vector does not 
superpose with rotation axis vector. But regarding the 
small time step in the 3MDEM, the rotation angle and 
movement of rotation axis is small enough. That is to 
say Eq. (4) can be simplified as: 

 
b pω θ=                       (5) 

 
Written in vector form: 

 
θ= pω                        (6) 

 
So in 3MDEM, the rotation of blocks can be simulated 
as many small fixed-spindle rotations. For each time 
step, the direction of rotation axis vector of small 
fixed-spindle rotations is equal to that of the angular 

velocity vector. The rotation degree is 
tω Δ

, where, 
Δt is time step.  
2.2 Deformation of a block 
 
The deformation of a block is assumed as the 
summation of deformation modes. In frame b, the 
coordinate of mass points in the block is independent 
of the rigid movement of the block. So, new coordinate 
of mass point can be written as 
 

( ) ( )X t t X t α+ Δ = +ΦΔ           (7) 
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Fig 2 the decomposition of the movement and 

deformation 
 
Where, X represents the coordinate vector of mass 
point of the block in frame b； The matrix Φ is a 
mode matrix, which is the 3×s matrix, three lines is 
accord with coordinate X, Y, Z； s columns is accord 
with s deformation modes. Δ α represents the 
increment matrix of deformation mode coefficient α  
in Δt. 
 
But in frame a, the coordinate of mass point is not only 
relate with the deformation but also the rigid 
movement of the block. As shown in Fig. 2，the 
coordinates of mass point in frame a should be written 
as:  
 

1
' ' ' '

( ) ( ) ( )

( ( )) ( )

a a a
O

ab b b b ab b b b b

x t t x t r t

A A X t A A α

+ Δ = +

+ + Φ Δ
(8) 

 
Where, r represents the translation component of the 
block. 

 
3. Kinetics equations 
 
In 3MDEM, the system is an assembly of 3D discrete 
blocks. The interface between blocks can be joint, 
fissure, cracks, and artificial cut plane, where linear or 
nonlinear contact constitutive equations can be applied. 
In block, the deformation modes are used to 
decompose the deformation. Explicit step by step 
relaxation method is used to calculate the mode 
coefficients as well block translation displacement and 
rotation degree. Then, the whole history of movement 
and stresses of every block can be obtained.  
 
From the continuum mechanics theory, the deformation 
can be represented by Cauchy strain tensor in the small 
deformation phase and by Green strain tensor in finite 
deformation phase. But in large rotation and small 
strain phase, only the movement of the blocks is 
usually focused. The stress state of blocks is no longer 
important. So in this paper, the Cauchy strain tensor is 
used for whole movement. 

 
3.1 Dynamics equation of mass points 
 

As show in Fig. 3, global frame is frame a: oxyz, body 
frame is frame b: OXYZ. The position vector of mass 
point R0 is u，then in any time, the position vector r of 
this point (point P) in frame a is:  

O x

y P

X

Y

u

o

Z

R R0

z

r

r0

 
Fig. 3 Position vector decomposition of a particle in 

block 
 0o o= + = + +r r R r R u           (9) 

 
Where, r0 is the position vector of Ob, the origin of 
frame b.  In frame a, r0 can be used to denote the 
translation of the block. R0 is the vector from Ob to 
mass point. Under the small strain condition, for a 
given point, the vector expressed in frame b does not 
change in time, but in frame a it change step by step. 
The change denotes the rigid rotation of the block. So 
r0 and R0 give the rigid movement of the block. As 
shown in Fig. 3, u expresses the deformation of the 
mass point R0. In a word, three items in the right of Eq. 
(9) represent the translation, rotation and deformation 
of the block. 
 
From the elastic mechanics, for any point r in 
individual block, that have followed balanced equation 
in frame a:  

ρ = +∇ ⋅r f σ                (10) 
 
Where ρ is density of the point; f is the external force 
acted at the point. σ is the stress of the point. 
 
Give the expression of Eq. (10) in frame b:  

[ 2 ( )]b b b b

b

ρ + × + × + × ×

= +∇ ⋅

r r r r
f

ω ω ω ω

σ
 (11) 

 
Substituting Eq. 9 into Eq. 11, and then considering in 
frame b, R0 corresponds to a mass point in block, so its 
derivative in frame b is equal zero. Last, the following 
equations are always right: 
 

2 ( )b b a
o o o o o

b a
o o o

+ × + × + × × =

+ × =

r r r r r

r r r

ω ω ω ω

ω
（12） 

 
That has： 
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[ 2 ( )]

a
o

b b

b

ρ ρ

ρ ω

+ × + × ×

+ + × + × + × ×

= +∇ ⋅

r R R

u u u u
f

ω ω ω

ω ω ω

σ

   (13) 

 
This is the dynamics equation of mass points, where 
three items in the left side represent the translation, 
rotation and deformation, respectively.  

 
3.2 Translation equation of a block 
 
The translation of a block can be represented by the 
displacement of its gravity center. Directly integrating 
Eq. (13) in frame a, the integral of rotation item will be 
zero. Under small strain condition, the integral of 
deformation item is approximate to zero. Eq. (13) 
could be written as: 
 

a b
odV dV dVρ = + ∇ ⋅∫ ∫ ∫r f σ      (14) 

On the force boundary Γ: 

0=F F                         (15) 
Applying Green formula, expressed in index form: 

a
oi i oim r f dV F d= + Γ∫ ∫            (1

6) 
 
Where, m is the mass of the block, f is body force 
which include gravity, F0 is boundary force including 
contact force. 

 
3.3 Rotation equation of a block 
 
The rotation of frame b relative to frame a could be 
used to denote the rotation of the block. Integrating Eq. 
(16) multiplied by 0

bR  in frame b, the integral of 
translation part should be equal 0, the integral of 
deformation part can be neglected under small strain 
condition. Then,  

0 0 0

0 0

[ ( )]

( )

b b b b b b

b b b b b

dV

dV dV

× × + × ×

= × + × ∇ ⋅

∫
∫ ∫

R R R

R f R

ρ ω ω ω

σ
 (1

7) 
 
Substituting boundary condition into Eq. (17) and 
employing Green formula, one can obtain: 

1 1 2 3 2 3 1

2 2 3 1 3 1 2

3 3 1 2 1 2 3

( )
( )
( )

I I I M
I I I M
I I I M

ω ω ω
ω ω ω
ω ωω

− − =
− − =
− − =

        (18) 

 

Where I1、I2、I3 are the moment of inertia of block in 
frame b. M1、 M2、 M3 are moment around three 
coordinate axis of frame b. 

 
3.4 Deformation equation of a block 
 
Rewrite Eq. (13) in frame b, and then substitute into 
deformation modes which are shown in Eq. (7). 
Multiplying ΦT in the front and applying small strain 
condition, the integral should be 

0 0Φ Φ [ ]

Φ Φα

Φ Φ ( )

T a b T b b

V V

T

V

T b T b b

V V

r dV R dV

dV

f dV σ dV

ρ ρ ω

ρ

+

+ =

+ ∇ ⋅

∫ ∫

∫

∫ ∫

    (19) 

 
Substituting boundary condition and applying Green 
formula, Eq. (19) can be expressed in index form as: 

2

0

0

Φ Φ Φ Φ

Φ Φ

Φ [ ]

b b
ik ij j jk j jk ojV V S

T B a b
ki, j ij jk jV V

b b
jk ji iV

a dV f dV F d

dV r dV

R dV

ρ

σ ρ

ρ ω

= + Γ

− −

−

∫ ∫ ∫
∫ ∫
∫

 

(20) 
Lets: 

2

0 0

Φ Φ

Φ Φ

Φ

Φ Φ [ ]

ik ijV

b b
A jk j jk ojV S

T B
I ki, j ijV

a b b b
T jk j jk ji iV V

M dV

S f dV F d

S dV

S r dV R dV

ρ

σ

ρ ρ ω

=

= + Γ

=

= +

∫
∫ ∫
∫
∫ ∫

(21) 

 
Where M, SA, SI and ST are general mass matrix, 
general external force matrix, general internal force 
matrix and couple matrix of rigid movement. Substitute 
Eq. (21) into Eq. (20), that has:  
 

A I TMa S S S= − −              (22) 
 
If the deformation modes satisfy the following 
conditions: 

0

0,

N

N L

dV

dV L N

φ

φ φ

=

⋅ = ≠

∫
∫ 当

      (23) 

 
Then all deformation mode that is in Eq.(23) will be 
decoupled from each other, and couple vector of rigid 
movement will be zero. Eq. (23) can be simplified as: 
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L L L L
A Im S Sα = −                   (24) 

 
Lm , L

AS  and L
IS  are Lth row diagonal element of 

matrix M, SA and SI, respectively. 
 

3.5 Contact forces between blocks 
 
Normal and tangential springs are used to express the 
contact force between blocks. For each contact, the 
relationship between contact force increment and 
contact displacement increment is assumed as (Cui 
Yuzhu, 2001): 

n n n c

s s s c

K A
K A

Δ = − Δ
Δ = − Δ

F u
F u

               （25） 

 
Where, Kn and Ks are contact stiffness in normal and 
tangential direction. Δun and Δus  are displacement 
increment in normal and tangential direction. ΔFn and 
ΔFs are spring force increment in normal and tangential 
direction. Ac is contact area. 
 
To simulate nonlinear mechanical property of interface, 
Mohr-Column criterion is employed in interfaces. That 
is: 

0 0
( ) / c

n s n c

s s n c s s n c

F TA
f cA F f F A

= = ≥⎧⎪
⎨ = + > +⎪⎩

， 当

当

F F
F F F F

(26) 

 
Where T is tensile strength, c is cohesion, f is friction 
coefficient. To simulate the failure of an interface, T 
and c could be reduced to zero after the first failure of 
the interface. 
 
3.5 Elastic force in a block 
 
Applying linear elastic constitutive equations, the block 
stress increment is: 
 

ijijvij εμδελσ Δ+Δ=Δ 2)(        （27） 
 

Where, λ and μ are Lame's constant. δij is Kroneker- δ. 
The strain increment: 
 

 zzyyxxv εεεε Δ+Δ+Δ=Δ          (28) 
 
Considering the relationship between strain and 
displacement, the stress increment can be written in:  
 

( ) ( )jk i
ij ij

k j ix x x
φφ φσ λ δ μ α

⎡ ⎤∂∂ ∂
Δ = + + Δ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
  (29) 

 
At the beginning and end of the step, the position of 
frame b relative to frame a has changed. So the stress 
at the beginning of step must be modified, and the 
stress of the step end can be obtained by adding the 
stress increment: 
 

( ) ( )rt t t+ Δ = + Δσ σ σ             (30) 
 
Where σr(t) is the modified stress in step beginning.  
 
Then the general elastic force of a block can be 
obtained by integral according Eq.(21).  

 
4 Deformation mode selection  
 
The 21 deformation modes are selected in this paper, 
which have been listed in Table 1 and Table 2. which 
could be classed into 5 categories, namely, tension 
modes, shear modes, first bending modes, second 
bending modes and second order tension modes.  

Table 1  first order mode 
tension mode shear mode 
1φ 2φ 3φ  4φ  5φ  6φ

X 0 0 Y Z 0 
0 Y 0 X 0 Z 
0 0 Z 0 X Y

Table 2  second order mode 
first bend mode second order tension mode second bend mode 

8φ  9φ  10φ  12φ  13φ  14φ  7φ  11φ  15φ  16φ 17φ 18φ  19φ  20φ 21φ
Y2 Z2 0 0 0 0 X2 0 0 XY XZ 0 0 0 0 
0 0 X2 Z2 0 0 0 Y2 0 0 0 YX YZ 0 0 
0 0 0 0 X2 Y2 0 0 Z2 0 0 0 0 ZX ZY

Obviously, if only the six first order modes listed in 
table 1 are selected, these modes will satisfy the 
orthogonal conditions given in Eq. (23). Then mode of 
deformation equation can be decoupled from each 
other as shown in Eq.(24).  

 
5 Examples 

 
5.1 Cantilever beam 
 
To verify the accuracy of 3MDEM under small 
deformation, a cantilever beam as shown in fig. 4, 
which left end is fixed, is analyzed. The cantilever has 
a span of 30m, a high of 3m and a thickness of 1m, a 
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modulus of elasticity of 24GPa, a Poisson’s ratio of 0.2 
and a density of 2400kg/m3. the gravity acceleration is 
9.8m/s2, whose direction is in opposition of Y axis.  

30m

3m

l1

l2

X

Y

 
Fig. 4 example of a cantilever 

 
To simulate continuum material, the tensile strength is 
set as large enough. So the interface between blocks 
can not be abrupt or slip. 
 
When block size is 3.0×3.0 (unit m, same in the 
following), the normal stresses by 3MDEM is good 
enough comparing with the result by FEM with linear 
element size of 0.2×0.2, as shown in Fig. 5a. When 
block size is 1.0×1.0, the shear stresses by 3MDEM 
obtain good results, as shown in Fig. 5b. The 3DEC 
software can also obtain similar results if the blocks is 
much smaller. It is because 21 modes employed in 
3MDEM include all second order bend mode, while 
FEM and 3DEC only has a constant or linear 
deformation modes in their elements or blocks. 
 

0 5 10 15 20 25 30

-1
0
1

3.0    3.0 MDEM
0.2    0.2    FEM
0.5    0.5  3DEC  

(a) the beam stress comparison in size 3×3  

0 5 10 15 20 25 30

-1
0
1

1.0    1.0 SDEM
0.2    0.2    FEM
0.5    0.5  3DEC  

(b) the shear stress comparison in size 1 × 1  
Fig. 5 comparison of the displacement and the stress 

 
5.2 Impacting simulation of pillar 
 
As show in fig. 6, a pillar with high of 30m, width of 
3m, thickness of 1m, is cut into 10 blocks, whose size 
is 3×3×1(unit:m). The pillar has a modulus of 
elasticity of 24GPa, a Poisson’s ratio of 0.2 and a 
density of 2400kg/m3. the gravity acceleration is 
9.8m/s2. All interfaces between blocks have same 
property: the tensile strength and cohesion is zero, the 
friction coefficient f is 0.5, the normal stiffness is 
50GPa, and the tangential stiffness is 20.8GPa. One 
block numbered 11 impact this pillar at the speed of 
50m/s. In this problem, contact relation will change 
continually, and contact detection method will be well 
tested.  
 

Two results with block size 3×3 and 0.5×0.5 are 
shown in Fig. 6. The result with block size 0.5×0.5 by 
3DEC is also shown in fig 6c. The collision process is 
reasonable and the results by 3MDEM and 3DEC are 
similar. Because there are air damping in 3DEC but air 
damping free in 3MDEM, the flight distance of the 
blocks by two methods are different. 

 

 
(a)block size 3×3，3MDEM result 

 (b)block size 0.5×0.5，3MDEM result 

 
(c)block size 0.5×0.5，3DEC result 

Fig. 6 Simulation of a discontinuous column against 
push 

 
5.3 Wave transmit through interface 
 
A pillar with high of 40m cutted into 40 blocks, which 
has a length of 1m, a width of 1m and a thickness of 
1m. The bottom is fixed, and all other faces are free. 
The pillar has a modulus of elasticity of 24GPa, a 
Poisson’s ratio of 0.2 and a density of 2400kg/m3. In 
the middle of pillar, there is a discontinuous interface 
whose strength is 10MPa or 0.2MPa. The strength of 
all other interface is set large enough.  
 
At time zero, a sinusoidal velocity wave is input at the 
bottom of pillar, the wave has a frequency of 1Hz, and 
a velocity of 0.1m/s，which is equivalent to input stress 
wave with amplitude of 0.8MPa. At top of the pillar, 
1-D viscous boundary is used to avoid wave reflection, 
which was first brought out in 1969 by Lysmer and 
Kuhlemeyer.  
 

218



 

The comparison of input wave and response at the top 
of pillar is shown in Fig.7. If the tensile strength of 
middle interface is larger than 0.8MPa, as shown in 
Fig.7a, velocity wave can propagate perfectly to the top 
of pillar. The time lag should be 0.013s in theory and 
the lag of 0.012s is given by 3MDEM. If the tensile 
strength of middle interface is only 0.2MPa， the 
compress phase of the wave can propagate to the top of 
pillar, but tensile phase will reflect and transmit at the 
middle interface, as shown in Fig. 7b. The amplitude of 
the transmission wave should be 0.025m/s in theory.  
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(a) tensile strength of interface is big enough 
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(b) tensile strength of interface is 0.2MPa. 

 Fig. 7 Transmission and reflection of incident 
harmonic wave at a discontinuity interface 
 

6 Conclusion 
 
In this paper, 3-D method discrete element method, 
which is an efficient numerical method for simulating 
mechanical behaviors of nonlinear, large deformation 
and dynamic problems, is presented. Due to the 
tetrahedron meshing technique employed in 3DEC, the 
number of degree of freedom calculated in 3MDEM 
will be much smaller than that in 3DEC.  
 
The verification examples demonstrate that 3MDEM is 
not only able to calculate mechanical behavior of 
continuum, but also simulate large displacement, large 
rotation and dynamic problems for block systems. It 
has great potential in structure and geotechnical 
engineering fields.  
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When a dynamic pulse loading is applied to the top of a blocky rock system, the frictional force 
between the blocks in the lateral direction can be reduced significantly or even disappear, which is 
known as an ultra low friction phenomenon. This phenomenon has drawn a lot of attentions of 
researchers. However, it has not been well understood because of its complexity. In this paper, the 
dynamic friction mechanism of blocky rock system is numerically investigated using manifold 
method. The parametric studies with respect to loading duration, loading intensity and loading shape 
of the pulse have been carried out. Numerical results indicate that the loading duration has a great 
influence on the frictional force between two blocks. When the loading frequency is around the 
natural frequency of the blocky rock system, the frictional force will be severely reduced. Loading 
intensity favors the reduction of the frictional forces. Larger loading intensity will lead to lower 
frictional force. Loading shape also has some influences on the frictional force because of different 
energy involved in each loading. The ultra low friction phenomenon has been discussed based on 
the numerical simulation results. It is due to the vibration of the blocky rock system induced by the 
applied pulse loading. 

Keywords: Dynamic friction mechanism; Blocky rock system; Frictional force; Ultra low friction 
phenomenon; Manifold method 

 
1. Introduction 
 
When a pulse loading is applied to the top of a blocky 
rock system, the frictional force between the blocks in 
the lateral direction can be reduced significantly or 
even disappear, which is known as a ultra low friction 
phenomenon. This phenomenon has drawn a lot of 
attentions of researchers. However, it has not been fully 
understood because of its complexity (Wang, 2006). 

The manifold method (MM) is initially developed 
by Shi in 1991 (Shi, 1991; 1997). The method is 
derived from the finite cover approximation theory and 
gains her name after the mathematical notion of 
manifold. The MM was developed based on 
discontinuous deformation analysis (DDA). It preserves 
all the discrete element modeling characteristics such as 
kinematics constraints, contact detection and modeling 
from DDA. However, it employs a number of covers in 
each block to raise its degrees of freedom (DOFs) to 
improve the accuracy of stress and displacement field. 
The MM demonstrates a good consistency with both 
the conventional finite element method (FEM) and the 
DDA and applicable to both continuous and 
discontinuous problems.  

In this paper, the dynamic friction mechanism of a 
blocky rock system is numerically investigated using 
MM. The parametric studies with respect to the 
duration, intensity and shape of the pulse loading will 

be carried out. Some preliminary interpretation to the 
ultra low friction phenomenon will be given. 
 
2. Numerical studies of friction dynamic mechanism 
of a blocky rock system 
 
2.1 Numerical model 
 
Fig. 1 shows the numerical model for the dynamic 
friction analysis. The dimension of the block is 0.4 
m×0.2 m. The bottom of lower block is fixed. A 
dynamic load is applied to the top of the system. The 
material for the rock block is assumed elastic with the 
properties of: Density = 2650 kg/m3, Young’s Modulus 
= 80 GPa, Poisson’s Ratio = 0.3. The joint is obeying 
Coulomb’s slip law with three parameters of: Friction 
angle = 30°, Cohesion = 0 MPa, Tensile strength = 0 
MPa. 

 
Fig. 1 Numerical model for two block rock system 
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With only gravitational loading, the theoretical 

solution of the static frictional force between the two 
blocks is 

tan 1.224F mg Nφ= ⋅ =                                             
(1) 

For the MM modeling, firstly the gravitational 
loading is applied. The frictional force between the two 
blocks is depicted in Fig. 2. It can be found that the 
frictional force converges to the theoretical solution 
after the initial period of vibration. The pulse loading is 
applied 2 ms later than the gravitational loading when 
the gravity induced frictional force becomes stable. The 
parametric studies of loading duration, loading intensity, 
loading shape are carried out and discussed in the 
following three sections respectively. 
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Fig. 2 Gravity induced frictional force between  

two blocks 
 
2.2 Loading duration effect 
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Fig. 3 Loadings with fixed intensity of 2.0kN and 
various durations of 0.05ms, 0.1ms, 0.2ms, 0.3ms, 

0.4ms, 0.5ms, 0.6ms, 0.8ms, and 1.0ms 
In order to investigate the influence of the loading 
duration effect on the frictional force, several loadings 
with fixed loading intensity 2.0 kN and various loading 
durations of 0.05 ms, 0.1 ms, 0.2 ms, 0.3 ms, 0.4 ms, 
0.5 ms, 0.6 ms, 0.8 ms, and 1.0 ms (shown in Fig. 3) 
are applied to the top of the system. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4 Frictional force time histories of the model under 
the loading with various duration of: (a) 0.1ms; 

(b) 0.2ms; (c) 0.4ms; (d) 0.6ms; (e) 1.0ms 
 

The frictional forces of several cases are shown in 
Fig. 4. It can be found that the frictional force vibrates 
around the static frictional force. The minimum 
frictional force, which is also the critical force to move 
the top block in the horizontal direction, will be lower 
than the static frictional force. In other words, 
numerical results indicates that it will become easier to 
move the first block when a pulse loading applied to the 
top of the blocky rock system. 

The relationship between the minimum frictional 
force and the loading duration is plotted in Fig. 5. The 
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minimum frictional force appears when the loading 
duration is 0.2 ms. 
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Fig. 5 Relationship between minimum frictional force 

and loading duration 
 

The natural frequency of the two block system can 
be derived based on a simplified two degrees of 
freedom (DOFs) mass-spring model shown in Fig. 6.  

 

 
 

Fig. 6 Simplified model for the two block system 
 

The governing equation is 
1 1

2 2

0 2
0

0
v vm k k
v vm k k

−⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

                       

(2) 
where 

2650 0.4 0.2 1 212m V kgρ= ⋅ = × × × =  
10

11(8 10 ) 0.4 1 1.6 10 /
0.2

EAk N m
l

× × ×
= = = ×  

Then, 
2

2

2
0

k m k
k k m
ω

ω
− −

=
− −

                                           

(3) 
Lastly, we get the first natural frequency as 

1 16978.7 /rad sω =                                                     
(4)  

The frequency of the loading with duration of 0.2 
ms is 15708.0 rad/s, which is very close to the natural 
frequency of the two block system. So, we can 
conclude that the pulse loading will be most effective to 
reduce the frictional force only when its loading 
frequency is around the natural frequency of the blocky 
rock system.  
 
 
 
 
 

2.3 Loading intensity effect 
 
In order to investigate the loading intensity effect on the 
frictional force, a series of loadings with fixed duration 
of 0.2 ms and various intensities of 0.5 kN, 1.0 kN, 1.5 
kN, 2.0 kN, 2.2 kN, 2.4 kN, and 2.45 kN (shown in Fig. 
7) are applied to the two block system. The frictional 
forces for several cases are plotted in Fig. 8. The 
relationship between minimum frictional force and 
loading intensity is depicted in Fig. 9. Numerical results 
indicate that the minimum frictional force decreases 
with the loading intensity linearly. In other words, the 
loading intensity favors the reduction of frictional force. 
Larger loading intensity will lead to lower frictional 
force. 

 
Fig. 7 Loadings with fixed duration of 0.2 ms and 
various peaks of 0.5 kN, 1.0 kN, 1.5 kN, 2.0 kN,  

2.2 kN, 2.4 kN, and 2.45 kN 

 
(a) 

 
(b) 

 
(c) 

m 
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(d) 

Fig. 8 Frictional forces under dynamic loadings with 
fixed duration of 0.2 ms and various peaks of: (a) 0.5 

kN; (b) 1.5 kN; (c) 2.2 kN; (d) 2.45 kN 

 
Fig. 9 Relationship between minimum frictional force 

and loading intensity 
2.3 Loading shape effect 
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(c) 

Fig. 10 Loadings with three different loading shapes: (a) 
triangular loading; (b) half0sinusoidal loading; (c) 

rectangular loading 

 
In order to investigate the loading shape effect, the 
loadings with three loading shapes (shown in Fig. 10), 
namely triangular loading, half-sinusoidal loading, and 
rectangular loading are applied to the top of the two 
block system.  
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(a) 

 
(b) 

 
(c) 

Fig. 11 Frictional forces between the two blocks under 
three loadings with various loading shapes: 

 (a) triangular loading; (b) half-sinusoidal loading;  
(c) rectangular loading 

 
The corresponding frictional forces are plotted in 

Fig. 11. The minimum frictional force from the 
triangular loading is the highest, while that from the 
rectangular loading is the lowest. The minimum 
frictional force from half-sine loading is between them. 
This difference may be due to the different energy 
involved in each loading.  
 
3. Discussions and conclusions 
 
The dynamic friction mechanism of a blocky rock 
system is numerical investigated using a two block 
system model. With only gravitational loading, the 
frictional force in the lateral direction between two 
blocks is a constant. The critical force, the lowest force 
to move the top block, will also be a constant equal to 
the frictional force. However, when a pulse loading is 
applied to the top of the system, vibration of the block 

224



 

system will be observed, which leads to the vibration of 
the frictional force around the static frictional force. 
The minimum frictional force, which is also the critical 
force to move the top block, will be lower than the 
static frictional force. It means that it becomes easier to 
move the top block in the lateral direction. This is the 
ultra low friction phenomenon. This phenomenon is 
due to the pulse loading induced blocky rock system 
vibration. Parametric studies of loading duration, 
loading intensity, and loading shape effect are carried 
out. Numerical results demonstrate that the pulse 
loading is most effective to reduce the frictional force 
only when its loading frequency is around the natural 
frequency of the blocky system. Loading intensity 
favors the reduction of frictional force. Larger loading 
intensity will lead to lower minimum frictional force. 
Loading shape also has some influences on the 
frictional force, which may be due to different energy 
involved in each loading.  
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Numerical Manifold Method (NMM) is first applied to fluid-solid interaction analysis in this 

paper. Based on rectangular mathematical meshes and simplex integration, high-order NMM 

equations are presented for two-dimensional fluid-solid interaction harmonic analysis, 

concerning inviscid, irrotational, incompressible potential flow and undamped structures. 

Known value of fluid pressure is introduced via Lagrange multiplier method. It is also proposed 

that cover of analytical series is applied to simulate infinite fluid field, which can greatly 

decrease unknowns to be solved. Given examples of computing frequencies and harmonic 

responses prove the validity and high efficiency of the approach, suggesting that NMM is very 

suitable for combination of numerical solutions and analytical solutions.  

Keywords: High-order numerical manifold method; Fluid-solid interaction; Combination of 

numerical solutions and analytical solutions 

 
1. Introduction 
 
Based on mathematical manifold of modern 
mathematics, numerical manifold method (NMM) 
was proposed by Shi (1992). NMM is capable of 
solving continuum and discontinuum problems and 
has a bright future in computation mechanics. 
In NMM, the entire material volume is divided into 
many finite covers overlapped each other which are 
also named physical covers. They are formed by two 
independent cover systems: one is mathematical 
mesh defining only the fine or rough approximations; 
the other is physical mesh defining the boundaries of 
the material volume and the interfaces of different 
material zones. On each cover, an independent local 
cover function is defined, which can be constants, 
polynomials or other series (including series of 
analytical solution). These functions are connected 
together to form a global function on the entire 
material volume by means of weighted average via 
weight functions. The common part of these covers is 
named manifold element whose shape can be 
assumed arbitrarily. Element matrices are usually 
calculated exactly by means of simplex integration. 
By now, researches on NMM are almost about solid 
structures. Readers can refer to Wang et al (2003) 

and Li et al (2004). This paper applies NMM to 
fluid-solid interaction (coupling) analysis. It is 
preliminary considered that NMM has following 
advantages in the new region: 
(1) By virtue of the independence of mathematical 
meshes from physical meshes, it is not requested that 
mathematical meshes should strictly satisfy the 
geometric boundaries of structures and fluid field, so 
element subdivision is convenient to be carried out. 
(2) Benefited from the property of p-version, 
computational precision can be improved by adding 
number of series terms of the local cover functions 
without subdividing mathematical meshes. 
(3) In some special area of fluid field, such as infinite 
field, we can use analytical series as cover functions 
to improve computational efficiency because number 
of unknowns to be solved is greatly reduced. 
We shall make some remarks on (3). As we all know, 
for infinite field problems or singular point problems, 
classical approach of using analytical series 
converges much quickly than numerical approach, 
but it is limited to the domains of regular shape and 
simple boundary conditions. Then people have the 
idea of combination of numerical solutions and 
analytical solutions: numerical approach is used in 
domains of complicated shape, while in some regions, 
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such as infinite field, analytical solutions can be 
adopted. However, a new difficulty is encountered: 
because the types of the unknowns are different (the 
unknowns of numerical solutions are field freedoms, 
but the unknowns of analytical solutions are series 
coefficients), it is not easy to deal with the 
compatibility problem on their interface. For 
example, Huang (1988) computed frequencies of a 
dam and water interaction system involving a regular 
infinite fluid field, using finite element method (FEM) 
to simulate near field and a series solution to 
represent the far infinite field. Although the method 
was more effective than pure FEM, the procedure 
was very complicated: a local variational principle 
was introduced, and a functional was derived to 
satisfy both governing equations and all boundary 
conditions (including the compatibility of the FEM 
freedoms and the series coefficients on their 
interface). Now we can solve this problem 
conveniently by NMM in the way that covers of 
numerical solutions and cover of analytical solutions 
are linked together simply by means of weight 
functions.  
In this paper, high-order NMM equations are 
presented for two-dimensional fluid-solid interaction 
harmonic analysis. Preliminary research is also done 
on using cover of analytical solution to simulate 
infinite fluid field. 
 
2. Governing equations and boundary conditions  

  Fig. 1: Fluid-solid interaction system. 
 
A fluid-solid coupling system is shown in Fig.1, in 
which, solid structure A is an undumped elastic body, 
and fluid field Ω  is inviscid, irrotational, 
incompressible. m, ρ  are mass density of solid and 

fluid, respectively. 
Governing equation of fluid pressure p is  

02 =∇ p   in Ω .                          (1) 

Boundary conditions are:  
0=p  on free surface FS , (gravitational wave is 

neglected); 

0=
∂
∂
n
p  on fixed boundary BS  and infinite 

boundary RS ; 

..
nu

n
p ρ−=
∂
∂  on fluid-solid interface IS  ( nu  is 

normal displacement of the structure on it), reflecting 
coupling action of structure and fluid. 
FEM expression of the coupling vibration system is 
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in which, [ ]D  is displacement vector of the structure; 
[ ]P  is pressure vector of the fluid field; }{ 0F  is 

dynamic vector loading on the structure (not 
including fluid pressure); }{ 0Q  is known exciting 

vector or given boundary moving vector in fluid field; 
[ ]sM  and [ ]sK  are mass matrix and stiffness matrix 
of the structure, respectively; [ ]H  is fluid matrix 
and [ ]G  is coupling matrix. Expression of all these 
matrices can be seen in Huang (1998). 
Now we discuss the harmonic vibration of the system. 

Let tiefF ω}{}{ 00 = , tieqQ ω}{}{ 00 = , tiepP ω}{}{ = ,

tiedD ω}{}{ =  ( ω denotes the circular frequency of 
the system, 1i −= ), then we have  
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In the case of free vibration, let }0{}{}{ 00 == qf and 
eliminate }{p , we obtain the equation for modal 

analysis  

[ ] [ ] [ ]( )( ){ } { }02 =+− dMMK wss ω               (4) 

in which [ ] [ ] [ ] [ ]GHGM T
w

1−= ρ  is called added mass. 

 
3. Expressions in manifold method 
3.1 Description of displacement and fluid pressure  
 
At present, FEM meshes are often employed to 
define finite covers of NMM. All elements connected 

228



 

with any FEM node form a mathematical cover. The 
FEM shape function is the weight function here. A 
rectangular mathematical mesh with its four covers is 
shown in Fig.2, whose weight function is 

( )( )00 11
4
1 ηε ++=iw                         (5) 

with εεε i=0 , ηηη i=0  in which ),( ii ηε  and 

),( ηε  are local coordinates of each node and any 
point in the mesh, respectively,  i =1,2,3,4. 

Fig. 2: A rectangular mathematical mesh and four 
covers. 

 
The polynomial series is in most common use as 
local cover functions. Computational accuracy is 
improved when terms and order of the series increase. 
In two dimensions, polynomials are given as xn-kyk in 
which k is repeated from 0 to n order. The total 
number of terms is m=(1+n)(n+2)/2. For example, 0 
to 2 order polynomial cover functions are combined 
to  
{t}={1  x  y  x2  xy  y2 }.                    
Matrices of displacement and fluid pressure in a 
rectangular mesh are 

[Ts]=[Ts1  Ts2  Ts3  Ts4],                        

[Tw]=[Tw1  Tw2  Tw3  Tw4],                 (6) 
respectively, where Tsi, Twi are covers of i-th node as 
[Tsi]=[Ti1  Ti2  ...  Tim]s, [Twi]=[Ti1  Ti2  ... Tim]w, 

with ⎥
⎦

⎤
⎢
⎣

⎡
=

)(0
0)(

][
jt

jt
wT iij  for displacement field, and 

)(][ jtwT iij =  for fluid field ( i=1,2,3,4, j=1, ...,m).        

}]{[ )(e
s dT

v
u

=
⎭
⎬
⎫

⎩
⎨
⎧ and }]{[ )(e

w pTp =  represent 

displacement and fluid pressure in the element, 
respectively,  where }{ )(ed , }{ )(ep  are unknowns 

(coefficients of polynomial series). 
 

3.2 System equations in the form of manifold 
method 
 
With respect to manifold method using in this paper, 
only description of physical field is different from 
FEM. Thus, we can use the same system Eqs. (2) to 

(4). Element stiffness matrix ][ )(e
sK  and mass 

matrix ][ e
sM  for the structure in NMM can be 

referred to Shi (1992) or Su et al (2005a). Sub-matrix 
of ][ )(eH  for fluid element is 

[ ] [ ] [ ] [ ] [ ]
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in which i,j=1,2,3,4. Expression of the coupling 
matrix will be given later on. 
 
3.3 Introduction of known boundary conditions 
 
Hard springs are used to introduce fixed boundary 
conditions on structure (Shi, 1992). We shall discuss 
how to introduce the known boundary conditions to 
matrix [H] in fluid field, that is, 0=p  on free 

surface FS . 

In NMM, pre-process is simplified because 
mathematical meshes need not satisfy physical 
boundaries strictly. However, known freedom can not 
be eliminated directly as what is usually done in 
FEM. One approach is using the third boundary 

condition of Laplace equation, 0)( =−−
∂
∂

app
n
p β  

(on qΓ ), to simulate the first condition 0=− app  

(on pΓ ), ( ap  and 
−
q  are known, β  is a 

coefficient). That is, app =  when ∞→β . This is 

called penalty function method, similar to the hard 
spring of the solid. However, artificial large number 
β  will have a bad effect on the inversion of [H], 
resulting in an unture frequency computed by Eq. (4). 
So Lagrange multiplier method is used in this paper. 
Define functional as 
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in which IRBqFp SSSS ++=Γ=Γ , , λ  is the 

Lagrange multiplier. After applying variation to 
Eq.(8), governing equation of Eq.(1) and all 
boundary conditions are all satisfied automatically 
due to the arbitrary of pδ  and δλ , and we get  

n
p
∂
∂

−=λ . Now substituting 
n
p
∂
∂

−=λ  into Eq. (8), we 

obtain a new functional 
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Variations of this functional lead to a matrix form 

[ ]{ } { } { }21 qqpH +=                         (10) 

in which [ ] ][][ 0 pHHH += , ][ 0H  is calculated by Eq. 

(7), 
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3.4 Coupling matrix [ ]G   
 
On fluid-solid interface IS  shown in Fig. 1, xn  

and yn  are direction cosines of the outward normal 

n, and ..
nu

n
pq ρ−=
∂
∂

=
− . In the element linked to the 

interface, according to Eq. (13) we have 
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Then we obtain the element coupling matrix 
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Simplex integration is used in the integration of the 
above equations, including one and two dimensional 
simplex. 

 
4. Analytical solution cover of infinite fluid field 

Fig. 3: Fluid field including an infinite domain of 
equal depth, rectangles are manifold meshes of 2Ω . 

 
Fluid field Ω  shown in Fig.3, including an infinite 
domain of equal depth h, is divided into three 
parts, 321 Ω+Ω+Ω=Ω , which are domain 1Ω (x<x0) 
for numerical solutions, transition domain 2Ω  
(x0<x<x1), and domain 3Ω  (x>x1) for analytical 

solution, respectively. In 3Ω , analytical solution for 
Laplace equation is  

∑ −= −−

n
n

x
n yyeAyxp n )(cos),( 0αα ,              (16) 

in which, 
h

n
n 2

)12( πα −
= , n=1,2,..., nA  are 

unknowns to be solved. It is easy to check that Eq. 
(16) satisfies the governing equation and all the 
boundary conditions in 3Ω . Thus, after variations all 
integrals in Eq. (9) are equal to zero and can be 
ignored in 3Ω . At the same time, we still adopt 

numerical solutions based on polynomial cover 
functions in 1Ω . 
We shall discuss the treatment of the transition 
domain 2Ω  (rectangular meshes of 2Ω  are shown 
in Fig.3). Two schemes are considered in this paper: 
One is the traditional four covers shown in Fig.2, in 
which numerical covers on the 1,2 nodes, while 
analytical covers on 3,4 nodes, and weight functions 
are the same as Eq.(5); The other is three covers 
shown in Fig.4 where the third cover represents 
analytical series, and the weight function w3 

becomes )1(
2
1

3 ξ+=w .                                 

Then the three covers in the element are 
[T]=[T1  T2  T3] ,                            
where, T1,T2 are the same as those in Eq. (6), while 
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∑ −== −−

n
n

x
n yyewApwT n )(cos 0333 αα .          (17) 

Fig. 4: Three covers in a rectangular mathematical 
mesh. 
 
Computation shows that these two schemes achieve 
very close results. However, the three covers scheme 
is more reasonable theoretically and can save 
computation amount. 
Because there is not formula of simplex integration 
for Eq. (17) by now, numerical integration is 
performed. In addition, the value of the 

function xne α−  goes little when x goes large, leading 

to bad condition of the matrix when solving the 
equations. So we rewrite Eq. (16) as 

∑ −= −−−

n
n

xx
n yyeAyxp n )(cos),( 0

)( 0 αα            (18) 

 
5. Examples 
 
We select the example in Huang (1988), concerning a 
coupling system of a cantilever and fluid shown in 
Fig.5. The cantilever beam has a width of 1m. The 

length of the beam is the same as the depth of the 
fluid field h=10m. Young’s modulus E of solid is 
3 × 106 kN/m2, Poisson’s ratio u is 0.2. Density of 
solid m is 20, 10, 5, 3.33 times of the density of 
fluid ρ (=0.1kN/m3), respectively. Rectangles in the 
figure are manifold meshes. One can see that the 
meshes do not agree with the boundaries of the 
structure or the fluid. For example, the meshes of the 
first column comprise solid and fluid material. Fluid 
field is discretized to meshes at a distance of 30m 
from the beam in x direction. Via trial calculation, it 
is considered that the fluid field has been discretized 
far enough. 

Fig. 5: Fluid-beam interaction system and NMM 
meshes. 
 
5.1 Compute base frequency of the system 
 
We apply one order polynomial cover functions to 
the structure to improve the precision of the 
displacements, and only 0 order to the fluid to 
consider the added mass. Tab.1 shows the results. It 
can be seen that frequencies (with or without fluid) 
are very exact. 

 

Tab.1 Base frequency of the beam   (rad/s) 
Wet frequency 1ω  frequency of the structure without fluid 

01ω 011 /ωω  

mh /ρ  
numerical solutions 

numerical 
solutions 

analytical 
solutions* 

relative error 
(%) 

numerical 
solutions 

series 
solutions*  

relative 
error (%)

0.5 1.175 1.238 1.243 -0.40 0.949 0.947 0.21 
1.0 1.585 1.750 1.758 -0.46 0.906 0.900 0.66 
2.0 2.063 2.475 2.486 -0.44 0.834 0.825 1.09 
3.0 2.352 3.032 3.045 -0.43 0.776 0.766 1.31 
*series solutions in Huang (1988) adopt 6 terms of series 
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5.2 Harmonic responses analysis 
 
Compute harmonic responses according to Eq. (3). 
A horizontal exciting force acts on the top of the 
beam, with the amplitude of 10kN and frequency of 
10rad/s. Density of solid m = 1kN/m3. One order 
polynomial cover functions are used in structure 
and fluid field. The deformation of the beam is the 
same as the results with FEM. Maximum 
displacement on the top is 0.0345m, close to 
0.0364m of FEM. Via trial calculation, number of 
finite elements is at least 240, while number of 
manifold meshes is only 48. It can be seen that high 

order NMM with less number of meshes can obtain the 
same precision as FEM with much more elements.  
 
5.3 Compute frequency considering analytical 
solution 
 
Shown in Fig.6, Discretized domain for numerical 
solutions of the fluid field is at a distance of only 3m 
from the beam in x direction. Considering analytical 
cover to simulate the infinite field, we obtain wet 
frequency 1ω  listed in Tab.2, in which some results 
show the effect of length xh of the transition domain 

and number of terms n for analytical series

Fig. 6: NMM meshes considering analytical 
solutions. 
 
Tab.2 Wet frequency 1ω  (considering analytical 

cover)  
mhx 2=  mhx 4=  mhx 10=  mh /ρ

 n=5 n=20 n=5 n=20 n=5 n=20 

0.5 1.172 1.165 1.174 1.175 1.178 1.177 

1.0 1.579 1.560 1.584 1.584 1.592 1.590 

2.0 2.049 2.008 2.060 2.061 2.078 2.074 

3.0 2.331 2.271 2.347 2.350 2.374 2.369 

xh  is the length of the transition domain, and n is 

the number of terms of analytical series 
 

It can be seen from the table that, when considering 
analytical cover, wet frequency 1ω  are close to 

those in Tab.1. For example, when 3/ =mhρ , 1ω  is 
between 2.271 and 2.374, 011 /ωω is between 

0.7490 and 0.7830. Comparing with the series 
solution result 0.7661, relative errors are under 
2.2%. Moreover, 5 terms of analytical series can 
give an enough precision, meaning a very quick 
covergency. The length of the transition domain hx 
affects the results to some extent. It can not be very 

small or very large. When mhx 4= , almost the same 

results as Tab.1 are obtained.  
 

6. Conclusions 
 
In this paper, some preliminary researches have been 
done on fluid-solid interaction analysis using numerical 
manifold method. Further work should be done 
considering conditions of free surface, compressibility 
of fluid, damp of structure and so on, or transient 
dynamic analysis. 
This paper makes a significant attempt to combine 
numerical solutions and analytic solutions together 
using NMM. The good results suggest that NMM 
should be very suitable for the combination, much easier 
than usual approaches. Although the research is 
preliminary, the method can be spread to many 
occasions where classical analytical solutions can play a 
great role.  
With respect to nonlinear analysis concerning large 
displacement of structure and large disturbance of fluid, 
arbitrary shape of manifold elements presents a 
possibility of using fixed mathematical meshes to 
calculate large deformation of the structure (Su et al, 
2005b). Thus, solid and fluid can be conveniently solved 
with the same fixed background meshes to settle the 
problem of incompatibility on the interface of solid and 
fluid. Therefore, it is very important to study NMM in 
the region of fluid-solid coupling analysis. 

 
The authors are grateful to Dr. Shi for his valuable 
suggestions on the research.  
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1. Introduction 
 
The structure failures such as slope instability, 
ship lock and dam failure have brought great 
losses to human life and properties. Numerical 
methods not only can simulate discontinuities 
such as joints and cracks, the large deformation 
after the failure of rock body but also can 
simulate the failure of intact rock mass, which 
cannot be solved well by methods based on 
discontinuous mechanics such as DEM and DDA 
or methods based on continuous mechanics such 
as FEM. Numerical Manifold Method (NMM) is 
a numerical method proposed by Shi (1997) in 
the early 1990s. This method takes the 
advantages of continuous method and 
discontinuous method. By using the concept of 
‘Cover’ and two sets of grid (math grid and 
physical grid), not only can it calculate the 
deformation and stress inside blocks as Finite 
Element Method do, but also can it simulate 
block systems as the DDA does. Zhang and 
co-authors (Zhang et al 2001; Zhang & Peng 
2002; Zhang et al 2002) greatly extended the 

original NMM proposed by Shi,  and adopted 
the second-order Manifold Method, and the 
fracture mechanics algorithm is added to trace 
the propagation of cracks. The extended NMM 
not only can simulate multi-cracks propagation 
but can simulate the process of tension and 
shearing failure, as well as coupling analysis of 
seepage and  
deformation. By the extended Manifold method, 
the bend-tension failure, toppling failure and the 
crack initiation and propagation in Wuqiangxi 
ship lock with the rise of water level are 
simulated in this paper.  
 
2. Failure simulation by Numerical Manifold 
Method 
 
Structures mainly have two kinds of failure types: 
the first one is failure along weak parts, for 
example, joints, cracks, weak interlayer and 
construction joints of concrete structures etc; the 
second is the failure within continuum. To 
simulate the first type of failure, the numerical 
method should not only correctly calculate the 
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contact stress, simulate the opening and sliding of 
interfaces but also should simulate the failure 
process when the interfaces have tensile strength 
or shear strength. To simulate the second type of 
failure, the numerical method should be able to 
simulate the cracks’ occurrence and propagation 
and the shear failure of continuum. The extended 
NMM in this paper can simulate both of the two 
types of failure. 

Assume that the failure of existing 
discontinuities follows Mohr-Coulomb’s law. 

Taking nσ as the normal stress and sτ  as the 

shearing stress on a joint, the failure criterion is 
defined as bellow: Mohr-Coulomb criterion is 
adopted for the case that cracks propagate along 
existing failure faces. Namely, 

For tensile failure,         tn σσ =   

and shear failure: cs =τ 0n＞σ and tn σσ ＜                               

       ϕστ tanns −= c     0n＜σ      (1) 

where nσ —normal stress (positive for tension), 

sτ —tangential stress, φ —friction angle, 

tσ —tensile strength, and c—cohesion. 

The occurrence of new cracks in continuum 
follows tensile strength criterion and the crack’s 
propagation follows the stress intensity factor 
criterion of fracture mechanics theory. When the 
stress intensity factor of the crack tip reaches the 
limit value, the crack begins to propagate. This 
limit value is called fracture toughness. 

In this paper, the field of displacement and stress 
are firstly calculated by the second-order Manifold 
Method program developed by Zhang; then a 
subdomain around the crack tip is cut out and the 
circumambient displacements calculated by NMM 
along the edge cut out are taken as the displacement 
boundary of the submodel. By using the singular 
basic solution which takes the singularity of the 
crack tip into account and the Kelvin basic solution, 
the integral equation of the boundary is constructed. 

Then the stress intensity factor is calculated by the 
Boundary Element Method. Finally, it judges 
whether the crack will propagate or not and the 
direction of propagation, if cracks occur, by max 
circumferential stress criterion (Chen 1984). The 

crack growth angle  0θ  is determined by the 

equation below:  
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The crack criteria of crack composed by I-  Ⅱ

based on max circumferential stress criterion is: 
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0θ is the angle between crack propagation 

direction and the initial crack. 
The combination of second-order Manifold 

Method and Boundary Element Method can 
correctly calculate the stress intensity factor of 
crack tip. When the crack occurs and propagates, 
the mesh need not be plotted again, it only needs 
changing the corresponding physical boundary 
and mathematics cover. The method can be 
referred in the paper by Zhang et al (2001). 
 
3. The coupling action of seepage and 
deformation 
 
Coupling problem is inevitable in the simulation of 
structural failure induced by water pressure. When 
cracks occur in the structure subject to the action of 
water pressure, water comes in and seepage 
pressure is developed. The seepage pressure may 
lead to the opening of crack or even further 
propagation. And the change in width and length of 
cracks will affect the seepage field in reverse. 
Therefore, it can be concluded that there is a 
coupled interaction between seepage and 
deformation in structures including cracks, fissures 
and joints.  
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For a crack segment i shown in Fig.1, node j and 
node k are its two ends, Li , its length, bi, its 

width, iQ , the discharge through the crack , 

jH and kH are water heads at two ends.  

According to Darcy’s law, we have 

  i
i

i
ii

i b
L
HKQ iα

α )(Δ=                   (5)                                                      

where iK  is the hydraulic conductivity， iHΔ , 

the difference in water head between two ends 

and iα , an exponent. Hydraulic conductivity 

iK  and exponent iα , are related to crack 

surface roughness and flow pattern. 
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Fig. 1  Joint seepage model 
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Assuming balance of flow at all nodes, the 
assembly of all the crack elements of mesh yields 
the following governing equation with nodal 
water heads as unknowns: 

G·H＝C                           (7)                                                          
where C is the vector of known nodal discharges 
or water heads.  

All the water heads of nodes at certain time 
can be obtained by solving Equation 7. Hence the 
seepage pressure in cracks can be determined. 
The equivalent nodal loads of element i due to 
the seepage pressure in cracks can be written as 
in Fig.2: 

Hk

Hj

x

y

i

1 24

3

56
α

o Hk

Hj

x

y

i

1 24

3

56
α

o

 
Fig.2  Block with water pressure 
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where L is the side length subject to water 

pressure, α, included angle between side 1+kk  

and the axis x. 
The nodal water heads in Eq. 7 are the same as 

those in Eq. 8. Water heads and openings of 
cracks interact with each other, as expressed in 
Eqs.7 and 8. Iteration method is employed to find 
the solution.  

 
4. Simulation of flexural failure of rock slope 
 
The flexural failure often happen on the front of 
slope, and the rock masses occur the cantilever 
bend accompanying with the tension cracks. The 
cracks propagate and parallel to the aspect at last. 
The model in Fig.3 is used to simulate one simple 
example of flexural failure. The calculation 
parameters are ： specific weight P=24.5kN/m3, 
elastic modulus E=1000MPa ， Poisson ‘s ratio 
ν=0.2，Penalty=9800000kN/ m，the maximal time 
step t=0.01s. The slope only bears weight△  in the 
first time, and along with the increasing of load at a 
fixed rate, we can see that the top block occur the 
flexural failure. The fig.4 shows the failure state in 
the four different times. 
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Fig.3 Flexural failure model 

 

 （a）t=0.0s           （b）t=0.51s 

 
 （c）t=0.83s         （d）t=1.54s 

Fig.4 Flexural failure of rock slope 
 

5. Simulation of toppling failure of slope without 
rock bridges  
 
Toppling is usually occurs in the layered rock 
slope whose structural characteristic is that the 
bedding plane of the rock and the slope has the 
same strike but opposite dips. If there is one or 
many sets of joints along the slope cutting the 
rock bedding into discrete blocks, the possibility 
of toppling failure is even higher. 

Taking the test mode introduced in the paper by 
Wang et al (1996) as an example, NMM is used to 
simulate the failure mode of the model. The model 
is 64cm high, 93cm long and has totally eleven 
blocks, see Figure 5. The joint plane is 
perpendicular to the bedding plane, the elastic 
modulus of the block is 620MPa and the specific 
weight is 10.0kN/m3, and the cohesion between all 
the contact planes is 0. The failure mode of the 
blocks is calculated by NMM with various friction 

anglesφ , and the results can be referred in Fig. 6. 
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Fig.5. Toppling failure model 

 
o19=φ  

 
o31=φ  

  
o37=φ  

Fig 6. Failure modes with differentφ  values of the 

bedding plane 
From the deformation mode of the slope with 

different φ  we can see that:  

(1) According to the results of simulation: If 

o26≤φ , that is, when φ is less than the dip 

angle of the slope, all blocks cannot keep stable.  
(2) From the simulation process of NMM, it can 
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be clearly seen that when φα tantan ≤ , 

Goodman's classification (Goodman & Bray 1976) 
of blocks on the slope into groups of stability, 
toppling, and sliding is reasonable. As the 
parameters change, the quantities of blocks in 
different groups are different, and the toppling 
blocks can also slide. Between blocks, it is plane 
contact rather than point contact. This contact mode, 
being different from the Goodman's mode that only 
considers the point contact, is in better accordance 
with practical requirements.  
 
6. Simulation of toppling failure of slope 
considering the fracture of rock bridges  
 
In the paper by Wang et al (1996), a centrifuge 
test was conducted on a slope model, and in this 
paper we simulate the slope failure by NMM 
using the same model and parameters. The 
computation model is shown in Fig.7, which is 
made of plaster with some joints incised in the 
model. The height of the model is 67.5 cm and 
the total length of the section is 71.65 cm. The 
angle of reverse dip of bedding plane is 60o; the 
dip angle of joints is 60o; the angle between 
bedding plane and joint is 60o and the 
connectivity of joints paralleling to the direction 
of the slope is 0.70. For parameters of blocks: 
elastic modulus is 3102× MPa; the tensile 
strength is 1.58MPa. For parameters of joints: the 
friction angle is 37o; the tensile strength is 
0.01MPa and cohesion is 0.065MPa. According 
to results of tests, the fracture toughness KIC is 
0.5MPa/m1/2. To simulate the loading mode of 
centrifuge, vertically downward body force is 
gradually added at a fixed rate. 

Fig.8 shows the deformation states under the 
different centrifugal forces. From which it can be 
seen that during the failure of the slope, some 
joints and cracks develop first; then the blocks on 
the top begin to tilt and move downward; the 
blocks at the toe of the slope bend around the toe 
of the slope and the other blocks topple gradually 
and the rotation angle increases as the increase of 
load. Finally, the cracks and joints coalesce and 

form a transverse failure plane which is a zigzag 
line in profile.  

 
Fig. 7 Computation model of manifold method 

  

 
(a)F=99.85g 

 
  (b)F=127.21g 

 
(c)F=127.225g 
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    (d)F=127.24g 

   
(e)F=127.266g 

 
(f) F=127.275g 

Fig.8 Slope failure model of with different 
centrifugal forces by Manifold Method 

 
7. Hydraulic fracture simulation of the 
Wuqiangxi ship lock 
 
As shown in Fig.9, the Wuqiangxi ship lock was 
put into operation in April 1995 and large 

deformation occurred at the lock crest in January 
2001 when the water level reached 107.7m. After 
the ship lock was emptied, a great number of 
longitudinal cracks with spacing of about 0.8-1.0m 
were found on the chamber floor. The floor and the 
side walls were split apart at the corners. There 
were also cracks in some sections of the lock 
chamber. The extended manifold method is used to 
simulate the ship lock failure. The properties of 
concrete listed in Table 1.   

Fig. 10 shows the crack patterns in the lock 
chamber with different water levels. The stress at 
the corner of lock chamber reaches the tensile 
strength of concrete and cracks emerge when 
water level rises to 105m. When the water level 
reaches 107.0m, cracks in the floor are nearly 
coalescent. When water level reaches 108.0m, a 
lot of coalescent cracks are found in the floor and 
cracks at the corner of chamber floor develop 
even downwards to the filling and emptied 
culvert or deep into the concrete. Cracks at the 
corner of the large gallery in the middle run 
downwards into the foundation. Due to the 
pulling out action of reinforcing bars after major 
cracks occur, many minor cracks are found 
bending to major ones at the bottom of the large 
gallery. In the meantime cracks are also found at 
the corner of two small galleries. When it reaches 
the maximum design water level of 110.5m, 
cracks at two corners of the left small gallery 
extend deep into concrete. Two semicircular 
through failure faces are formed at two sides of 
the chamber floor. They are due to the pulling out 
action of reinforcing bars and water seepage 
pressure
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Fig. 9  The profile of the Wuqiangxi Ship Lock 

 
Table.1  The properties of concrete 

 
Elastic 

modulus
（GPa） 

Tensile 
strength
（MPa） 

Poisson’s ratio
Specific 
weight 

（T/m3） 

Intensity 
(MPa) 

Fracture 
toughness(

mMPa⋅ ) 
25~29 2.0~2.5 0.17 2.45 2.0 2.0 

 

       
(a)H=105.0m               (b)H=106.0m                       (c)H=107.0m 

       

(d)H=108.0m              (e)H=109.0m                        (f)H=110.5m 
Fig. 10  The failure Pattern considering seepage pressure 

 
 
8. Conclusions 
 

The extended second-order Manifold Method not 
only can simulate the failure mechanism of 
structures from continuous to discontinuities, and 
the contact and contact stresses, but also can trace 

crack propagation successfully. The cracked section 
can be automatically searched and pre-setting of 
cracked section is not necessary, therefore it can 
accurately simulate the failure mechanism of highly 
discontinuous structures.  

From several case studies in this paper, it can be 
seen that NMM is objective and reasonable in 
simulating the failure mode of structure. It can solve 
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problems that existing numerical methods cannot 
solve. NMM has advantages and broad application 
prospects in the simulating of the structure failure.  
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Application of key block theory and DDA to the stability analysis of Underground 
Powerhouseof Jinping Hydropower Station I 
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The underground powerhouse of Jinping Hydropower StationⅠis large in scale and deeply 
buried in green marble and green schist with high in situ stress. The surrounding rock mainly 
belongs to III 1 and it has 4 groups of fissures and 2 sets of faults. The severely disked rock 
cores and rib-spallings in drilling hole indicate the plant is in high in situ stress area. In this 
paper, the key block theory and DDA are adopted for the stability analysis of the underground 
powerhouse of Jinping Hydropower StationⅠ. At first, the key blocks and its influence to the 
stability of the cavity are identified by key block theory. Then the displacement and the damage 
condition are examined by DDA. The calculation results show that the key blocks mainly lay 
on the roof in huge volume. They are dense in upstream side in small volume and bare in 
downstream side, and there just a few lying on the middle of the downstream wall. After 
excavation the roof collapsed seriously, and the wall on both sides damaged, especially in the 
downstream. After installation of bolt reinforcement, the number of falling blocks reduced 
significantly. The result shows that applying key block theory and DDA together is helpful to 
understand the damage mechanism of the underground rock wall and check the validity of the 
reinforcement. 
 
Keywords: Key Block Theory; DDA; Underground powerhouse; High stress; Stability analysis. 

 
 
1. Introduction 
Rock is a natural material, the wide range of internal 
fissures and joints make it discontinuous. Since 
discontinuity is of great importance to the 
deformation and stress of the rock, the normal 
method, such as FEM, which deals with the rock as a 
continuous material has many limitations. In order to 
consider the influence of discontinuous structure to 
the stability of rock masses, DDA and key block 
theory are used more and more widely in engineering 
project. The key block theory can take water pressure 
into account (Huang et al 2001). It was used in 
underground cavity and high slope with random 
fissures and orientated faults (Zhang et al 2004). 
Recently, some new achievements of key blocks in 
these years were introduced, such as assuming the 
max length of the block and anchorage calculation. 
The key block theory was applied into the stability 
analysis of the whole underground cavities (Mao et 
al 2005). DDA has been used in underground project 
and slope project, considering the influence of 
excavation, blasting, reinforcement and underground 
water (Liu & Li 2004; Wu et al 2003; Wu et al 2006; 
Liu & Kong 2007). In this paper, the author firstly 
presents the advantages of these two methods, then 
apply them together in the stability analysis of the 
underground powerhouse of Jinping Hydropower 
Station I, and finally show that the key block theory 
and DDA complement each other and it is helpful to 
understand the damage mechanism of the underground 
rock wall and check the validity of the reinforcement. 
 
2 Principles  
1)DDA (Discontinuous Deformation Analysis) was 
put forward by Shi and Goodman in 1985. It’s a 
numerical analysis method using discontinuous 
medium model and dynamic and static mechanics to 
reflect rock’s large displacement and deformation. 

Allowing for the complication of rock mass, DDA 
considered the block system which is divided by 
structure plane as analysis element. And according to 
minimum potential energy principle, DDA takes the 
generalized displacement (rigid, rotation and 
deformation) as its primary unknowns to establish a 
balance equation, adding stiffness, quality and load 
submatrix et.al. to the equation for coefficient 
solution, and it adopts penalty function to ensure 
there is no inserting and stretching during moving 
and deforming. It adds or deletes springs at the 
contact point in iterations according to entering 
judgment. 
2) The key block theory is a method perfected by Shi 
and Goodman in 1985. It firstly uses Stereographic 
Projection to find types of removable blocks, if the 
Joint Pyramids (the one formed by fissures) fully 
falls in the Space Pyramids (the space formed by free 
faces opposite rock ) of the intersected rock wall, 
they are called removable block. And then use the 
limitation balance way to check whether they can 
move by residual sliding force in mechanics, if so 
they are called key blocks, the one that will move 
firstly if there is not enough prevention and its 
movement will make the blocks nearby move 
immediately which may do damage to the rock wall. 
3) The advantage of combining key block theory and 
DDA :① in the manifestation term, 3D-DDA is 
immature and 2D-DDA is only a plane model, it can 
not tell the three dimensional situation of the 
underground cavity, it’s weak in understanding the 
distribution of the firstly-fall blocks, and their 
influences to the stability of the whole cavity. While 
key block theory is a 3D method, it focuses on 
finding key blocks on the excavation surface and it 
can show the three dimensional relationship or 
plane-graph of key blocks and the free faces.②In 
theoretical terms ,although on the surface key blocks 
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theory uses pure geometric way to analyze the 
stability of rocks basing on stereographic projection , 
it can only consider the shear strength and rigid 
movement of the structure, while DDA use dynamic 
and static mechanics to reflect the displacement and 
deformation of structure, Yet they both do research 
in block system under skin. Since both of them have 
a strict theory, if we combined them together, each 
result can perfect another one, we can not only know 
the distribution of the firstly-fall blocks and their 
damage to the cavity, but also the movement 
character of the cavity section, this is helpful to 
understand the destroy law of the underground cavity 
and check the validity of the enforcement design. 
 
3 The stability analysis of the rock wall in Jinping 
Hydropower Station Ⅰ   
 
3.1 The geology survey 
 
Jinping Hydropower StationⅠwhich has 6 
generators with a total installed capacity of 3.6 
million kilowatts lies on the main stream of Yalong 
river, where Muli and Yanyuan, (two counties of 
Liangshan Yi nation-Sichuan Autonomous 
Prefecture) bound up. This underground powerhouse 
is one of the biggest underground projects under 
construction, with a horizon line of N65 °W, a length 
of 276.99 m, a width of 25.60 m and a height of 
68.80 m. It is located in green marble and green 
schist, mainly covering T2-3Ｚ2(2\3\4) strata in rock III 1. 
The disked rock cores and sloughing in drilling holes 
and exploratory holes indicate that the Power Station 
lies in high stress area. The σ1 of rock masses is 
normally 25~30MPa, and 35.7~40.4MPa at most，
whose direction is between N36°W and N67°W, and 
N51°W at average, and it is nearly perpendicular to 
the bank strike, with a dig varying from 3° to 57°. 
The advantage direction of  festival fractures: ① 
N40~60 ° E, NW ∠ 15~30 °, parallel fissures, 
whose general space is 1~3 m, and 2~4m in extend, 
some especial extension length is 10m, mainly 
straight, rough and closed; ② N50~70 ° E, SE  ∠
50~80 °  whose general space is 1~3 m, extending 
far, straightly, and roughly;③N50~70°W, NE (SW) 
∠ 80~90°, generally the space is large and rolls 
roughly and closely, some especial ones puff about 
0.5~3cm wide, and others partly extruded to belts 
whose band space is 0.1~0.5m filled with a small 
amount of debris and mud with a width of 3~5m and 
a extension of 15~50m;④N50~70°E, SE∠ 50~80° 
partly extruded to belts , its characters is essentially 
similar to Group 3 . 
 
3.2 Block system mesh generation 
 
When applying key block theory and DDA to the 
deformation of underground rock wall, at first it 
should get the block system by Monte Carlo 
according to the statistics of the fissures in the 
underground cavity. The data of the fissures is 

showed in Table.1. Since the third group and the 
forth group both have two dip directions, the four 
groups fissures are divided to four combinations, 
showed in Table 2 . 
 

Table 1  Parameters of 4 groups fissures in the 
underground powerhouse 

Serial 
num 

Dip 
direction Dip

Average 
spacing 

/m 

Bridge 
/m 

Random
（0~0.5）

1 320° 25° 2 4 0.2 

2 150° 65° 2 10 0.2 

3 30°/210° 85° 5 35 0.35 

4 60°/240° 85° 5 35 0.35 

 
Table 2 the relationship of fissures combination 

combination the relationship of fissures combination 
1 1、2、3-1、4-1 
2 1、2、3-2、4-1 
3 1、2、3-1、4-2 
4 1、2、3-2、4-2 

P.S. X-1 is the fissure in NE dip direction of NO.X group; 
X-2 is the fissure in SW dip direction of NO.X group. 

 
3.3 coefficients and initial stresses 
 
1) The material properties for rocks: allowing for 
nearly all blocks belong to green marble and green 
schist in T2-3Ｚ2(2\3\4) strata, so consider all the 
blocks as one material.  Elastic modulus is 30Gpa; 
Poisson’s ratio is 0.25; and unit weight of 
rock2700Kg/m3. 
2) The material properties for all discontinuities: 
Friction angle of all discontinuities is 25°; Cohesion 
of all discontinuities is 0; Tensile strength of all 
discontinuities is 0. 
3) Entering coefficient: 0.0005mm.Elastic modulus 
of spring is 100Gpa. 
4) Initial stress: consider the initial stress state of 
measured point P340 as the initial stress state of the 
underground powerhouse, σ1 is 34.35 MPa, with a 
direction of 114°，and its dip is 49°; σ2 is 15.06 MPa, 
with a direction of 14°, and its dip is 9°; σ3 is 10.09 
MPa, with a direction is 227°, and its dip is 40°. 
 
3.4 the result of key block theory 
 

Firstly use key block theory to display the 
distribution of the firstly-fall blocks. By comparing 
the block volume, the contract area, the safety factor 
of the four fissures combinations it preliminary 
confirm the combination 3 to be the most dangerous 
situation, whose volume of the key blocks is the 
largest, the contract area is spread wide and the 
average length of the block can get to12m at most. In 
this paper only take combination as the key block 
theory example.  

After analyzed by stereographic projection and 
limit balance calculation and kick off blocks in high 
safety factor or in gentle slope angle, or with a 
narrow body, Finally, the block 1100，1010，1111 are 
considered as key blocks, marked by rectangle in 
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Fig.1. More information is told in table 3.  
 In Fig.1 1010 is the serial number of the joint 

pyramid (the sense of the serial number referred to 
the reference [10]), 0.67is the unit residual sliding 
force (dimensionless) under self-weight.  

 
Fig.1 sliding coefficients and positions of 

blocks 
 

Table 3 the information of key blocks 
Serial 
num 

Sliding 
direction 

Residual 
sliding 
force 

Safety 
factor 

Block 
Volume

/m3 

Contact 
area 
/m2 

1100 

Slide 
following  

3rd and 4th 
fissure 
planes 

0.40 0.58 6114.44 2246.85

1010 The same as 
1100 0.67 0.25 4198.8 984.6 

1111 Fall off 1 0 6214.1 513 

The relationships between key blocks and the 
underground powerhouse are showed in Fig.2  

       
  a. (1100)        b. (1010)        c. (1111) 

Fig.2 the relationship between the key block 
and the underground cavity 

Block 1110 is located in the downstream side of the 
plant; showed in Fig.2 (a), although its safety factor 
is higher than block 1010 and 1111, yet it has a big 
volume, once it moves it will cause enormous 
damage. 
Block 1010 is located in the upstream side of the 
plant, showed in Fig.2 (b), with a smaller volume and 
a smaller contact area, but the average block length is 
nearly 4m long and its safety factor is low, so it may 
slide off when there is some blasting vibration  
Block 1111 is located in the roof, showed in Fig.2(c), 
with a big volume and a zero safety factor, so when 
the whole border excavated to expose without instant 
preventions this block will fall off. 

 
Fig.3 the expansion plane of key blocks  

After the key blocks are identified and a series of 
sketches of the relationship between the single key 
block and the plant are drawn, in further step the 
relationship between whole key blocks and the plant 
can be obtained by the expansion plane. Fig.3 shows 
that the key blocks in the roof are more and larger 
than them in other sides, and their movements will 
cause falling down of a big area of removable blocks 
in the plant roof. The key blocks in the upstream side 
are in a small volume but a big amount, which 
increases the destroying probability of the upstream 
side and needs more reinforcement; key blocks in 
downstream side are less than the upstream but much 
bigger, once it moves, it may cause a big area of 
removable blocks move in downstream side. 
 
3.5 Simulation result by DDA 
 
The distribution of the firstly-fall blocks is 
determined by the key block theory in last section, 
and in this section the damage situation of the four 
fissure combinations by DDA are compared, as 
shown in Fig. 4. On one hand, in order to verify the 
correctness of the most dangerous situation found by 
the key block theory; on the other hand, in order to 
understand the damage progress of the cavity. 
Combination1 is shown in Fig.4 (a). The roof moves 
firstly and falls off together. In the upstream side, at 
first the upper ones move and then push the lower 
ones. In the downstream side, the lower ones move 
and tract the upper ones to move. 
Combination2 is shown in Fig.4 (b). The upstream 
side moves firstly. The upper ones in upstream side 
push the lower ones, and then make it dump and 
crack down. In the roof, the ones near the 
downstream side move firstly. 
Combination3 is shown in Fig.4(c). The upstream 
side moves firstly. The upper ones in upstream side 
push out the triangle block at first, and then the upper 
ones dump following the triangle block. In the roof, 
the ones near the downstream side move firstly, and 
the whole roof collapse together. In the downstream 
side, the lower ones firstly move and tract the upper 
ones to move.  
Combination4 is shown in Fig.4 (d), the downstream 
side moves firstly. The lower ones in downstream 
slide at first and then take the upper ones move 
together. The ones in the roof collapse together, 
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which vacate space for new collapsing. The upper ones in the upstream side pushed the lower ones.  

      
a. combination 1         b.cimbination 2 

      
c. combination 3           d. combination 4 
Fig.4 Damage pattern under different fissure 
combination  
From the result of DDA, it’s easy to see that in all the 
combinations the roof collapses. Furthermore, except 
in combination 2, the falling blocks in the roof is 
more than 50% of total. The damage barely occurs in 
the downstream wall, once it takes place, it usually 
the middle of the wall fail firstly, the blocks above 
may then foolows the movement; and the blocks in 
the upstream side is that the upper blocks move 
firstly, and push the blocks in the middle side, and 
sometimes the blocks in the middle move firstly. 
After comparing the DDA result of the four 
combinations, it is shown that combination 3 is the 
most dangerous situation whose roof collapse as a 
whole, and both walls destroyed, especially the 
downstream side. This result verifies the conclusion 
from the results by the key block theory, that the key 
blocks in the roof are more and larger than those in 
other sides, and their movement will cause more 
blocks in the roof fall down; The key blocks in the 
upstream side are in a small volume but in big 
amount, which increases the damage probability of 
the upstream side and needs more reinforcement; key 
blocks in downstream side are less than the upstream 
but much larger, once it moves, it may cause a big 
area of removable blocks in downstream side. 
The locations of the measurement points and the 
dimension of the model are showed in Fig. 5, and the 
monitoring data are showed in fig.6 .From Fig. 6 it’s 
easy to find out that when the block moves (before 
fly freely), its horizontal displacement is close to 
zero, smaller than the vertical one, which proves the 
main damage form is dropping not horizontal 
extrusion. 
 

  
Fig.5 the layout of the measured points 

 

 
Fig.6 the displacements of the measured points 

by DDA  
 
3.5 Effect of bolt reinforcement 
 

 
Fig.7 the plan of bolt in the powerhouse 

7m and 6m normal blots and 9m prestressed bolt 
with a prestressing force of 120 KN are used for the 
reinforcement with the arrangement shown in Fig. 7. 
All bolts are 32mm in diameter. The bolts are 
numbered in clockwise direction. 

 
Fig.8 the result of combination 3 after 

anchorage 
Fig.8 proves that after reinforcement the stability of 
the underground house improves, and there is only a 
few and small blocks without arched falling down. 
Among the 63 blots, the forces in only 9 blots are 
larger than 70kN, and they are in the roof and 
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downstream side. The largest one is 170kN, in the 
middle of the downstream side. And the forces in 
other blots are all under 50kN. The bolt tensions are 
all under the allowable limits, which shows bolt 
reinforcement is an effective way.  
 
4. Conclusions 
 
1) In this paper, the author firstly present the 
advantages of these two methods, then apply them 
together in the stability analysis of the underground 
powerhouse of Jinping Hydropower Station I. it use 
the key block theory’s 3D advantage to fill up 
2D-DDA’s shortcomings; visa verse, it use 2D-DDA 
to get the displacement in order to offset key block 
theory’s defect that it’s only a rigid geometric way. 
2)The result of key block theory showed that the 
blocks in the roof always firstly fall down if it is 
exposed without instant preventions, since its big 
volume and spread contact area. The blocks in 
upstream side is spread wide than those in 
downstream, so the upstream side destroyed more 
easily than the downstream side, but since the ones in 
downstream side is large in volume and contact areas, 
once slide occurs it may do a worse damage .And the 
result of DDA also find out the combination 3 is the 
most dangerous one, with the whole roof collapsing, 
and both walls damaged, especially the downstream 
side. This verifies the results by the key block theory, 
3) After the bolt reinforcement is installed, the 
number of falling blocks reduced significantly, only a 
few blocks without bolt reinforcement fall. And all 
the tension stresses in bolts are under the limits 
which show the anchorage is valid. 
4)However, this paper is only a basic discussion 
without taking many influencing factors into account, 
such as the two sets of faults, the character of the 
crack filling, and the interaction of underground 
cavities excavation and so on. The model will be 
modified further to consider all the factors. 
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Deformable objects simulation and animation, which is widely used in CAD/CAM, surgery 
simulation and computer games, has been an issue of computer graphics. A mechanical model 
uniformly including continuous constrains such as gravity and discontinuous constrains 
resulting from collisions with other objects has not been developed. It becomes a bottleneck of 
precise analysis following Newton’s Law. This paper develops a general mechanical model 
making use of the advantage of numerical manifold method. This model solves a global 
equation including continuous and discontinuous constrains and can compute collisions 
efficiently and accurately for deformable objects. 

Keywords: Numerical manifold method; Continuous deformation; Contact; Finite covers 
 
 

1. Introduction 
 
Deformable objects seem to have gained increasing 
interest during recent years. Objects in real life all seem 
to be deformable at some level. Deformable objects 
simulation has important applications in biomedical 
engineering, surgery simulation and computer games. 
Because CPUs and GPUs today are both advanced and 
powerful, it is possible to simulate and animate 
deformable objects interactively.  
In 1987 Terzopoulos et al. presented a continuum 
model for simulating elastic curves, surfaces, and solids, 
which pioneered the field of computer graphics by 
introducing physically-based simulation. In the 
following year three models have been developed 
including finite difference, finite element and mass-
and-spring lattice models. Now FEM has been a 
significant method for flexible simulation. In 1989 
Gourret et al. advocated the FEM for simulating a 
human hand grasping a ball, and in 1992 Chen et al. 
used the FEM for muscle simulation. An implicit finite 
element method was used to simulate elastic solids in 
contact (Hirota 2001). They used this method for 
simulating the muscles in a bending knee. Significant 
effort has been placed into accelerating FEM 
calculations including recent approaches that 
precompute and cache various quantities (Mulla 2001), 
modal analysis (Chen 1992), and approximations to 
local rotations (Debunne 2000).Contact handling of 
non-penetrating elastic objects is the key in simulation. 
In traditional methods, contact forces are often defined 
as discontinuous functions of deformation, which leads 
to poor convergence characteristics. This problem 
becomes especially serious in areas with complicated 
self-contact. This paper will present a new modal called 
“numerical manifold method” for the dynamics of 

deformable objects that covers contacts and continuous 
deformation as well as free motion. 
 
2. Numerical Manifold Method 
 
Based upon mathematical manifold, this numerical 
manifold method is a newly developed general 
numerical method. This method computes the 
movements and deformations of structures or materials. 
The meshes of the numerical manifold method are 
finite covers. 
These physical meshes provide the means to consider 
both jointed and continuous materials, and even 
different material phases (i. e. solid, gas or liquid).  A 
brief listing of a few of the advantages of the manifold 
method follows: (1) free surface and flexible 
boundaries; (2) analysis not hindered by boundary 
conditions; (3) free form elements (any shape); (4) 
conservation of energy; (5) obeys Coulomb’s law; (6) 
very small to very large deformation; (7) static and 
dynamics possible; (8) analytically correct; (9) 
continuous and discontinuous analysis (Gen-hua Shi 
1997). 
 
2.1 Finite covers 
 
The mathematical mesh is chosen by users, consists of 
finite overlapping covers which occupy the whole 
material volume. The conventional meshes and regions, 
such as regular grids, finite element meshes or 
convergent regions of series, can be transferred to finite 
mathematical covers. 
The physical mesh includes the boundaries of the 
material volume, joints, blocks and the interfaces of 
different material zones. The physical mesh represents 
material conditions which can not be chosen artificially. 
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The physical cover system is formed by both 
mathematical covers and physical meshes. It is the 
materials contained in the mathematical cover. 
We will introduce finite covers formed by finite 
element nodes and physical boundaries. In fig. 1, the 
mathematical cover V1 of node 1 has only one element 
1 2 3. The mathematical cover V2 of node 2 has three 
elements1 2 3, 2 4 5 and 2 5 3, and the mathematical 
covers V3 and V5 of node 2 and node 3 also have three 
elements including the node. The nodes 4 and 6 have 
one element. The physical cover of V1 has only one 11. 
The mathematical covers V2, V3, V4, V5, V6 are 
divided into two physical covers by the boundaries and 
joins.   
 
        

 
 Fig. 1: The finite covers of numerical manifold method 
 
 
Under manifold method, the “elements” and “nodes” 
here are the extensions of their FEM counterparts. The 
elements of the manifold are the common regions or the 
intersections of the physical covers. The nodes of the 
manifold method are the physical covers. Using the 
new nodes and elements, the joints can open and slide, 
the blocks can move away and the continuous area of 
the material body can still be connected. In fig. 1, the 
only joint inside the material divided completely the 
material to two disconnected parts, and any manifold 
element divided by this joint have completely different 
nodes or physical cover numbers. Therefore the two 
manifold elements are free to move independently (Shi 
1997). 
 
2.2 Contact theory 
 
Manifold method processes the contact problem in the 
material boundaries or joints. The forces between two 
contact faces obey Coulomb’s law, and no tension and 
no penetration can be allowed between blocks. When 
the penetration between two blocks happens, we can 
add very stiff springs or penalties to lock the movement 
in one or two directions. The global equations have to 

be solved repeatedly while selecting the lock or 
constraining positions. Using this method, even a block 
system with tension and penetration can be corrected by 
the selection of lock positions a few times. The contact 
force can be computed precisely in manifold method.  
 
3. The deformation simulation 
 
Our main idea is to simulate flexible objects without 
imposing restrictions on shape or geometrical 
environment using the manifold method. Essentially 
speaking, we use the extended finite element method 
which makes use of finite cover approach compared 
with the traditional finite element method, because we 
use the finite element mesh as the mathematical covers. 
Using the finite cover systems, continuous or 
discontinuous materials can be computed in a 
mathematically consistent manner. Furthermore, the 
model has the theory processing collision detection and 
contact response. 
The first step is the generation of physical mesh. We 
just viewed the boundaries and joints of all geometric 
models in the environment as the physical mesh. We 
can found geometric models using the tools such as 
3Dsmax, Maya and AutoCAD. Then, we use finite 
element mesh as mathematical cover. An often-used 
tessellation for surfaces is a triangular mesh. The 
corresponding tessellation for volumes is a tetrahedral 
mesh. 
 
3.1 Elastic objects with Manifold Method Models  
 
Manifold method like finite element method is a 
procedure for obtaining numerical approximations to 
the solution of boundary value problems. The general 
idea is to formulate a deformation of a solid as formula 
(1), 

                  ku f=                                                   (1) 
where k is a symmetric, positive definite, stiffness 
matrix, u  is a vector of nodal displacements, and f  is 
a vector of external node forces. The goal is to solve for 
the value of u. To simplify the problem, the entire 
computational domain is replaced by the union of 
disjoint subdomains. These subdomains are the 
intersections of the physical covers. In computer 
animations, the Linear Elastostatics Model is typically 
used. It uses the following assumptions: (1) The 
deformations involved are small, in which case the 
relationship between stress and strain are well 
approximated by a linear model; (2) Only elastic 
materials are considered, thereby ignoring the viscous 
stress; (3) Only isotropic materials are considered, 
which implies that elasticity matrix can be described by 
two parameters only. (4) The object is in static 
equilibrium, which allows us to ignore inertia forces. 
The relationship between stress and strain, is given by 
formula (2), 
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where E  is young’s modulus. Young’s modulus is a 
measure of instretchability, such that a large Young’s 
modulus implies that the material is hard to stretch. The 
coefficient -1<ν ≤ 1/2 is the Poisson’s ratio, and it is 
only in rare instances negative. The Poisson’s ratio 
describes how much a material contracts in the 
direction transverse to stretching. Typical values are 1/2 
for incompressible materials such as rubber, 0.33 for 
steel, and almost 0 for rock. 
 
3.2 Contact handling 
 
The complexity of a contact problem depends on the 
type of contact. There are two distinct classes of 
problems - the two-body contact problem and the self-
contact problem. In most engineering applications, the 
deformations of those nearly-rigid parts are not large 
enough to cause self-contact unless the purpose of the 
simulation is to analyze the destruction of the 
mechanical structures. Therefore, many algorithms are 
designed exclusively for two-body problems. In 
biomechanical applications, on the other hand, the 
building materials are often very flexible; hence there 
are more chances for self-contact. 
Manifold method applies stiff springs on contacts. 
There are normal stiff springs and shear stiff springs. If 
friction coefficient is not zero, a pair of shear sliding 
forces is added possibly. There are three modes: open, 
sliding, lock for every contact. In open mode, the 
component of contact Rn along the normal of the edge 
is tensile, and no lock or stiff springs are applied. In 
sliding mode, the normal component Rn of the contact 
force is compressive and the shear component of Rs of 
the contact force along the reference line is large 
enough to cause sliding, and a stiff spring normal to the 
reference line is applied to allow the sliding to take 
place along the angle of the reference edge. Here, a pair 
of frictions is applied in the sliding direction. In close 
mode, the normal component Rn of the contact force is 
compressive and the shear component of Rs of the 
contact force along the reference line is less than that 
from Coloumb’s law. Here, the contact point is fixed or 
both directions are locked and there is no sliding 
allowed. Within each time step, the global equations 
have to be solved repeatedly while selecting the lock 
positions. This process is called open-close iterations. 
We need judge the mode to add or remove stiff springs 
when each step iteration starts. The computation of 
manifold method follows time steps. The closed contact 
points should go to next time step and find new 

representing contacts. The closed contacts of the 
previous time step will be transferred to the next time 
step, if the contacts are found in the same contact 
position. 
 
4. Examples 
 
In order to illustrate the manifold method technique, we 
simulate several examples using simple isotropic linear 
elasticity to calculate the stress. The results are shown 
in fig. 2, fig. 3 and fig. 4. In fig. 2, the material of the 
elastic object is young’s modulus E  5 and the 
Poisson’s ratio ν  0.24. The one end of the object is 
fixed and the other end is added a point load to. The 
object is unfolded following the time steps. The process 
includes the contact between the same object. In fig. 3, 
a rigid ball collapses into a square consisting of several 
little elastic blocks, and there are joints in the right 
green block. The material of the elastic blocks is 
young’s modulus E  150 and the Poisson’s ratio ν  
0.24. Otherwise, we add a rightward point load to the 
right green block. The process includes contacts 
between different blocks and contacts between joints of 
the same block. In fig. 4, a plastic sphere is pulled 
through rigid running gears. The material of the sphere 
is young’s modulus E  0.5 and the Poisson’s ratio ν  
0.5. These figures show that the contact is non-
penetrable and this method is fit for the deformable 
objects with joints and the contacts between the 
deformable objects. 

 

 
(a) 

(b) 

 
(c) 
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(d) 

Fig. 2: A elastic object is being unfolded. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3: A ball collapses into a square consisting of 
several little elastic blocks, and there are joints in the 
right green block. 
 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 4: A plastic sphere is pulled through rigid running 
gears. 
 
5. Conclusions 
 
Numerical manifold method introduces a new idea “the 
finite cover system” to handle contacts between 
surfaces. Continuous and discontinuous deformation 
can be computed in a mathematically consistent manner 
using the finite cover system. Furthermore, FEM for 
continua is a special case of this numerical manifold 
method. In the current development stage of numerical 
manifold method, by using finite cover approach, the 
extended finite element method can compute more 
flexible and visible deformation and movement. We 
have demonstrated this method for flexible objects 
simulation which can cover contacts and continuous 
deformation as well as free motion. We have implicated 
the simple isotropic linear elasticity in two dimensions. 
The method presented unifies the continuous and 

discontinuous deformation, and have the advantages at 
contact problem. 
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Study on geometrical identification of stochastic block in block theory 

ZHANG QIHUA and WU AIQING 
Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River 

Scientific Research Institute, Wuhan 430010, P. R. China 
 

Since the block theory was brought forward by Goodman and Shi in 1985, it has been 
becoming an important tool in rock engineering stability analysis as more and more 
researches and applications were performed. As we all know that discontinuities in 
rock mass develop statistically, that is, their geometrical parameters like trace length, 
spacing and orientation are probabilistic. So the blocks cut by discontinuities must be 
stochastic, that means the shapes, sizes and locations of blocks are stochastic. The 
paper put forward the methodology for geometrical analysis of stochastic block based 
on three-dimensional simulating network of discontinuities by using geometry, 
statistics and computer knowledge. Moreover, on the basis of the results of geometrical 
analysis, the statistic properties of size, average size and overlaying ratio (of blocks’ 
planes area in surface to excavation surface area) of stochastic blocks can be analyzed, 
in order to recognize the features of stochastic blocks, estimate quantitatively 
harmfulness of key blocks and help to design support. These researches will be 
introduced later. 

The paper first summarizes systematically the researches of simulating network of 
discontinuities, tree cutting, primary loops finding, and analysis of the probable 
maximum region of blocks. Then, with the proposed approach of combination of 
intersections of joint traces, the realistic 3-D stochastic blocks are identified. The 
systematic processes of stochastic block identification are sketched. Some other 
problems are studied such as searching the blocks located in the edge of slope surfaces 
or the roof of tunnel, so as to form the approach of geometrical identification of 
stochastic block in slope and tunnel. Case studies indicate the geometrical analysis of 
stochastic block can meet the needs of practical engineering analysis pretty well and 
give some meaningful results.  
 

Keywords: Block theory; Stochastic block; Simulating network of discontinuities; 

Geometrical identification     
 

1 Introduction 
Rock masses are composed of rock blocks and 

discontinuities generally. Discontinuities including 
faults, joints, bedding planes, fractures, etc, divide 
rock mass into blocks with various sizes and shapes. 
Discontinuities may vary greatly in different rock 
masses. Rock deformation and failure often result 
from opening, closing and shearing of discontinuities, 
which control rock mass stability hereby. 

The block theory was proposed by Goodman and 
Shi (1985). Classical block theory assumes 
discontinuities as infinite plane, blocks cut by 
discontinuities and excavation surface(s) as rigid 
bodies, analyzes the removability of block by using 
geometry and topology methods, determines the 

probable unstable block or key block by incorporating 
comparatively simple mechanics analysis, and studies 
support forces of key blocks. Block theory has been 
studied and applied widely in rock engineering from 
then on.     

Discontinuities can be grouped into major and 
minor discontinuities simply. The geometrical and 
mechanical properties of the former, such as faults, 
are deterministic. The geometrical and mechanical 
properties of the latter represented by joints, are 
probabilistic generally. The research work in this 
paper focuses on joints. The terms of joints and 
discontinuities may be used arbitrarily in the paper. 
The locations, sizes, shapes of block cut by joints 
must be probabilistic accordingly. So stochastic block 
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analysis has been proposed and studied (Shi & 
Goodman 1989; Wu et al 1991; Hatzor 1993; 
Goodman 1995; Shi 2002; Zhang 2004).  

From literature review, we can describe stochastic 
block analysis by the following steps. (1) modeling 
3-D probabilistic network of discontinuities by using 
Monte Carlo and computer technologies, based on 
geostatistic analysis of orientations, trace lengths, 
spacings of discontinuities; (2) identifying the 
stochastic blocks from 3-D modeling network of 
discontinuities by using block theory and geometry; (3) 
calculating blocks’ volume, area of blocks’ planes and 
overlaying ratio of blocks’ faces area to excavation 
face area, analyzing them statistically so as to 
recognize the inherent geometric features, estimate 
quantitatively hazardousness of stochastic blocks and 
help to design rock block support (Zhang 2004). In the 
paper, the methodology of identifying of stochastic 
blocks from modeling network are introduced and 
discussed in detail, which is called as geometrical 
analysis of stochastic block. On the other hand, 
analyzing block size, average size and overlaying ratio 
statistically will be introduced by the other paper, 
which is called as statistical analysis of stochastic 
block correspondingly. 

Polar equal-area plot, scanline (Priest & Hudson 
1976, 1981) and sampling windows (Kulatilake & Wu 
1984) were developed to infer statistic distribution 
models of orientations, trace lengths and spacings of 
discontinuities. Based on the statistic distributions, by 
employing Monte Carlo simulating methods, 
discontinuities network can be modeled (Wu et al 
1991; Zhang 2004; Kulatilake et al 1993). 

Based on modeling of discontinuities network, 
stochastic blocks can be identified. Some literatures 
identified stochastic blocks in 2-D. Shi & Goodman 
(1989), Wu et al (1991) and Shi (2002) identified 
stochastic blocks in 3-D with the processes of 
generating joint trace map, tree cutting, finding 
primary loops in the unrolled joint trace map, and 
delimiting maximum probable regions of blocks. So 
there was an implicit assumption that joints having 
traces in the excavation surfaces extend far enough so 
as to form block by their mutual intersections. 
However, maximum probable regions of blocks are 
not the same as the true 3-D blocks in fact, due to the 
finite extents of joints. All in all, the 3-D stochastic 
block identifying from modeling network of 
discontinuities should be studied further.  

The paper proposes an approach for identification 
of 3-D stochastic block based on the methods by Shi 

& Goodman (1989) and Wu et al (1991). A few case 
studies are illustrated with the new approach.  
 
2 Main procedures of geometrical analysis of 
stochastic block 

Processes of geometrical analysis of stochastic 
block are shown in Fig.1. The main analysis processes 
are discussed as follows. 
 
2.1 Statistic analysis of discontinuities geometrical 
parameters  

Some geostatistic methods and statistic 
distributions of orientations, extents and spacing of 
discontinuities are summarized briefly as follows in 
here. 

The shape of discontinuities is assumed as typical 
geometric figure before network modeling. Snow 
(1970), Baecher (1978) and Barton (1978) assumed 
the shape of discontinuities as circular or ellipse disk. 
Pan (1989) summarized some typical models of 
discontinuities shape. In general, circular disk is used 
in discontinuities network modeling for the sake of 
simplification, so does the present paper. 

Polar equal-area projection is usually used in 
statistic analysis of discontinuities orientations and 
clusters. Literatures showed hemispherical normal 
distribution, normal distribution or log-normal 
distribution are suitable to represent the statistic 
distributions of discontinuities orientations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig.1 Main procedures of geometrical analysis of 
stochastic block 

    

Joints network modeling by Monte-Carlo 

Statistic analysis of orientations, 
lengths, spacings and positions of 

Analyze the relationship of half-planes 
of joint traces and half-spaces of joints 

Analyze the intersection points between joint 
traces, or between joint traces and edges of 

Primary loops finding, including inner and outer 

Analyze the possibility of intersection of 
discontinuities and excavation face, form joints 

Tree cutting to eliminate the traces without or with 
only one intersection point recycle

Delimiting the maximum probable regions of 

Calculate the overlaying area, volume of block, 
etc, display in 3-D

Combine every 3 intersection points, analyze 
every combination can form a 3-D block or not 
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Scanline survey is used usually to analyze 
statistically discontinuity spacing. Research results 
showed the negative exponential distribution is most 
suitable for describing the statistic distribution of 
discontinuity spacing.  

Scanline and sampling windows are used often in 
statistic analysis of discontinuity trace length. 
Research results indicated both gamma and negative 
exponential distributions are suitable for describing 
the statistic distribution of trace length.  

Locations of discontinuities, i.e., the centers of 
circular disk fit uniform distribution. 

Since the discontinuities geometry pattern may 
vary statistically from one to another rock mass 
region, different homogeneous regions should be 
segmented, then statistic analysis of locations, 
orientations, trace lengths and spacings of 
discontinuities are performed in different 
homogeneous regions. 

 
2.2 Monte-Carlo modeling of 3-D discontinuities 
network  

3-D discontinuities network modeling can be 
carried out according to probabilistic distributions of 
geometric parameters of discontinuities, i.e., location, 
orientation, spacing and trace length. Discontinuities 
are assumed as circular disks located randomly in 3-D 
space. Every discontinuity is determined by a set of 
parameters: dip direction, dip, radius and coordinates 
of disk center. 

If the orientation of discontinuities is assumed to fit 
normal distributions, the maximum likelihood 
estimators of meanμ and varianceσ are: 

   ∑
=

=
n

i
iX

n 1
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2 )(1 μσ −= ∑
=

n

i
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n
       (1) 

Where, iX  is the observations (a sample) of 
random variable X which represents the dip and dip 
direction here. Variable X  can be obtained by 
solving equation (2): 
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Where, iθ  is the uniform random variable which can 
be obtained by computer; n  is integer and can be 
set as 36=n . 

Log-normal variable X  can be obtained by 
solving equation (3): 
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Where, the maximum likelihood estimators of μ and 
σ can be obtained by equation (4): 
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Negative exponential distribution is suitable for 
representing the distributions of spacings or trace 
lengths of discontinuities. Negative exponential 
variable can be obtained by solving equation (5) 
depending on a single parameter μ : 

iX θμ ln−=                (5) 
μ  is the mean of variable X  and can be estimated 
by iX  using equation (1).  

The mean of discontinuity radius jr  of the ith 
discontinuities set can be calculated by equation (6) 
as discontinuities assumed as circular disks:  

              π/2 ii lr =                 (6) 

Where, jl is the mean of trance length of the ith 
discontinuities set. 

Volumetric frequency of the ith discontinuities set 

iλ  can be expressed as follows (Wu 1993): 

        12 )2( −⋅⋅= iii rsπλ             (7) 

Where, is  is the mean of discontinuity spacing of 
the ith discontinuities set. 

If the volume of the considered slope or cavern is 
determined, then take a region big enough whose 
boundary is bigger than slope or cavern boundary as 
3~5 times mean trace length. In the region, the 
number of discontinuities N  is:  

       ∑
=

⋅=
m

j
jbVN

1

λ               (8) 

Where, bV  is the volume of the region; m  is the 
number of the discontinuity sets. 

Assuming the positions of the circular disks are 
represented by uniform distribution, we can determine 
the locations of the center of every discontinuity by 
employing Monte-Carlo simulation according to the 
discontinuities number N . 

Hereto, the 3-D geometric information of 
discontinuities is determined. With respect to the 
deterministic discontinuities such as faults, their 
information can be input directly to form 3-D 
modeling network of discontinuities. 

2.3 Joint trace of discontinuities 
According to statistic distributions of discontinuity 

geometric parameters and Monte-Carlo simulation, 
3-D network of discontinuities can be generated. 
Then, by judging every discontinuity disc intersect 
excavation surface(s) or not, if yes, it must have a 
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trace in excavation surface(s), so we can obtain the 
trace map of discontinuities. Fig.2 is the trace map of 
one simulating test of 3 joint sets. 

 
Fig.2 Joint traces in excavation surface 

 
2.4 Relations between half-plane of trace and 
half-space of joint 

In the block theory, joint pyramid is denoted by a 
string of binary digits. The number 0 defines the 
half-space above a plane, the number 1 defines the 
half-space below a plane. Thus number 110 denotes 
the joint pyramid which is simultaneously below 
plane 1, below plane 2 and above plane 3. Block is 
the intersection of joint pyramid and excavation 
plane.  

However, joint trace map is two dimensional 
relative to open face of typical direction, but the joint 
pyramid is three dimensional. In order to search a 
certain kind of block formed by the particular JP 
codes from the joint trace map, relations between 
half-plane of trace and half-space of joint has to be 
determined.   

Firstly, let us establish the local coordinate of a 
plane. As shown in Fig.3, X

r
, Y
r

, Z
r

 are the three 
axes of the global coordinate. Three axes 1A

r
, 2A
r

, 

3A
r

 of the local coordinate of a plane can be 
calculated by equations (9), (10), (11) (Zhang 2004):  

             3A
r

= F
r

                     (9) 

1A
r

= Z
r

× F
r

                 (10) 

2A
r

= 3A
r

× 1A
r

                          (11) 

Where, F
r

 is upward normal vector and can be 
calculated according to the inclination of the plane. 

{ }100=Z
r

. 
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A1

X

Y

F

 
 Fig.3 The relationship between global and local 

coordinate 
 

Then, the issue can be discussed. As shown in Fig.4, 

0P denotes excavation plane, 2A
r

denotes an axis of 
local coordinate of the excavation plane. iP  denotes 
a joint, inr  is its unit normal vector inclines upward. 
E1E2 is the joint trace in excavation plane. 

Within plane 0P , if 2Ani

rr
⋅ >0, the upper/lower 

half-plane of E1E2 is corresponding to the upper/lower 
half-space of iP . If 2Ani

rr
⋅ <0, the upper/lower 

half-plane of E1E2 is corresponding to the lower/upper 
half-space of iP . 

After establishing the relations above, the spaces of 
the joints which form block can be expressed by the 
half-planes of the corresponding joint traces. So block 
searching from the joint trace map becomes possible. 

Half-plane of joint trace can be signified by “trace 
direction” which can be defined by oriented segment 
of two vertexes of the trace. Within local coordinate 
system, trace direction is anticlockwise. In Fig.4, 

21EE  indicates upper half-plane, then 12 EE  
indicates the lower half-plane, with the equation 

21EE =- 12 EE . 

2

A2

E

E1

n
i

i0

 
Fig.4 Sketch of relations between half-plane of trace 

and half-space of joint 

2.5 Tree cutting, primary loops finding 
Tree cutting and primary loops finding were 

discussed by Shi (1989). Now the meaning of tree 
cutting and primary loops finding is introduced 
briefly in here. 
The purpose of tree cutting: before stochastic blocks 

identifying, eliminate the traces without or with only 
one intersection point, analyze cyclically until traces 
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intersect with each other. 
Primary loops finding: start from an intersection 

(starting point), find the next adjacent point according 
to the sorting order of direction angles of every 
intersection connected with the starting point. Then 
take the next adjacent point as the starting point, find 
its next adjacent point. Iterate the processes until the 
loops are closed. During the loops finding, every trace 
segment is found back and forth twice, which means 
the directions of different loops in the same segment 
are reversed. 
There are 2 kinds of closed loops, inner loops with 

intersections connected anti-clockwise, and outer 
loops with intersections connected clockwise. Inner 
loops are smallest, which also named as basic loops, 
do not contain lines or closed loops. Outer loops are 
the biggest loops of contiguous region. Fig.5 shows 
the closed loops corresponding to Fig.2.  
 

A

C

I

D

E
G

K

JL

F

 
Fig.5 Closed loops  

2.6 Maximum probable regions of blocks 
Maximum probable regions of stochastic blocks 

can be identified through the closed loops. Along the 
outer loops, when “the segment direction” of adjacent 
intersections is identical to “joint trace direction”, this 
segment is deleted, then the other segments of the 
inner loop relative to this segment is set as the outer 
loop segment. This procedure has to be carried out for 
all outer loops and iterate until no more segment can 
be deleted. 

The maximum probable regions of stochastic 
blocks identified are shown as Fig.6. 

 
Fig.6 Probable maximum region of stochastic blocks  

2.7 3-D blocks identification 
Maximum probable regions of stochastic blocks are 

recognized in 2-D excavation face. But the joints are 
not always long enough to form the closed blocks in 
3-D. Maximum probable regions of stochastic blocks 
are not the same as real blocks occurrence as the 
joints are finite. 

Tetrahedron formed by three discontinuities and 
one free face is the most common style in practical 
engineering and easy to be studied. Blocks formed by 
more than three discontinuities (with free face) occur 
seldom and often overlap wholly or partially with the 
tetrahedron. So, analysis tetrahedron can meet the 
needs of most engineering applications.  

Stochastic blocks may locate within one free face, 
or in the edge or corner of free faces. The former 
means one free face engages in block cutting, the 
latter means two or more than two free faces do. Now 
the former is discussed, the later will be discussed 
subsequently. 

Since stochastic blocks may overlap together, a 
loop may belong to two or more than two different 
blocks, the analyses become difficult. 

The paper presents the approach named as 
intersections combination to identify the realistic 3-D 
blocks. Every three intersections which are within 
every probable maximum region of stochastic blocks 
are combined together. The combination may or may 
not be the three intersections of a realistic block in 
opening face. There are two ways to judge. One is as 
steps (1), (2), (3), (4) as follows, the other as steps (1), 
(4), (5). 

Step1: Analyze whether every combination of three 
intersections is in three traces and closed, so to get the 
closed triangle. 
  Step2: Order the intersections of every combination. 
As shown in Fig.7, the directions of segment 12, 23, 
31 after ordered are identical to the corresponding 
trace directions.  
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Step3: Analyze the rotation directions of intersections. 
Within local coordinate system, trace direction is 
anticlockwise by appointment, so the rotation 
direction of intersections of every combination is 
anti-clockwise also. From Fig.7 we know the left is 
correct and the right should be deleted. 

Step4: Judge whether the corresponding joints of 
every combination intersect and calculate the 
intersection point, judge whether the distance between 
the intersection point and every joint center is smaller 
than the radius of every joint. If yes, the combination 
can form a realistic block which is the target we 
search. 

Step5: Judge whether the intersection of joints is 
within the excavation space (within the rock mass). If 
yes, the combination is the target we search.     

Related to Fig.2, Fig.5 and Fig.6, the stochastic 
blocks searched are shown in Fig.8 and Fig.9. 

3

2

3

2

 

Fig.7 Rotation direction of intersections 

 
Fig.8 Stochastic blocks in excavation surface (2-D 

display)  

 
Fig.9 3-D stochastic blocks   

 

2.8 Blocks searching located in the edge  
 Some block is situated on the edge of slope or tunnel. 
Fig.10 is the traces map of two adjacent surfaces of a 
slope. There are 4 stochastic blocks after searched, as 
shown in Fig 11.    
 
 
 
 
 
 
 
 
 

Fig.10 Joint traces map in two excavation surfaces 
 
 
 
 
 
 
 
 
 
 

Fig.11 Stochastic blocks display (Including 4 blocks 
in the edge of two surfaces) 

 

2.9 Blocks searching in the roof of tunnel 

The searching procedure is omitted. The results 

are sketched with Fig.12 and Fig.13. 

 
Fig.12 Joint traces in roof of tunnel 

Free plane B 

Free plane A

Block 1 Block 2 Block 3 Block 4 
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Fig.13 Stochastic block in roof  

 

2.10 Computation of overlaying area of stochastic 

block 
Based on the results of geometrical analysis, the 

sizes, average sizes and overlaying area of stochastic 
blocks can be computed, in order to evaluate 
quantitatively the possible failure of blocks and thus 
to help in support design. 

Overlaying area is the area of face of stochastic 
block in free surface. Distribution of stochastic blocks 
in free surface is shown in Fig.14(d). Every triangle 
of different size is the face of stochastic block in free 
surface. Some stochastic blocks overlap, the bigger 
block embraces the smaller one (See Fig.9). The 
computation of overlaying area means to delimit the 
range of blocks in free face and compute it, so the 
area overlapped should not be computed repetitively. 

The inner loops which belong to the stochastic 
blocks are identified, and the area of all these loops is 
computed. According to the meaning of inner loops, 
inner loops are smallest and do not contain other 
closed loops, loops must not overlap, an inner loop 
situates either within one (or some) stochastic block(s) 
or not. Therefore, repetitive computation of area of 
stochastic blocks is not necessary when the overlap 
can be avoided. 

There are 31 stochastic blocks by computing inp 
Fig.14(d). By computation, the area of free face is 
900m2, the overlaying area of stochastic is 48.82m2, 
so the overlaying ratio is 5.42%. 

 

 

 

Fig.14 Overlay area of blocks in excavation surfaces 
(a) Joint traces; (b) closed loops; (c) Probable 
maximum regions; (d) stochastic blocks in excavation 
surfaces 

 

3 Case study 
One hydropower station is located in south China. 

The span of underground plant is 20.7m, the height 
and length of plant is simulated as 33m and 50m. The 
rock of plant region is dolerite. The geometrical 
parameters of joints in rock mass are shown in Tab.1. 
As the geological statistic analysis is not performed 
deeply enough, the variances of dip and dip direction 
are assumed as 2°, the other parameters are realistic. 
Dip and dip direction follow normal distribution, 
trace length and spacing follow exponential 
distribution.   

 
Tab.1 Geometrical parameters of joints in rock mass 

Dip(°) Dip 
direction(°) 

Trace 
length(m

) 

Spacing
(m) Joint 

set 
Mean varianc

e Mean varianc
e Mean Mean

① 53 2 202 2 6.5 3 

② 58 2 330 2 6 2 

③ 68 2 105 2 5 2.5 

  
 According to stereographic projection, JP 011 

may form block with excavation surface in upstream 
wall of underground plant. The results of stochastic 
block searching are shown in Fig.15 of one test of 
Monte-Carlo simulation. By calculation of this time 
simulation, the overlaying ratio is 15.8%. 

(a) (b)
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(e) 

Fig.15 Stochastic block searching in underground 
plant 

(a) Joint traces; (b) closed loops; (c) Probable 
maximum regions; (d) stochastic blocks in excavation 
surfaces; (e) Blocks shown in 3-D with OPENGL 

 
Different results of stochastic block searching, i.e., 

the locations, sizes and overlaying area, are obtained 
with different simulation sample of joint system. With 
the other simulation test, the results are shown in 
Fig.16~Fig.19, in which the same joints network are 
used to form different joint traces map and to find the 
stochastic blocks in different excavation surfaces. 

From Fig.16~Fig.19, we can find clearly that in the 
upstream wall, JP 011 forms blocks with excavation 
face, yet in the downstream wall, JP 100 does. In the 
left wall, JP 110 forms blocks with excavation face, 
yet in the right wall, JP 001 does. In the roof, JP 111 
forms blocks with excavation face, yet in the floor, JP 
000 does. This phenomenon is concerned a general 
proposition in block theory. Stochastic blocks in the 
upstream and downstream walls are much more 
numerous (developed) than in the left and right walls. 

The blocks in the left and right walls are much more 
slender than in the upstream and downstream walls.  

(a)                 (b)             (c) 
Fig.16 Stochastic blocks searched in the upstream and 

downstream walls of underground plant   
(a) Joint traces map (b) block 011 in the upstream 
wall (c) block 100 in the downstream wall 

 
(a)                (b)             (c) 

Fig.17 Stochastic blocks searched in the left and right 
walls 

(a) Joint traces map (b) block 110 in the left wall  
(c) block 001 in the right wall 

            (a)                  (b) 
Fig.18 Stochastic blocks searched in the roof   

(a) Joint traces map  (b) block 111 in the roof 

 
 Fig.19 Stochastic block searched in the floor  
(a) Joint traces map (b) block 000 in the floor 

So the blocks in the upstream and downstream 

(a)                            (b) 

(c)                            (d) 
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walls should be paid more attentions. Stereographic 
projection with no consideration of joint cohesion by 
Shi’s program shows the blocks in the upstream wall 
are key blocks, the sliding mode is single-face. So the 
systematic anchor is necessary in the upstream wall. 
While the blocks in the downstream are more stable 
as the sliding mode is double-face.  

 As different simulating tests give different results, 
the support measures can not be suggested with only 
one time test. Statistic analysis based on the results of 
stochastic block geometrical identification can yield 
the distributions of the size, the average size and the 
overlaying ratio of stochastic block with dozens of or 
hundreds of simulation tests. So the quantitative 
analysis of spacing and length of anchor can be 
implemented.  

 

4 Concluding remarks and future work 
The paper studies geometric identification of 3-D 

stochastic blocks. Main analysis processes are 
outlined, with some key steps are discussed in detail. 
Case study indicates the geometrical identification of 
stochastic block proposed in the paper can meet the 
needs of practical engineering analysis pretty well and 
give some meaningful results. 

Based on the results of stochastic block 
geometrical identification, statistic analysis can yield 
the distributions of the size, the average size and the 
overlaying ratio of stochastic block. These results can 
be used to instruct support design and evaluate the 
possible damage or failure of stochastic block. These 
researches will be introduced in future. 
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To investigate the influence of a tensile stress gradient (B. Van de Steen, 2005) on fracture initiation 
and fracture growth in rock material, a configuration, consisting of a diametrically loaded disc with a 
hole on the diameter perpendicular to the loaded diameter is used. Depending on the diameter and 
the eccentricity of the hole, the disc splits along the loaded diameter or macro-fracture starts at the 
hole, However the tensile stresses at the top and the bottom of the hole are for nearly all cases 
considerably higher than the stresses along the loaded diameter and than the macroscopic tensile 
strength of the material, determined by conventional Brazilian test. Manifold Method (G. H. Shi, 
1991) provides a unified framework for solving problems with both continuous and discontinues 
media, In this paper, by introducing a criterion of crack initiation and propagation, the second order 
manifold method is used to simulate the particular fracturing behavior, and the result has greatly 
consistence with experiment, which shows the different fracture pattern in diametrically loaded discs 
of rock material 

Keywords: Rock material; Fracture pattern; Brazilian test; Numerical simulation; Manifold Method 
 
 

1. Introduction 
 
Rock breakage has a wide range of forms, and the 
fracture initiation and fracture growth in rock material 
is a complex progress. Van de Steen has systematically 
studied the theory of influence of a tensile stress 
gradient on fracture initiation and growth in rock 
material, and numerical simulation wee conducted 
using the boundary element code DIGS. Stress 
gradients induced by excavations in rock depend on the 
configuration and the size of the excavation and on the 
loading conditions. For the same pre-excavation in situ 
stress, the stress gradients around, e.g., a5-m diameter 
tunnel or around a 32-m drill hole differ considerably: 
the stress pattern is self-similar but obviously, for the 
smaller hole, the stress reduces to the field stress over a 
shorter distance. Similarly, the stress gradients at the 
corners of a rectangular tunnel differ considerably from 
the stress gradient around a circular tunnel. Stress 
gradients not only occur on the macro-scale but also on 
a micro-scale. High stress gradients exist in the vicinity 
of flaws, at grain contacts or at pores in the material.  
    In recent years, numerical simulation of rock 
damage has drawn tremendous attention of researchers 
across the world. In general, numerical methods can be 
classified into two types. One belongs to the category 
of continuum mechanics, such as Finite Element 
Method, the other belongs to the category of 
discontinuous deformation, including DEM and DDA. 
The former one is capable of accurately analyzing the 
deformation and stress distribution, but has difficulties 
in simulating discontinuous deformation, e.g. rock 
fracture and block movement. The later one can be 

utilized to model the behavior of discontinuous or 
block systems, but accurate calculation of stress 
distribution inside blocks remains a challenge.  
    Manifold Method proposed by Shi a new numerical 
method, which provides a unified framework for 
solving problems with both continuous and 
discontinuous media. By employing the concept of 
cover and two sets of meshes, manifold method 
combines the advantages of FEM and Discontinuous 
Deformation Analysis. It can only deal with 
discontinuities, contact, large deformation and block 
movement as DDA, but also provide the stress 
distribution inside each block accurately as FEM can. 
The numerical model of the original MM possesses 
only the first-order accuracy, leading to dissatisfaction 
in simulating problems that need high accuracy in 
displacement. Zhang (2000) developed the second 
order manifold methodwith six node triangle mesh. In 
the present paper the second order MM is applied to 
study the fracture initiation and growth in rock material. 
    In this paper, first the conventional Brazilian test is 
simulated by Manifold Method, also a series of 
numerical simulations of a diametrically loaded disc 
containing a hole are done, which are compared with 
the experiment results, and it shows how the fracture 
pattern is controlled as the size of the hole changes in 
the presence of material defects.  
 
2. Criterion of crack initiation and propagation  
 
Manifold method (Zhang 1999) can simulate the 
initiation and the expansion of fractures along 
combined surface, points and math grids in any 
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direction, it can be used for stability analysis, damage 
analysis and structure initiation, and any other 
problems related with discontinues structure. Manifold 
method has adapted two covers, so it has great 
advantage in simulating fracture initiation. Different 
criteria (Zhang 2002) are used in the initiation of new 
cracks and the growth of existing cracks. For the 
initiation of new cracks, a stress-based criterion, Mohr-
Coulomb’s Law with three parameters, is considered. It 
assumed that new cracks initiate if: (a), the first 
principle stress is larger than the tensile strength of the 
material, or (b), the maximum shear stress is larger 
than the shear strength of the material. The failure 
criterion can then be expressed as: 
Tensile failure: 

      01 σσ =                             (1) 
Shear failure: 

c=− 2/)( 31 σσ ,  

 if 02/)( 31 >+σσ and 010 T<<σ       (2) 
      )2/sin()(cos2/)( 3131 φσσφσσ +−=− c , 

   if 02/)( 31 <+σσ  and 
010 T<< σ         (3) 

where 1σ  and 3σ  are the first and third principal 

stresses, 0T  is the tensile strength, c is the cohesion and 

φ  is the friction angle. 
    For the existing cracks, the fracture toughness ICK  
of the material is taken as the fracture criterion, and the 
maximum circumferential stress theory is adapted to 
determine the direction of crack growth measured from 
the current crack line θ  

      0)1cos3(sin =−+ θθ III KK                     (4) 
The fracture criterion for a mix mode problem takes the 
form as:  

      ICIII KKK =− ]sin5.1)2/(sin)[2/cos( 2 θθθ    (5) 
 
3.Experiment sample configuration and observation  

 
In the Brazilian test configuration, a disc is loaded 
diametrically, inducing an almost uniform tensile stress 
in the direction perpendicular to the loading along most 
of the loaded diameter. When a hole is drilled parallel 
to the sample axis and centred on the diameter 
perpendicular to the loaded diameter (a configuration 
further referred to as the disc with a hole, Fig.1), the 
material above and below the hole is subjected to a 
rapidly decreasing tensile stress. A linear elastic 
analysis of the stress distribution shows that the 
maximum tensile stress at the surface of the hole 
decrease as the distance between the centre of the disc 

and the centre of the hole increases (Fig.1). It was 
further shown that an increase in the radius a of the 
hole leads to a decrease in the stress gradient (Van de 
Seen, 2001; Van de Seen and Vervoort, 2001). Except 
for small holes (a/R≤0.08) in combination with a large 
eccentricity (e/R≥0.8), the tensile stress at the top and 
the bottom of the hole is larger than the tensile stress 
along the loaded diameter. Based on the theories above 
many experiments were done to show the different 
fracturing pattern as the radius and location of the 
drilled hole changes.  
 

 
Fig.1: Diametrically loaded disc with a hole: 

geometrical configuration 
 

       4. Simulation of the fracturing behavior by 
manifold method 
 
To better simulate the experiment situations and avoid 
the partial damage, here we use two slabs parallel to 
each other to press the disc in the loading direction. 
Then it can assure that the contact between the disc and 
the two slabs is a little segment, which can effectively 
avoid force loading. In the course of the loading the 
slabs must not be bended, so the rigidity of the slabs is 
better than the rock material. Table1 lists the rock 
material properties and parameters used in the 
simulation of the disc according to experiment research.      
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Table1. Material parameters of a rock (R=37.5cm) 
 Young  modulus 

EP/GPa 
Poisson

ratio 
ν 

Density
ρ/ 

(ton/m3)

Friction
angle 
ө/˚ 

Cohesion
c/ 

MPa 

Tensile 
strength 
σt/MPa 

Fracture 
Toughness 

KIC/(MN/m3/2)
Rock media 25 0.3 2.5 30 15 1.5 5.6 

Joint - - - 30 15 1.5 - 

4.1 Fracture pattern obtained with a tension in the 
conventional Brazilian test 

 
(a)step1-1 time=0.1s             (b)step1-15 time=1.5s 

  
(c)step1-18 time=1.8s             (d)step1-20 time=2.0s 

       
(e)step1-25 time=2.5s            (f) FEM result 

Fig. 2: Fracture pattern in the conventional Brazilian 
test 

 
Firstly, Fracture pattern with a tension in the 
conventional Brazilian test is simulated. From the 
process of the damage, by the step1-15 the formation 
of the primary fracture appears in the diameter 
direction, and then it develop along the diameter 
towards the contact surface, finally it run through the 
whole Brazilian disc. The result can perfectly prove 
that it is arc contact between the disc and the two slabs. 
However, there is much controversy about the fracture 
initiation mechanism and location in the conventional 
Brazilian test. Colback (1966) argued that a curved 
fracture path point to fracture initiation in shear near 
one of the platens, there is little or no discussion that 
the fracture grows in tension. The NMM simulation 
result also cannot be used to determine whether the 
fracture initiates in tension or in shear. When the 
fracture path is strictly diametrical, a shear mechanism 
can still be responsible for fracture initiation. 
 

4.2 Fracture formation in a diametrically loaded disc 
with a small hole 
 
In particular the same radius disc, in which a 5cm hole 
drilled with an eccentricity of 20cm, is also simulated. 
And the 5cm hole is further called the ‘small’ hole. 

        
(a)step1-1                                (b)step1-60 

       
(c)step1-64                                (d)step1-66 

         
(e)step1-68                               (f)step1-75 

   
Experiment result                Simulation result by 

B. Van de Steen 
Fig. 3: Fracture formation in a diametrically loaded 

disc with a small hole 
From fig.3 we can see that the ‘small’ hole disc finally 
failed consistently along the loaded diameter without 
intersect the hole. In the initial stage of fracture, some 
title fractures firstly appeared around the loaded 
diameter, but the additional fractures around the small 
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hole is very rare. By the step1-66 a predominant 
fracture also developed along the loading diameter 
towards the contact surface. At last once the primary 
fracture has fully developed, secondary tensile fracture 
may start to grow from the edge of the disc. The 
simulation result by Manifold Method is in good 
agreement with the result of experiment and the result 
Simulated by B. Van de Steen in fig.3. 

4.3 Fracture formation in a diametrically loaded disc 
with a large hole 

The stress gradient is affected by the diameter and the 
eccentricity of the hole, a diametrically loaded disc 
which has a 10cm diameter hole drilled with an 
eccentricity of 15cm is also simulated by Manifold 
Method. And the 10mm hole is further called the ‘big’ 
hole.  

   
(a)step1-1                            (b)step1-35 

        
(c)step1-45                            (d)step1-54 

       
(e)Experiment result      (f) Simulation result by 

B. Van de Steen 
Fig. 4: Fracture formation in a diametrically loaded 

disc with a large hole 

From the result of the simulation we can see that the 
disc finally failed at the hole surface, the fracture split 
starting from the top and bottom of the hole towards 
the contact surface. By the step1-35 the fracture first 
initiated, and then some unstable micro-fracture along 
the loaded diameter and two stable fracture growing 
from the hole towards the platen contacts are presented, 
while the activity at the centre of the disc remains very 
limited until the primary fractures have almost reach 
the platen contacts. The typical fractures can also be 
observed in the samples in the laboratory experiments, 

and the process of the damage is very close to the 
experiment results.  

5. Conclusions 

A diametrically loaded disc is a versatile, easy to 
prepare and easy to test configuration to study, in 
general, fracture initiation and growth in the brittle 
rocks are more specially the effect of a stress gradient. 
A change in the hole diameter and in the eccentricity of 
the hole position suffice to vary the tensile stress and 
the stress gradient at the hole surface. The conventional 
Brazilian test without a hole was experimentally 
observed. The failure often occurs as a diametrical 
splitting of the disc without interesting the hole. The 
laboratory observations of the development of the 
fracturing in the disc with a hole were successfully 
simulated by Manifold Method. The simulation 
demonstrate that the presence of pre-existing flaws 
serves to explain the effect of different hole size in the 
formation of primary fracture features either from the 
hole surface or in the form of a diameter fracture that 
does not intersect the hole. The simulation result has 
great consistence with the experiment results, and it 
shows the general development trend of fractures under 
such complex condition, but for further validation of 
the theory such as stress distribution, it also needs to be 
further studied. The results demonstrate that the 
manifold method is an effective method in the study of 
rock failure from a continuous mass to a discontinuous 
mass in brittle materials, and exhibits some advantages 
to conventional numerical methods. The results also 
provide further insights and a new method in the 
research of the related issues.  
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In this paper, the second order Manifold Method (NMM2D) program is used to simulate the crack 
initiation and propagation of tunnels with different cross sections (which are circle, rectangular, 
straight-wall-top-arch (SWTA)). The crack evolution characters of tunnels with different sections 
under a variety of lateral pressure coefficients are given. The study proves that NMM2D is a valid 
numerical simulation software in design of tunneling engineering. 

Keywords: Numerical simulation; Manifold method; Crack evolution; Confining pressure 
 
 
1. Introduction  
 
The surrounding rock mass failure is always considered 
in tunneling engineering. Underground space is being 
widely used, with ceaselessly exploring living space. 
For examples tunnels, laneways, underground caverns, 
underground oil tanks and so on, they are built in a 
great number. At the same time, more problems are 
encountered in tunneling engineering, such as tunnel 
floor heave, rib spalling, collapse, ground subsidence 
aroused by subway excavation and so on. So studying 
the crack evolution laws of tunnels with different 
sections under different lateral pressures are 
significant. 
In present, there are lots of the reports about the 
surrounding rock mass failure of tunnel used by 
various numerical analysis methods. These methods 
include Finite Element Method (FEM) (Yang et 
al,1989), Boundary Element Method (BEM), Displace 
Discontinuous Method (DDM) (Napier et al, 1992) and 
PFPA2D (Fu et al, 2000 and Zhao et al, 2004). It is well 
known that stress concentration maybe initiate cracks 
and speed growth of cracks. In addition, crack 
propagation relates with stress state and confining 
pressure influences stress distribution. So confining 
pressure need to be considered. For validating above 
views, using by NMM2D program, authors studied the 
failure model of tunnels. The crack evolution laws of 
tunnels with different sections under different ground 
pressures were gained.  
 
2. Basic concepts of manifold method 
 
NMM can not only calculate large deformation, block 
contact and movement but also provide element stress 
and strain as FEM. And it can availably calculate the 
process from small deformation of continuous block to 
big deformation of discontinuous block (Shi, 1997). In 
order to illuminate its main character, a manifold 

model about tunnel problem is shown in Fig.1. Firstly, 
the triangle elements make up of mathematic mesh, 
shown in Fig.1 (a). Secondly, rock mass and tunnel set 
up its physical mesh, shown in Fig.1 (b). Finally, the 
mathematic mesh covers on the physical mesh, the part 
of the mathematic mesh and the physical mesh 
superposition make up of manifold mesh, shown in 
Fig.1 (c). The mathematic mesh denotes deformation of 
whole system using shape function. And the physical 
mesh represents the bound of discontinuous block. By 
introducing the concept of a cover and two sets of 
meshes, the manifold method combines the advantages 
of the FEM and DDA. 
 

 
(a) Triangle mathematical mesh 

 
(b) Physical mesh of tunnel 
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(c)  Manifold model mesh 

Fig.1: Basic conception of manifold method 
 

Manifold method provides an easier way to simulate 
crack propagation. Different criteria are used in the 
new crack initiation and the growth of existing cracks 
(Zhang et al, 1999). Fracture criteria using the SIF can 
only be used for existing cracks. For the initiation of 
new crack, Mohr-Coulomb’s law with there parameters 
is taken as the failure criterion for new cracks. Take 

1σ  and 3σ  to indicate the first and third principal 
stresses, the failure criterion can be expressed as: 
Tensile failure: 

01 T=σ  
Shearing failure: 

if 0
2

21 >
+σσ  and 010 T<<σ  

C=−
2

31 σσ  

if 0
2

21 <
+σσ  and 010 T<<σ  

φ
σσ

φ
σσ sin

2
cos

2
3131 +

−=
− C  

Where T0 is the tensile strength of the material, C is the 
cohesion and φ is the friction angle. 
For existing cracks, the fracture toughness KIC of 
material is taken as the fracture criterion, and the 
maximum circumferential stress theory is adopted to 
determine the direction θ0 of crack growth measured 
from the current crack line by the following equation: 

0)1cos3(sin =−+ θθ III KK  
The fracture criterion for mix mode problem takes the 
form as: 

ICIII KKK =− )sin
2
3

2
cos(

2
cos 0

020 θ
θθ  

 
3. The common tunneling engineering simulation 
and results analysis 

 
In this paper, new crack initiation and crack 
propagation of tunnels with different sections, which 
are circular, rectangular, straight-wall-top-arch 
(SWTA), are simulated under different lateral pressure 
coefficients (λ). The lateral pressure coefficient equals 
that the horizontal pressure value divides the vertical 
stress peak value. 
 
3.1 Calculation model 
 
The model is a rectangular sample, its width is 20m 
and its height is 18m. The circle tunnel’s radius is 3m. 
The rectangular tunnel’s height is 3m, its width is 6m. 
The straight-wall-top-arch’s width is 2.83m, its height 
is 3.41m. Physical parameters of the rock medium and 
joint are shown in Table 1. 

 

 
Fig.2: Sample model 

 
The sample bottom is fixed boundary, its top and 
lateral pressure adopt invariable force load. The top 
stress peak value reaches 10MPa. And the stress value 
of lateral pressure is determined by λ. There are mainly 
two sets of joints distributing in the rock medium. For 
circular tunnel, there are 3612 blocks and the average 
area of the blocks is 0.09185m2. For rectangular tunnel, 
there are 3744 blocks and the average area of the 
blacks is 0.091346m2. For SWTA tunnel, there are 
3827 blocks and the average area of the blocks is 
0.091683m2. The sample model is shown in Fig 2.  
 
3.2 Simulation results analysis 
 
The crack evolution of tunnels with three cross sections 
under different lateral pressures are shown in 
Fig.3~Fig.5.

 
Table 1: Material parameters of model (Yu Ya-lun et al, 2004) 

Material Density  
ρ/ 

KN/m3 

Yong’s 
Modulus  
E / GPa 

Poisson’s 
Ratio 
μ 

Friction 
Angle 
θ/0 

Cohesion 
C / MPa

Tensile 
Strength  
σt / MPa 

Fracture 
Toughness / 

MPa 
Rock material 2550 40 0.22 35 35 9 1.1 

Joint / / / 20 3.5 0.9 / 
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λ＝0.1 λ＝0.125 λ＝0.2 

 
(a) t=0.01s (c) t=0.01s (e) t=0.01s 

 
(b) t=0.378 (d) t=0.378s (f) t=0.378s 

Fig. 3: The evolution of crack of circle tunnel 
 

λ＝0.1 λ＝0.125 λ＝0.2 

 
(a) t=0.008s (b) t=0.008s (e) t=0.008s 

 
(b) t=0.029s (d) t=0.029s (f) t=0.029s 

Fig. 4: The evolution of crack of rectangular tunnel 
λ＝0.1 λ＝0.125 λ＝2.8 
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(a) t=0.011s (c) t=0.011s (e) t=0.011s 

 
(b) t=0.021s (d) t=0.021s (f) t=0.021s 

Fig. 5: The evolution of crack of SWTA tunnel 
 

 
 

Fig. 6 Typical shear stress diagram 

 
Fig. 7 Fracture pattern of plaster samples (Lajtai E Z et 

al, 1975) 
For circular and rectangular tunnels, the author picked 
the time, when crack just began to initiate and λ=0.2, as 

the first line pictures. While SWTA tunnel, the author 
picked the same instance but λ=0.125. For three 
tunnels, author respectively adopted t=0.378s, 0.029s 
and 0.021s as the second line pictures. It can be found 
from the above simulation results:  
(1) For every kind of tunnel, with λ increasing 

gradually, the time of crack initiation delays. 
Simultaneously, the velocity of crack propagation 
slows. And the length of crack shortens at same 
time. It is concluded that the harder tunnel is 
damaged, the more λ is. 

(2) For the tunnel with different sections, when 
λ=0.125, the time of crack initiation is respectively 
0.006s, 0.006s, 0.011s. It is indicated that the 
circular and rectangular tunnels fail more easily 
than SWAT tunnel. The failure of tunnel is related 
with tunnel’s geometrical configuration. 

(3) When λ<1, the lateral walls of tunnel sustain 
compressive stress and the top and roof of tunnel 
sustain tensile stress. In addition, compressive 
strength of the rock medium is far greater than its 
tensile strength. So the crack initiates from top and 
roof of tunnel firstly. This kind of crack is called 
primary crack (Fu et al, 2000). With stress 
concentration of tunnel’s top and roof dying down, 
stress field transfers far from around of tunnel and 
new cracks are resulted. The new cracks are called 
remote cracks (Fu et al, 2000). It is shown in Fig. 4 
(b) and (d) and Fig. 5 (b). When λ >1, the lateral 
walls of tunnel sustain tensile stress and the top 
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and roof of tunnel sustain compressive stress. So 
the crack initiates from lateral walls of tunnel 
firstly. It is shown in Fig. 5 (e) and (f). 

(4) From the comparison of Fig. 6 with Fig. 7, shear 
stress distribution figured by diagram accords with 
the experiment results. The program is quite 
accurate in calculating stress, but there are some 
problems about criterion of shear crack initiation. 
So shear cracks is hardly found in the simulation 
results. 

(5) Three issues need to be explained. Firstly, for 
rectangular and SWAT tunnels, when λ=0.1, the 
cracks propagate very severely. Secondly, for 
SWAT tunnel, if λ=0.2, the cracks do not form 
during the whole simulation process. So the author 
adopts λ=2.8 instead. The rock non-uniformity and 
the tunnel geometrical configuration maybe result 
in the above two problems. Thirdly, once the crack 
curves or curls, the direction of cracks growth was 
not calculated exactly. It is shown in Fig. 4 (b) and 
Fig. 5 (b). It is a problem of the present program. 
Improving on the crack propagation is one of 
directions in future works.  

    
4. Conclusions 
 
The crack evolutions of tunnels with three different 
sections under different lateral pressures were given in 
this paper. Simulation results indicated that the cracks 
initiation and propagation related with not only the 
lateral pressure coefficient (λ) but also the tunnel 
geometrical configuration. It was validated that there 
were two kinds of cracks during failure process of 
tunnel, which were primary cracks and remote cracks. 
In addition, the author found that the direction of 
cracks growth could not be calculated exactly by NMM. 
And there are some problems on the criterion of shear 
crack initiation. Nevertheless, NMM is still a valid 
numerical analysis method in calculating crack 

initiation and initial stages of crack growth. So the 
results of this research provide further insights and a 
new method in the research of the related issues. 
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Manifold method (MM) is a powerful numerical analysis method to simulate displacements and 
deformations of the ground including discontinuous planes such as joints and faults. However, 
MM lacks some practical functions in order to simulate geotechnical problems. We have 
equipped the MM with excavation process and material boundaries. The excavation is realized 
by releasing the contacts between surrounding area and excavation area which area bounded by 
joints. The material boundaries are formulated as a boundary between the elements, which share 
common cover mesh (mathematical mesh). Some example results indicate the MM will be 
applied to a simulation of geotechnical problems involving excavations. 

Keywords: Manifold method; Excavation analysis; Material boundary 
 
 

1. Introduction 
 
The Manifold Method (MM)(Shi 1991), as well as 
Discontinuous Deformation Analysis (DDA)(Shi 1988), 
is a powerful numerical analysis method to simulate 
displacement and deformation of rock mass including 
discontinuous planes such as joint, faults and so on. 
MM also have an advantage that mathematical meshes 
(cover) are independent of physical meshes or block 
boundaries, and mesh making for the analysis became 
easy. 
MM was originally developed by Shi, and various 
extensions have been proposed so far. For example, 
Chen et al (1997) have proposed the MM with high 
order displacement functions. Sasaki et al (1997) have 
equipped the MM with the rock bolt element and the 
elastic – plastic element. However, MM is insufficient 
to simulate geotechnical problems practically, because 
MM lacks some analysis functions such as excavation 
process, material property divisions, progressive 
analysis along construction processes, and so on. These 
are essential to the practical simulations. 
In this study, we have equipped the MM with 
excavation process and material boundaries. Material 
boundaries, which are the boundary between different 
material property areas in the same block, have to set 
without losing easiness of mesh making. In realizing 
excavation process, it is essential that excavation 
surfaces work as free surfaces, and contacts and 
separations between blocks are enabled on the 
excavation surfaces. This report outlines the excavation 
process and the material boundary in the MM, and 
present analysis examples and applications. 
 
 
 
 

2. Material boundary 
 
2.1 Methodology to material boundary 
 
The material boundary is a line divides different 
material properties. Fig. 1 is a schematic diagram of the 
material boundary, joint, mesh, and block in MM. 
Therefore, it is impossible to separate block along 
material boundary. 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Schematic diagram of material boundary, joint, 

mesh, block and cover. 
 
In the Finite Element Method (FEM), a mesh making is 
generally done as material boundaries are fitted into 
mesh boundaries. In MM, it is also possible to make the 
mesh as material boundaries are fitted into mesh 
boundaries. However, this reduces a convenience that 
MM has in mesh making. In this study, the material 
boundary, which is realized without losing a 
convenience of mesh making, have been proposed. 
In MM, displacements are solved for the nodes 
compose cover meshes, and an integration is done on 
the area material exist for each cover in the formulation. 
Therefore, the integration area is sometimes a part of 
the cover mesh. This relation is used for a formulation 
of the material boundary. 
 

Joint: J1 
Block: B1 

Joint: J2 

Material 
boundary: S1 

Mesh: Mn 
Block: B2 Cover: C1 
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Assuming that the cover Ci is divided into two elements, 
an element i and j, by the material boundary S, as 
shown in Fig. 2(b). 
The strain on the cover Ci can be represented by 
 

                                       (1) 
 
where [Bi] is displacement-strain matrix of the cover Ci, 
and [Di] is nodal displacement of the cover Ci. As two 
element i and j share common cover Ci, strain on the 
element i is equal to the strain on the element j. The 
potential energy due to elastic deformation Πe is 
expressed by 
 
 

(2) 
 
 
where [Ei] and [Ej] are stress-strain constitutive law 
matrices respectively, and si and sj are area of element i 
and element j share  cover Ci respectively. The stiffness 
matrix for cover Ci is obtained by minimizing the 
energy Πe. Hence, stiffness of cover Ci is an average of 
stiffness of element i and element j weighted by its area. 
In Fig. 2, the difference between joint boundary and 
material boundary is illustrated. Along the joint 
boundary, contacts and separations between blocks are 
enabled, because the meshes in corresponding blocks 
have independent covers. On the other hand, 
separations between meshes are impossible along the 
material boundary, because corresponding meshes 
share common mathematical cover, and deformations 
of the meshes depend on area and material properties of 
each mesh. 
 
 
 
 

2.2 Verification of  material boundary 
 
In order to verify the material boundary, the simple 
model, which is shown in Fig. 3, was served to an 
analysis. The model geometry is a rectangle 20m long 
and 10m wide. At the right and left sides of the model, 
lateral displacements were constrained as a boundary 
condition. At the bottom of the model, longitudinal 
displacements were also constrained. As shown Fig.3, 
the model was divided into two parts, material A and B, 
by the horizontal material boundary at level 10m. The 
material properties and analysis conditions are shown in 
Table 1. In the analysis, the Model 1 was a case where 
the numerical covers were divided by a material 
boundary. In the Model 2, the material boundary was 
fitted to the mathematical cover edges like a normal 
FEM. The calculated displacements and stresses due to 
material weight were compared for the verification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Verification analysis model 
 
 

Joint: J 

Element: i 

Element: j Joint: J Element: j 

Cover: C1 

Joint: J 

Element: i 

Cover: C2 

Material 
boundary: S 

Element: i 

Element: j Element : j 

Cover: Ci 

Material 
boundary: S 

Element: i 

Cover: Ci 

Material 
boundary: S 

(a) Element divided by joint 

(b) Element divided by material boundary 

C1 = C2 

Ci = Ci 

Fig. 2: Schematic diagrams of joint boundary and material boundary 
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Table 1: Material properties and analysis conditions 
Material group A B 
Young's modulus (MN/m2) 10.0 100.0 
Poisson's ratio 0.3 0.3 
Density (kg/m3) 2.0 2.0 
Unit weight (kN/m3) 20.0 20.0 
Time step (s) 0.01 
Iteration (times) 500 
Maximum displacement ratio 0.0001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Displacements and stresses of Model 1 and 2 
 
 
Fig. 4 shows the calculated displacements and stresses 
for the Model 1 and Model 2. The displacements 
(settlements) of the Model 1 were roughly consistent 
with that of Model 2, however displacements of the 
Model 2 were slightly larger than that of the Model 1. 
The stresses (over burden pressure) of the Model 1 
agreed with that of the Model 2, and these values were 
consistent with analytical values, except for stresses at 
the boundary parts in Model 1. As shown Fig. 4, 
stresses along the material boundary shows alternately 
larger and smaller values than the exact value. However, 
average stresses along the boundary agreed with the 
exact value. It is consider that the material boundary in 

MM is applicable to practical use, although meshes 
along the material boundary have some errors in stress 
value. 
 
3. Excavation analysis 
 
Many geotechnical problems relate to excavations, and 
it is important to simulate along construction processes 
in estimating ground behavior. Many FEM codes are 
equipped with excavation process. It is easy to attach 
excavation processes to the MM. 
 
3.1 Methodology to excavation process 
 
In MM, there are two way to realize excavation 
processes. 
One is a method that stresses of excavation meshes are 
released and stiffness of the meshes is weakened. The 
excavation meshes are bounded by material boundaries 
in advance, and the excavation is activated when time 
step iteration amounts to the specific step. This method 
is similar to the excavation processes in FEM. 
The other is a method that contacts between excavation 
block and mother block are broken off. The excavation 
areas are bounded by the joints, and the excavation 
areas are modeled as a block in advance. Fig. 5 shows a 
concept of the excavation. This method is similar to the 
excavation processes in DDA (Therese et al. 2002). 
After the excavation, excavated blocks can move 
independently of mother block, and excavated surfaces 
act as free surfaces. Hence, contacts and separations 
between mother block and another block are enabled 
again. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Concept of the excavation 
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3.2 Verification of excavation process 
 
Verification analysis was done to demonstrate validity 
of the excavation. Fig. 6 shows the calculation model. 
The model geometry was a square 8m long and wide, 
and a circular tunnel, of which radius was 1m, was 
excavated at the center of the model. The tunnel was 
bounded by the joints in advance. The displacements of 
periphery of the model was constrained, and all meshes 
were subjected to a constant compressive stresses, 
σx=σy=1000kN/m2, as a initial stress. Fig. 6(a) and Fig. 
6(b) show stress distribution at the initial state and after 
excavation respectively. The material properties of a 
medium were assumed that the elastic modulus and 
Poisson’s ratio were 1GN/m2 and 0.2 respectively. 
In this problem, analytical stresses and displacements 
have been obtained for the case of a circular tunnel in 
an infinite elastic medium subjected to a constant stress. 
Fig. 7 shows analytical and calculated stresses along 
radial direction. The radial stresses and tangential 
stresses by MM were roughly consistent with the 

analytical solutions. The results show that excavation 
processes in MM work well. 
 
 
4. Model analyses and applications 
 
In order to examine the applicability of the proposed 
MM, two example models, excavation of the cavern 
and slope cut, were analyzed. These are familiar with 
practical geotechnical problems. 
 
4.1 Excavation of underground cavern 
 
Fig. 8 shows the underground cavern model with 4 
joints and 1 material boundary. The model geometry 
was a square 300m long and wide, and the dimensions 
of the cavern, which was located at a center of the 
model, were 50m long and 40m wide. The material 
properties and analytical conditions are shown in Table 
2. 
 
Table 2: Material properties and analysis conditions 

Material group A B 
Young's modulus (MN/m2) 5000.0 2000.0
Poisson's ratio 0.25 0.25 
Density (kg/m3) 2.7 2.7 
Unit weight (kN/m3) 27.0 27.0 
Cohesion (MN/m2) 4.0 2.0 
Internal friction angle (deg) 55 45 
Work hardening coefficient (MN/m2) 50.0 20.0 
Joint friction angle (deg) 45 
Time step (s) 0.01 
Iteration  
(times) 

Stresses  generation 
Excavation 

500 
500 

Maximum displacement ratio 0.0001 
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Fig. 7: Comparison of stress distributions along 
radial direction 
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Fig. 8: Underground cavern model 
 
 
In the model, lateral displacements of both sides were 
constrained, and lateral and longitudinal displacements 
were constrained along the bottom line. The excavation 
area was bounded by the joint. The elastic-plastic 
constitutive law based on Drucker-Prager's yield 
criteria for an element, which have been introduced to 
the MM by Sasaki et al 1997, was applied. 
In the analysis, the calculation was processed by two 
stages. At first stage, gravity was turned on, and initial 
stresses in the meshes and contact forces between 
blocks were generated. After first stage, the cavern was 
excavated. 
Fig. 9 shows stress distribution and displacements 
around the cavern. The plastic regions appeared along 
the left and right walls, and at the crown. From the right 
wall to the crown, remarkable displacements were 
calculated. It was considered that the plastic regions 
and larger displacements along right wall were closely 
related to the existence of the two joints. These results 
agree with the physical phenomenon in rock masses. 
The discontinuity of the stress distribution and 
displacements along the joints were obvious. On the 
other hand, the stresses and displacements along the 
material boundary were continuously distributed. 
 
4.2 Excavation of slope 
 
Fig. 10 shows the slope cut model with 4 joints and 1 
material boundary. The dimensions of the model were 
80m long and 150m wide. The dimensions of the tunnel 
were 10m long and wide. In this model, the results were 
focused on stabilities of the slope and tunnel. The 
excavation areas were bounded by the joints beforehand. 
The material properties and analysis conditions are 
shown in Table 3. In the model, lateral displacements of 
both sides were constrained, and lateral and 
longitudinal displacements were constrained along the 
bottom line. 

 J1 
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 S1 

 J4 

 J1 – J4 : Joint 
 S1 : Material boundary 

Excavation 
area 

300m 
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B A

(a) Stress distribution and plastic regions after excavation 

(b) Displacement vectors of the nodes after excavation 
(multiplied by 200) 

Fig. 9: Stresses and displacements around the cavern 
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Fig. 10: Tunnel and slope cut models 
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In the analysis, the calculation was processed by three 
stages. At first, in order to generate initial stresses in 
the meshes, gravity was turn on. At second stage, the 
tunnel was excavated (Excavation: 1), and the slope cut 
was finally practiced. 
In Fig. 11, the displacements, which caused by slope 
constructions, are shown. The displacements due to 
unloading followed by the slope cut were calculated. In 
this case, the displacements along the left side of the 
tunnel were about 1 cm. The displacement along the 
joint 1 and joint 2, which suggested the possibility of a 
sliding of the blocks, were also calculated. These 
results agree with a general tendency in slope 
excavations. 
 
Table 3: Material properties and analysis conditions 

Material group A B C 
Young's modulus (MN/m2) 100.0 200.0 400.0
Poisson's ratio 0.40 0.35 0.30 
Density (kg/m3) 1.9 2.2 2.5 
Unit weight (kN/m3) 19.0 22.0 25.0 
Joint friction angle (deg) 45 
Time step (s) 0.01 

Iteration 
 (times) 

Stresses generation 
Tunnel excavation 
Slope cut 

500 
500 
500 

Maximum displacement ratio 0.0001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 
 
We have introduced the material boundary and the 
excavation process to the MM, and examined the 
applicability of the MM for geotechnical problems 
involving excavations.  
The following conclusions can be obtained; 
(i) The material boundary is formulated as a boundary 

between the elements, which share common cover 
mesh. 

(ii) The excavation is realized by releasing the contacts 
between surrounding area and excavation area 
which are bounded by joints. 

 
The applicability of the MM has been confirmed by the 
simulation analyses. The results also present that the 
MM is suitable for the practical uses, and the MM will 
enable geotechnical engineers to perform a step-by-step 
analysis along the construction processes. 
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The behavior of the discontinuous rock masses affected by excavation is important indicators. This paper proposes 
an advanced method for analysis of the behavior of the discontinuous rock masses by using key block theory. We 
introduce practical problems in some Japanese projects of natural gas stockpiling base and the results of rock 
reinforcement and support design around underground cavern that was effectively performed from a reliable 
knowledge of the potential rock mass failure by using block theory analysis. 

Keywords: Key-block theory; Natural gas stockpiling base; Support design  
 
 

1. Introduction 
 
Major underground natural gas storage facilities have 
been constructed in Japan. The advantage of 
underground gas storage facilities lies in their 
environmentally friendly and safe operation and   
economic construction. The Japanese government is 
proceeding with plans to achieve a LPG stockpile of 1.5 
million tons by fiscal 2010. There are two kinds of 
method in stockpiling of LPG; above-ground aquifer 
refrigerated tank method, aquifer sealed underground 
cavern method. This aquifer sealed underground cavern 
is the method to store liquefied natural gas with the 
normal temperature and pressure by using water 
pressure. The measure to prevent leakage of liquid and 
gas phase is not concrete lining but the ground water 
pressure that keeps higher than the pressure of cavern. 
For example, because propane is liquefied at the 
temperature of 15°C and the pressure of 0.75MPa, the 
internal pressure is designed at 0.95MPa and the head 
of ground water is designed at more than 0.5 vertically 
for gas phase and more than 0 for liquid phase. It is 
necessary to supply underground cavern with water 
through some boring holes in order to keep water sealed 
function. Fig. 1 shows the water sealed underground 
cavern, and the inner wall are excavated rock mass that 
is not supported with concrete. 
The way of storage of liquefied natural gas by water 
pressure through boring holes is shown in Fig.2. A 
method that can grasp the behavior of rock masses is 
necessary in order to design and construct based on a 
rational control for large-scale underground cavern. In 
the case of underground excavation of rock masses, 
sliding and opening of joints due to stress relaxation are 
considered to be the governing mechanisms of 
behaviors of the rock mass, so key block theory is very 
useful as an analytical method for jointed rock masses, 
and how to consider water pressure in key block 

analytical system is the important factor in the aquifer 
sealed underground cavern (Hatzor et al. 2002). 
 

 
 

Fig.1: Aquifer sealed underground cavern. 
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Fig.2: Concept of storage of liquefied natural gas. 
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Fig.3: A typical example of cavern size and process of 
excavation 

  

 
 

Fig.4: Tunnel for aquifer sealing 
 
Excavation of underground cavern is generally 
performed by NATM. In Japan, a kind of rock is 
granite or diorite. Fig.3 shows a example of excavation 
process.     In this excavation process, pore water 
pressure is always monitored in order to prevent 
unsaturated condition.  
 
2. Developed key block analytical method 
  
We introduce our developed key block analysis for 

aquifer sealed underground cavern with a calculation 
procedure.   
First step shown in Fig.5; 
1. Calculate the three dimensional coordinates of P0 

intersection points of ridgelines of block planes 
and Pn0-PnX intersection points where the cavern 
cuts the block plane and intersection points of the 
ridgeline of block planes with the cavern. 

2. Rotate block planes parallel to XY plane. 
 

X

Z
Y

P0

P1

P2

Pn0

Pnx

 
 

Fig.5 First step of key block analysis 
 
Next step ; 
3.  Calculate a circumscribed quadrilateral of the 

block, and draw grids parallel to X-axis and Y-axis 
shown in Fig.6. 

4.  Extract grid points that are inside the block.  
Judgment of the positions of grids points is shown 
in Fig.7. Calculate original 3D coordinates of the 
extracted grid points that are ones before rotated 
coordinates by using inverse process shown in 
Fig.5. 

 
 

 
 

Fig.6 Second step of key block analysis 
 
5. Calculate the distances between the grid points and 

plane of cavern. 
6. Calculate the water pressures on the grid points 

using the distances. 
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Fig.7: the method of judgment of a positional 
relationship between points and polygons. 
 
Fig.7 shows the method of judgment of a positional 
relationship between points and polygons. In this figure, 
the angle between apexes of the polygon and the point 
A is 2π or -2π. In the case of point B, the angle shown 
in this figure is 0. The positional relationship between 
points and polygons can be judged by the angle.  
 
  
3. Monitoring method of  behaviors of key blocks 
 
Rock masses in which excavations are constructed 
almost always contain discontinuities such as joints. 
These discontinuities intersect to create blocks of rock 
in the perimeter of an excavation. The behavior and 
stability of these relatively simple blocks is a problem 
of fundamental interest in the design and use of 
underground excavations. When a removable block has 
been identified, its stability must be evaluated so that 
the excavation design can include any ground support 
measures needed to maintain the stability of the 
underground cavern. In general, block behavior is 
influenced by the shear strength of the discontinuities, 
the initial stresses acting on the block faces, the 
changes in stresses that occur as the block forms, the 
block geometry and so on. Stress changes are a function 
of rock mass dilatancy, normal and shear stiffnesses, 
and block displacement. Key block geometry includes 
block height and width, block location in the excavation 
perimeter, displacement direction, and block size 
relative to the size of the underground cavern. Different 
approaches have been taken in evaluating keyblock 
behavior. However, it is difficult to judge whether 
detected keyblock is stable or unstable. Because there 
are errors in the data or the computations and the 
behavior of keyblock is affected by lots of factors, there 
are practical limits on prediction of the displacement 
that can be expected of a keyblock before either 
equilibrium is reached without support, or the keyblock 

completely fails.  
We have developed the monitoring system of the 

behavior of keyblock by using photogrammetry (Nakai 
et al. 2003). This technique uses photographs of the 
object taken from multiple positions and orientations by 
a digital camera. The three-dimensional position of the 
point can be back-calculated by identifying the 
corresponding positions in the photographs. This is the 
basic principle of photogrammetry. An outline of 
procedure is shown in Fig.8. The object is 
photographed from various camera stations. Digital 
images for analysis are produced using targets attached 
to the object to specify measurement points in the 
underground cavern. The target on the image obtained 
by photography is processed to obtain the center of 
gravity. The center of gravity on the image is used as a 
basis for subsequent calculation. Calculations are made 
based on collinearity conditions. Collinearity means 
that the target as a measurement point, the image of the 
target, and the center of the camera lens are on the same 
line. In addition to the space coordinates of the target, 
exterior orientation parameters of camera such as 
camera position and orientation, and interior orientation 
parameters such as focal length c and the coefficients of 
lens distortion are unknown parameters. Observation 
equations are established from the collinearity 
condition. The observation equation with these 
unknown parameters is solved by the least square 
method. The method for solving all unknown numbers 
including camera parameters at once is known as self-
calibration bundle adjustment. In the measurement in 
underground cavern, as is obvious from the 
photographing condition, the entire internal wall cannot 
be photographed at once, so connecting multiple 
photographs is required. To ensure the connection of 
photographs, numerous targets need to be photographed 
in respective photographs. 

  

Retro-reflective 
target

Reference bar

Digital camera

Personal 
computer Analysis using a 3D 

reconstruction image
 

 
Fig.8: Outline of measurement using digital 

photogrammetry 
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Fig.9: Targets on the wall of tunnel and a measurement 

procedure (taking photos) 
 

Measurements were taken in a 7-m-diameter tunnel for 
a length of 15 m. A total of 208 retro-reflective targets 
were positioned on the tunnel wall at intervals of about 
1 m. For photographing, the object length of 15 m was 
hypothetically divided into three sections. Each section 
was further divided into five areas shown in Fig. 10. In 
each section, a total of 22 photographs were taken, 20 
from either side in each area, and two in the front in 
Fig.11. A total of 66 images were obtained in three 
sections. Measurement accuracy was verified by 
comparing the image data with the measurements taken 
by Total Station instruments. Table 1 lists the results of 
the verification test. The standard deviations of the 
differences from the measurements by Total Station 
instruments are given in the table. It was assumed that 
the measurements by Total Station instruments 
contained an error of about 0.5 mm. The measurement 
results show that photogrammetry was considered as 
accurate as measurement by Total Station instruments. 
The photogrammetry technique is suitable for 
monitoring of keyblock under construction of 
underground cavern because displacements in a large 
area can be measured accurately. We have performed 
the measurement using photogrammetry only in tunnel 
construction. In the future, we plan to apply the 
photogrammetry to measurement of key block (Ohnishi 
et al. 2006).     
 
 
 
 
 
 
 
 
 
 
Fig.10: Divided area for exposure of photogrammetry 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.11: Digital camera configuration 
 
 
 
 
 
 
 
 
 
 
 
4. Conclusion 
 
We present advanced key block analysis considering 
pore water pressure and photogarmmetry monitoring 
method for key blocks under construction of aquifer 
sealed underground cavern. The studies made so far 
show that key block analysis and photogrammetry are 
sufficiently applicable to rational and economical 
construction of civil engineering structures. We try to 
promote the spread of key block analysis with the new 
monitoring system. 
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Area1 

Area2 

Area3 

Area4

Area5

X axis 0.6596 mm

Y axis 0.4541 mm

Z axis 0.5096 mm

3D coordinate 0.5480 mm

Table 1: Accuracies of photogrammetry 
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In order to analyze failure of rock slopes, numerical method will be extremely useful. 
However, it will be difficult to simulate collapse, considering difficulties of obtaining 
rock parameters, such as geological conditions into numerical calculation. In this 
paper, in order to clarify the rock mass failure process provided in rock mass 
monitoring, we applied a failure judgment standard for the existing discontinuities and 
the new discontinuities. From the application example to rock mass failure monitoring 
of Amatoribashi-Nishi site, it was clear that failure behavior such as a failure mode 
could be simulated well by DDA 

Keywords: Numerical analysis; DDA; Rock mass; Rock mass failure monitoring 
1. Introduction 
 
Rock masses were generally accompanied with 
complex geological structure. There were various 
discontinuities such as fault, joint, crack and others. 
Therefore mechanical stability of a rock slope is in 
many cases influenced greatly by deformation and 
strength characteristic of the discontinuity existed in 
rock masses. Consequently, it was generally difficult to 
predict the outbreak and the scale of failure, and to 
evaluate the influence range for a rock mass failure 
phenomenon. Furthermore, it also is difficult to carry 
out effective stable countermeasures, because it 
progresses rapidly when the failure once begins. 
Besides, it could be thought that rock mass failure is 
affected not only by behavior of existing discontinuities 
but also by outbreak of new discontinuities due to 
reduction of rock mass strength caused by weathering 
or heavy rain. 

It is a very important problem to take into account 
such peculiar property of rock masses in numerical 
analysis, and to study about the understanding of an 
omen phenomenon of rock mass failure, and to foresee 
or predict rock failure. As one of the research actions, 
rock mass failure monitoring at 13 places in Japan have 
been carried out. At each point, various measuring 
instruments have been installed to understand the 
behaviors just after or just before slope failure. And it 
was successful in measurement of rock mass failure 
behavior at Amatoribashi-Nishi site, which was one 
spot of 13 monitoring sites [1]. 

On the other hand, in the field of numerical analysis, 
some numerical analysis methods to directly model the 
discontinuity are suggested. Some analytical techniques 
can be tapped such as FEM (JFEM) [2] which uses 
joint element, rigid body spring model (RBSM), 
distinct element method (DEM) [3], discontinuous 
deformation analysis (DDA) [4, 5]. However, because 

it is extremely difficult in general to grasp all properties 
of a discontinuity firmly; for these numerical analysis, 
the following modeling technique were adopted in 
many cases; modeling the discontinuities as same 
probability distribution without sorting dynamically, or 
expressing a concrete as individual discontinuities in a 
model with the object of a geologic continuity. Even if 
such a method is effective to evaluate behavior of rock 
mass constituted by a uniform discontinuity, in many 
case they would not be suitable for evaluation of failure 
mechanism of the rock slope consisted by the 
discontinuities with different continuity and different 
cohesive degree. Therefore, we cannot but say that it is 
extremely difficult in technology of current numerical 
analysis to model all such surfaces of discontinuities 
and it was almost unable to extract the motive 
discontinuities of rock masses failure from a lot of 
discontinuities beforehand. 

In this paper, we have applied DDA to rock masses 
failure behavior analysis, and shown that a device in 
analysis to simulate precisely the initial stress state in 
rock masses is necessary. And by examining 
relationship of a mechanical characteristics of the 
discontinuities occurred by new rock mass failure and 
to the existing data with the laboratory experiment, a 
rock mass failure process provided by rock mass failure 
monitoring has been simulated. 
 
 
2. Applicability of DDA to rock mass failure 

behavior analysis 
 
2.1 Fundamental 
 
DDA, Discontinuous Deformation Analysis was 
developed by G. H. Shi [4, 5]. It is a method for 
dynamic and quasi-dynamic analysis for estimating 
elastic displacement and deformation of 2D cross 
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section consisted of polygon blocks (elements). 
Recently, DDA has been popularly applied to Rock-fall 
analysis [6, 7] and DDA can be applied to estimate 
mass movement of landslide, blasting [8] etc.  

In addition, between contact blocks, penetration 
distance dp is introduced. When apex of block i and 
edge line of block j contact, energy stored due to dp is 
defined as equation (1) and is shown in the figure 
below. 
 
                                                                                     (1) 
 
Here, kp is stiffness of contact or constraint springs. 
Penetration dp after contact is presented by apex 
coordinates of block and unknowns of blocks i and j. 

By the way, kp is designed not to penetrate between 
contact blocks, and plays a role of transferring forces 
between contact blocks. On the other hand, when a 
edge line of block contacts another block line, analysis 
is conducted as two sets of apex and edge contact. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Contact between apex and edge of blocks 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Contact between edges of blocks 
dp,d1p, d2p :penetration distance from point to edge 
S0,S10, S20 :Area of the penetration triangle 

Fig. 1: Contact and penetration between blocks in DDA 
 
 
 
 
 
2.2 Simulation of initial stress 
 

In DDA, we can consider initial stress as input data, but 
in many cases in order to simulate the initial stress 
special technique is used because the initial stress 
changes with the position like a rock slope.  

Conventionally, dynamic analysis is usually 
performed in this kind of analysis. In addition, both 
static and dynamic analyses can be conducted with the 
DDA method. For static analysis, the velocity of each 
block in the blocky system at the beginning of each 
time step is assumed to be zero. On the other hand, in 
the case of dynamic analysis, the velocity of the blocky 
system at the current time step is an accumulation of 
velocities in the previous time step. 

In dynamic analysis, as the case that stress in a rock 
mass block or contact between blocks may become in 
an unstable state by its tare mass or deformation of 
itself at the first number step. In other words, even if it 
was being in stable state originally the rock mass, it 
may become unstable, and stable evaluation of rock 
mass in a limit state becomes difficult. 

Therefore, in this study, we suggest a method of 
analysis that combined static analysis with dynamic 
analysis. In other words, we perform static analysis 
with number of steps at the beginning of analysis and 
carry out dynamic analysis afterwards. In the static 
analysis, an initial stress state by tare mass would be 
analyzed while reducing displacement velocity of a 
rock mass block to produce by the tare mass to the 
maximum. By this, to simulate a stable rock slope for 
the actual status is not to mention, a stress state of a 
rock slope just before failure can be simulated. By 
dynamic analysis of the next, calculate deformation of a 
rock mass block and dynamics relations at the time of 
contact between rock masses every step, and chase 
movement of each block, and analyze behavior at the 
time of failure and a trace or shape after failure.  
 
2.3 Modeling of discontinuities 
 
In DDA, discontinuities were handled as a boundary 
surface of a rock mass block. In other words, rock mass 
block is surrounded with the discontinuities, and blocks 
were deal with as homogeneous rock mass without 
discontinuities. Therefore, the strength evaluation of 
discontinuities expressed mechanical relations in 
contact or in separation between rock mass blocks, and 
it has to be using different mechanics model for the 
discontinuities existing or occurred newly with a failure. 
Both discontinuities would to obey Mohr-Coulomb 
criterion, but should to be supposed failure standards 
differently.  

For modeling an existing discontinuity, many of 
analytical technique [2, 9] suggested till now, it is to 
evaluate the discontinuities uniformly as a constant 
condition from few laboratory experiments. Such 
methods would not very have problem in the case of 
property of a crack is simple, but it could cannot apply 
in the case of each crack has different strength 

Block i 

Block j 
S10 

Length lj 

Length li 

d1p d2p 

S20 
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characteristic like the rock slope by weathering or 
deterioration. Besides, it is near to impossibility to 
examine the property of each crack by field or 
laboratory experiment entirely.  

Therefore, the submission is that modeling of rock 
slope is to divide discontinuities into groups according 
to degree of cohesion and strength characteristic of the 
discontinuities not to sort by area, and to carry out the 
laboratory experiment for representative discontinuity 
in every group. Potential discontinuities exist in the 
actual rock mass, so it can be thought that the 
mechanical property of rock mass block to deal with 
here was different from the intact rock.  

Next, we explain the new discontinuities occurring 
with rock mass failure. Generally, as the analysis 
method of outbreak or evolution of crack, there are the 
static methods by using a strength standard and the 
dynamic methods by using an energy standard as the 
outbreak condition of a crack. By suggestion technique, 
strength standard was used for an outbreak condition of 
the crack, and to deal with the problem of cracks 
occurring stability while maintaining static equilibrium. 
Therefore, dynamic or shocking load problem does not 
be intended. While just using the present DDA, at the 
first stage of modeling, the discontinuities that would 
occurs newly by the rock mass failure was defined 
beforehand as a boundary of rock block in various 
positions and directions, which should to be expected 
by considering the change of geologic and the 
distribution situation of the existing discontinuities. In 
this article, we name such boundary surface that 
becoming discontinuity from the middle stage of 
analysis as "potential surface". In other words as 
showing in Fig. 2, the potential surface can become 
discontinuity by a stress state, and defined as boundary 
surface (Fig. 2, ab) contacting with 2 adjacent rock 
block (Fig. 2, A and B). The potential surface would be 
given a strength equivalent for neighboring rock blocks 
and the continuity should be maintained till newly 
discontinuity was judged to outbreak by a given 
outbreak condition.  

We suppose the failure criterion of new 
discontinuity obeys Mohr-Coulomb equation, to 
assume shear stress on the potential surface asτ , 
normal stress as σ , breaking mechanism of a 
discontinuity is expressed as equation (2).  
 

φσττ
σσ

tanfailure)(Shear  arean Compressio
failure)(Tension  areaTension 
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t
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Where, σt is tension strength of rock mass around the 
potential surface, τ t is shear strength, φ is internal 
friction angle. Fig. 3 shows a general idea of Coulomb 
criterion, φ and τ t can be expressed with tension 

strength σt and compressive strength σc as equation 
(3). 
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In DDA, creation of new discontinuities was judged 

by the contact condition of an apex and an edge. As 
showing in Fig. 2, apex a and b are contact points 
between rock block A and B. Potential surface ab is 
divided in half, and a failure condition is checked for 
contact point a and b respectively. 

In addition, when a crack was judged to outbreak, 
the shear and tensile strengths of the potential surface 
would become zero at the same time, supposing the 
friction angle is not to change. And the potential 
surface would be haves as a new crack distinguished 
from an existing crack after failure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Definition of potential surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Concept of Coulomb criterion of failure 
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2.4 Estimate of rock mass strength 
 
By weathering, erosion and scale effect, the strength 
(σc, σt) of rock mass at the potential failure surface 
becomes smaller than the strength provided from the 
rock examination using the intact rock. A calculated 
strength for rock mass has been suggested by Ikeda [10], 
who said that the strength of rock mass would be 
calculated by taking advantage of rock material strength 
estimated by square of a crack index which is the ratio 
of the elastic wave speed of rock mass and the intact 
rock. In addition, Sezaki [11] evaluated the Young’s 
modulus and compressive strength of the rock mass by 
evaluating statistically the relation between them with 
rock materials by using a rock mass database. Here, 
referring to the concept of Ikeda and Sezaki, we 
supposes that compressive strength (σc) and tension 
strength (σt) of a rock mass would fall off simply with 
a ratio from its of a rock materials (σc’,σt’), and calls 
the coefficient k as "strength reduction rate". It can be 
expressed as equation (4). 
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3. Examination of suggestion technique by a 

numerical experiment 
 
To examine this suggestion technique to simulate a 
rock mass in a limit state, we carried out the numerical 
experiment that assumed rock mass there is a 
discontinuity on the back and did an overhang.  
 
3.1 Analysis model and physical properties 
 
Fig. 4 shows the analysis model assumed. In this rock 
slope, the crack would occur in the vicinity of the point 
showing in ○ mark in Fig. 4 in time by weathering or 
erosion, and it would be thought that the rock mass 
would cause failure. Here, strength of the 
discontinuities and the rock block were assumed using 
a rock test value obtained at Amatoribashi-Nishi site 
described later. The rock test results were as follows: 
compressive strength σ c’=63.9MPa, tension strength 
σ t’=10.6MPa, and friction angle φ =32. Table. 1 
shows the rock properties and numerical experiment 
conditions. 
 
3.2 Analytical procedure and the results 
 
In DDA analysis, the case of static analysis carried out 
for ten first time steps (about 0.7 seconds), and the case 
of static analysis without ten step calculation have been 
compared. For strength reduction rate, three cases 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Overhang rock mass assumed   (b) Analysis model 
Fig. 4: Analysis model assumed 

 
Table. 1: Rock material properties and numerical 

experiment conditions 
Item Value 
P (MN/m) 20000 
N* 300 Analysis 

parameters 
N1* 10 
E* (GPa) 24.5 Rock mass 

block ν* 0.2 
φ(°) 45.7 
τt (MPa) 1.30 k=10% 
σt (MPa) 1.06 
φ(°) 45.7 
τt (MPa) 0.65 k=5% 
σt (MPa) 0.53 
φ(°) 45.7 
τt (MPa) 0.13 

The new crack 
occurred with 
failure 

k=1% 
σt (MPa) 0.11 

φ(°) 32.0 Opening crack
c* (MPa) 0 

*N: Number of time steps, N1: Number of time steps for 
static analysis, E: Young’s modulus, ν: Poisson’s ratio, c: 
Cohesion 
 
 
of k=1%, 5%, and 10% were examined. 

Fig. 5 shows the deformation behavior of the rock 
block with k=5%, and Fig. 6 shows a time history for 
displacement increase and stress of the rock. By Fig. 5, 
It is cleared that a rock block shows deformation of 
toppling failure clearly when static analysis without 
first few step calculation. On the other hand, the rock 
block keeps a stable state without failure when static 
analysis and dynamic analysis were combined. And by 
Fig. 6, we understand that the minimum principal stress 
of the rock block changes with time when static 
analysis did not be performed in first few time steps. 
Such change arises from the variance of contact force 
between blocks and deformation of rock block caused 
by their tare mass. With the changes, the displacements 
of blocks were accumulated at every analysis time step. 
On the other hand, when analysis combines static 
analysis with dynamic analysis, the minimum principal 

23m

15m

開口割れ目Opening crack
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stress of blocks becomes almost constant, and there was 
not a change. Although it did not be shown in the  
figure, blocks were stable even if either analysis with a 
case of k=10% were carried out. Likewise, with a case 
of k=1%, the rock block falls down in both analyses. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From these results, it is clear that the principal 
stress of a rock block changed periodically when 
dynamic analysis was carried out from first time steps. 
The rock slope that even if it has been stable originally 
would become to fail. It can be thought that such 

change would grow bigger in the case of a complicated 
model constituted with many blocks. Therefore, it can 
be thought, that if static analysis was carried out till 
changes between blocks by its tare mass was become to 
converge and the normal dynamic analysis was carried 
out after that, rock mass behavior from a stable state 
reaching failure can be analyzed. 
 
 
4. Application for Amatoribashi-Nishi site rock 

mass failure 
 
4.1 Rock mass failure of Amatoribashi-Nishi site 
 
Fig. 7 shows a side photograph and a sketch of 
Amatoribashi-Nishi rock slope. In this figure, the 
dashed line shows the rock blocks recognized by the 
side sketch. And a-d block failed on February 27, 1999, 
approximately 2 weeks later e block was dropped on 
March 15. The rock slope collapsed twice in succession. 
A video image of the failure was recorded by ITV 
installed for the measurement of the rock slop.  

According to the video, the failure process of 
toppling were seen, in the first failure, d block bent 
forward slowly and collapsed finally by destroying as 
to be stripped of c block which had became the support 
on the front. And in the second failure, e block bent 
forward slowly first and collapsed inclined to the plumb 
lower part all in one body afterwards for few five or six 
seconds. This time, simulation for twice failure of the 
rock mass was performed, and it was examined that the 
possibility to foresee or to predict a rock mass failure 
mode by a numerical analysis. 
 
4.2 Analysis model and physical properties 
 
Fig. 8 shows the analysis model. In the figure, a-e block 
supports the block showed in Fig. 7 respectively. These 
blocks have been divided into some small blocks 
beforehand and set the potential failure surface for each 
small block by assuming these blocks would to be 
destroyed to some small portions at the time of failure. 
But strength of the potential surface would use the rock 
mass strength to mention it later. 

Fig. 9 shows a setting range of block material 
properties and discontinuity material properties in the 
analysis model. As shown in the figure, the block was 
assumed to be divided into 2 kinds and the 
discontinuities was into 3 kinds according to the 
difference of properties. Investigation before failure, we 
found that gaps were filled up with rubble whether they 
becomes hollow during blocks of c and d, d and e, and 
the backside of e. Such fillers could be recognized as 
discontinuous body in analysis, but they distinguished 
its properties from rock mass. As showing in Fig. 9(a), 
region A shows the rock lump part (rock lump), and B 
shows a partly filled up with rubble or hollow (filler). 

(a) Static analysis was not 
carried out 

(b) Static analysis was carried 
out in t=0-0.7s, and the 
dynamic was carried out later

Fig. 5: Analysis results by DDA (k=5%)

23m

15m

Y

X

-250

-200

-150

-100

-50

0

岩
塊
の
最
小
主
応
力
 [
k
P
a
]

k=5%、t=0sから動的解析
k=5%、0～0.7sは静的解析

応力：”－”は圧縮

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

時間 [s]

岩
塊
重
心
位
置
で
の
X
方

向
変
位
 [
m
m
]

t=0.7s

-200

-190

-180

-170

～

Time t [s] 

M
in

im
um

 st
re

ss
 o

f r
oc

k 
bl

oc
k 

[k
Pa

] 
D

is
pl

ac
em

en
t a

lo
ng

 x
 o

f 
gr

av
ity

 c
en

te
r o

f r
oc

k 
bl

oc
k 

[m
m

] 

Dynamic analysis was carried out from t=0s
Static analysis was carried out in t=0-0.7s 
          Stress: “-”is compressive 

Fig. 6: History for displacement increase and stress 
of a rock block in turning by DDA (k=5%) 
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In addition, by investigating failure behavior before and 
after, we classify the discontinuity roughly into two 
kinds of existing things and the things generated newly 
by failure. Furthermore, the existing discontinuity can 
be classified into two kinds of completely open thing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and cohesive thing. The completely open 
discontinuities would be assumed they do not have 
cohesion, but the frictional resistance force would still 
stayed. From these prospects, the discontinuity can be 
assumed as three groups. As shown in Fig. 9(b), group 
Ⅰ points the completely open discontinuities, group Ⅱ 

points the cohesive discontinuities, and group Ⅲ points 
the discontinuities newly generated by failure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unit of numeric: m 
(a) A side photograph         (b) A sketch 

Fig. 7: Rock slope of Amatoribashi-Nishi site 

a 

b 

c 

d 

e 

a

b

c

d

e

Fig. 8: Analysis model assumed 
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(a) Setting range of block properties       (b) Setting range of discontinuity properties 
Fig. 9: Setting range of the material properties 

Division of block 
properties  

Division of discontinuities
properties  
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In order to obtain the material properties of the 
rock mass and the discontinuities, rock tests of uniaxial 
compression, Brizilian test, and multiple-stage direct 
shear test by using the specimen including existing 
discontinuity have been carried out. Table. 2 shows the 
results of the rock tests, and Table. 3 shows material 
properties and parameters used in the analyses. Where, 
rock block region A have adopted the rock test value, 
and for about region B the filler, the young’s modulus 
were assumed to be 1/10 of the rock test value, the 
Poisson’s ratio were to be 0.3. And about the 
discontinuities, for group Ⅰ , the fiction angle have 
adopted the rock test value, the cohesive strength were 
assumed to be zero; group Ⅱ have adopted the friction 
angle and cohesion of rock test value; and group Ⅲ 
were demanded from rock material strength (Table. 2) 
by using expression (3). In addition, as for the tensile 
strength of group Ⅲ, to take account of the weathering 
or deterioration of rock material itself, it were assumed 
to be smaller than provided by rock material tests. 
However, because there was not a method to set the 
value precisely, the tensile strength was assumed by 
performing the analysis repeatedly till the failure 
situation was reproduced. 
 
4.3 Analysis results of rock mass failure behavior 
 
Fig. 10 shows the rock mass failure situation of several 
time steps using k=30%. Fig. 11 shows rock mass 
collapse process at Amatoribashi-Nishi site. When 
compare the analysis results with the real failure video 
image showing in Fig. 11, it is clear that the failure 
mode of each block of the analysis results were good 
agreement with the real failure mode. The following are 
clear by examination in more detail. 

As showing in Fig. 10(a), block d and e show 
similar movement at time 3.28s. This result agrees with 
the measurement results obtained in the rock mass 
monitoring about displacement before failure, in which 
the relative motion between block d and e was almost 
zero. 

In Fig. 10(b), against the block e does not fall down, 
block d fall down greatly at 4.25s. When comparing 
this tendency with the first failure behavior of rock 
mass monitoring results, fall of block d agrees with the 
real failure at that block d was slowly bending forward 
at first. Fig. 10(c) showed a state of the failure that 
block a destroyed orderly from the upper part to the 
lower part at 4.99s till it does not support block b. In 
addition, block b-d is in simple fall failure mode. These 
were accord well with the real failure, the topping 
failure mode. 

Fig. 10(d) and (e) showed the state of block b-d 
colliding at the ground front and back in 5.92s and 
5.86s. Each block separated into 3-4 small rock lumps,  
 
 

Table. 2: Results of rock material tests 
(Coarse sandstone) 
Item Value 

Uniaxial compressive 
strength σc’ (MPa) 63.9 

Tensile strength σt’ 
(MPa) 

10.6 

Young’ modulus E (GPa) 24.5 

Rock material

Poisson’s ratio ν 0.2 
Friction angleφ(°) 32.4 Discontinuities
Cohesion c (MPa) 0.056 

 

Table. 3: Material properties and parameters used in 
analysis 

Item Value 
P (MN/m) 200 
N 8000 
N1 300 

Analysis 
parameters 

Δt* 0.001 
E (GPa) 24.5 

Division A 
ν (-) 0.2 
E (GPa) 2.45 

Rock block 
Division B 

ν (-) 0.3 
φ (°) 32.4 
c (MPa) 0 Division Ⅰ 
σt (MPa) 0 
φ(°) 32.4 
c (MPa) 0.056 Division Ⅱ 
σt (MPa) 0 
φ (°) 45.7 
τt (MPa) 3.90 

Discontinuities

Division Ⅲ 
σt (MPa) 3.18 

*Δt: Time interval in dynamic analysis. 
 
but each block was not to separate into small rock 
lumps until arriving at the ground. This agrees well 
with the real failure mode. In addition, block e did not 
moved till now. This also agrees well with the real 
failure occurring twice.  

Fig. 10(f) and (g) showed block e collapsing in 
7.77s and 7.82s. Same as block b-d, separated into 
some small rock lumps at a moment to collide at the 
ground. In this way, two times of failure occurs, in 
addition, each failure range agrees with the real failure 
mode well. Fig. 10(h) showed the situation of failure 
before and after around 9.10s. 
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(h) Step: 8000 time: 9.10s 

(g) Step: 5560 time: 7.82s 

(f) Step: 5420 time: 7.77s 

(e) Step: 2800 time: 5.92s 

c d 

e 

b 

(d) Step: 2660 time: 5.86s 

a 

b 

c 

d 

e (c) Step: 1300 time: 4.99s 

(b) Step: 900 time: 4.25s 

d 

e 

(a) Step: 500 time: 3.28s 
d 

e 

Fig. 10: Rock mass failure behavior by DDA (k=30%) 
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 Fall speed grows big from the time before 
collapse 4 hours. 

 There are rock-falls before collapse 1 hour, and 
speed accelerates after this again. 

 There become much AE events from the time 
before collapse 10 minute. 

 Rock-fall occurs frequently from the time before 
collapse 5minute. 

 Block d bends forward from the time before 
collapse 5 minute. 

 AE events increase from this time, too. 
 Some small rock-fall occurs from interval of block 

b, c and d on the time before collapse 1 minute 15 
seconds. 

 To be pushed by the fall block d, front block c, b and part 
of exfoliate and fall down. 

 (a) Block a-d 

(b) Block e 
Fig. 11: Rock mass collapse process at Amatoribashi-Nishi site [1] 

 Block begins to collapse to fall down straight 
forward as the fulcrum in block bottom end.  
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4.4 Speculation 
 
The analysis results by the application of numerical 
analysis suggested in this paper showed a good 
agreement with the real failure process. By these, it was 
clear that if modeling was carried out well by referring 
to the results of laboratory experiment and by using this 
technique, the rock mass failure process could be 
predicted. Following, we made a try to evaluate the 
strength reduction rate (k) quantitatively, examining 
how much of reduction of the strength of 
discontinuities and rock mass would cause failure. 
Here, we performed two analyses in assuming strength 
reduction rate k to 100% and 50% without change other 
analysis conditions. 

We show the last situation of the rock mass in case 
of k=100% for Fig. 12 and in case of k=50% for Fig. 13. 
By checking Fig. 12, block a - d showed big 
displacement, but was not to fail. In addition, by Fig. 13, 
rock mass reached to failure, but, for the block 
surrounded with circles ○, they are not separate into 
small rock lump blocks that were divided beforehand 
though the collision with ground. On the other hand, by 
the results of real failure (Fig. 11), block a - d did not 
separated into small blocks until its arriving at the 
ground, but each block had broke to 3 or 4 small blocks 
after arrival at the ground. By these results, it can be 
estimated that the average strength of the rock mass 
should be 50 - 30% of the laboratory experiment value 
which used for the intact rock material, so that failure 
showing in Fig. 11 occurred as for this district rock 
mass. However, as an application of DDA in this article, 
we tried different approach to express outbreak of a 
new crack with failure as the potential surface. In future, 
development of analytical method for the rock failure 
that can express crack promotion is expected by doing a 
device to divide the rock block into many more small 
blocks. 
 
 
5. Conclusions 
 
In this article, in order to clarify the rock mass failure 
process provided in rock mass monitoring, we have 
applied a failure judgment standard based on Mohr-
Coulomb criterion for the existing discontinuities and 
the discontinuities newly occurred with failure. And we 
have made the discontinuity model that grouped the 
discontinuity by this standard. In addition, it has been 
clarified by performing a numerical experiment that a 
fluctuation of initial stress by its tare of rock mass 
occurs when carrying out the analysis by DDA, and that 
this fluctuation would give the analysis results big 
influence when we reproduce an extreme stable state 
like a rock slope. Moreover, we devised an application 
of analytical technique to avoid it. By the numerical 
experiment, initial stress distribution by tare mass has 
 

 
been simulated well as occurring smoothly, and 
confirmed that it was possible to analyze rock mass 
behavior from a stability state to reaching fall failure by 
reduction of rock mass strength. 

In addition, from the application example to rock 
mass failure monitoring of Amatoribashi-Nishi site, it 
was clear that failure behavior such as a failure mode 
and a failure rang could be simulated well by DDA if 
we assume the strength of discontinuities about around 
30% of the laboratory experiment value. Furthermore, it 
was clear too that failure behavior of rock mass was 

Time: 16.7s 

Fig. 12: Analysis results by DDA (k=100%) 
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(b) Time: 10.6s 

Fig. 13: Analysis results by DDA (k=50%) 

(a) Time: 8.5s 

1m 
x 
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dependent widely on not only the existing 
discontinuities but also setting of the position and 
strength characteristic of the discontinuities which 
would occurred with failure. However, it was nothing 
but absolutely that we have tried an application in a 
failure example provided alone this time. Therefore, it 
is indispensability in order to foresee or expect slope 
failure that collect a rock mass failure example and a 
mechanics test result, and collection of fundamental 
data of how much we assume the strength reduction.  
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The Dos-based DDA program originally developed by Shi has been upgraded into the 
Windows-based version by China Institute of Water Resources and Hydropower Research 
(IWHR) recently. In this new version of DDA program, user-friendly pre-procession and post-
procession were developed and dynamic slope excavation can be simulated. An application of 
the new program to deep seated sliding analysis of Xiangjiaba gravity dam was presented in this 
paper. 

Keywords:Re-development; DDA; Windows-based program 
 
 

1. Introduction 
 
Discontinuous Deformation Analysis (DDA), which is 
a new numerical method, has been widely used in 
practice. Based on the theoretical aspect of the DDA, a 
Dos-based program has been developed by Dr Shi. 
Three programs, named DC, DF and DG have been 
written by Dr Shi to accomplish the Pre-procession, 
post-procession and result visualization function 
respectively. The user interface of these programs is 
similar to UI of DOS system. Interaction between user 
and program is not available. However, when the 
geometry, boundary conditions and loading of practical 
problems are quite complex, an application of those 
programs is difficult. For DC program particularly, 
when block is generated, the number of block is 
determined by the material number of “Joint”. If there 
is more than one “Joint”, the number of block can not 
be determined. If there are many blocks, the block 
materials generated by DC are difficult to check. To 
apply DDA to hydropower engineering successfully, 
redevelopment of DDA program seems to be necessary.  
 
Based on the source code of DDA provided by Dr Shi, 
a Windows-based DDA program has been developed 
by combining DC, DF and DG programs into one 
program named DDA-IWHR by using Microsoft Visual 
C++. This development mainly includes: 
 
(1) to obtain the geometrical data for the DDA program 
by direct use of DXF files generated by AutoCAD; 
 
(2) to develop a new mutual-interactive file named 
“bl*” to automatically generate the block material 
number, joint material number, loading information and 
others geometrical information needed in the late DDA 
analysis; 
 
(3) to add multi-step excavation function to simulate 
stability status in slope excavation procedure. 

(4) to enrich the post-procession function by taking 
advantage of the commercial program to dynamically 
display the color flood of displacement and stress.  
 
2. Pre-procession program 
 
2.1 Generation of diagram 
 
The generation of diagram is fully accomplished by the 
“Pre” Menu as shown in Fig. 1. 
 

 
Fig. 1: Pre Menu designed for generation of diagram 

 
The menu is designed for generating the geometrical 
information automatically, the procedure generally 
includes: (1) to click “Read DXF File” to choose the 
AUTOCAD DXF file; (2) to generate the needed 
geometry data by executing MC.exe; (3) to use the 
Menus  “Big Size”, “All Size” and “Move” to zoom in 
or out and to check the generated figure. 
 
2.2 Edition of block and joint material number 
 
For block material numbering, the Menu of “Block 
Material Num” is selected firstly to input the designed 
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number of block in the dialog box for material 
numbering; then to set the specified color to the 
corresponding block in the figure window by left 
clicking the mouse. 
  
Similarly, the joint material numbering is also set by 
using the Menu of “Joint Material Num”.   
 
2.3 Load 
 
There are two methods for inputting the load. The first 
way is to read the load data file directly, such as 
uplifting pressure of dam foundation. This method is 
suitable for those with bulk data. For those problems 
with small loading information, the interactive input is 
a much simple way. 
  
For this way, just simply selecting “Water Load file” 
Menu to pop up the standard IO dialog box. There are 
three ways for the load edition: 
 
(1) to choose “Select lines” Menu to select a line and 
apply load. Move cursor to lines to be dealt with. When 
these lines are highlighted, click left button. Load value 
and position is calculated automatically and marked in 
the figure.  
 
(2) to choose “Select element” Menu to calculate 
automatically and to mark load values and application 
points of lines in block elements. 
  
(3) The “Select area” Menu that is designed for 
selecting a zone is to calculate automatically and to 
mark the load magnitude and application points of lines 
in this selected zone. 
 
The other interactive input way is to use “Load 
direction” Menu. In this Menu, There are five choices, 
namely “left”, ”right”, ”up”, ”down” and ”water”, 
which stand for the direction of load. By selecting one 
of these five options, the load magnitudes and 
application point of lines can be determined and 
marked automatically.  
 
2.4 Setting up fixed measuring points 
 
Since the block file generated by directly reading DXF 
files, the necessary information on fixed and measuring 
points are not included in the generated file. This task 
may be finished by using the “New Fix point” Menu.  
By moving cursor to a point that will  be set a fixed one,  
requiring fixing, a color circle indicating a fixed point 
has been set up will be  displayed by clicking the left 
button of mouse. 
Following a similar procedure, the measuring point 
may be set up by selecting the “New Measure point” 
Menu. 
 

2.5 Saving data 
 
When all the necessary geometrical and loading 
information have been processed following the 
procedures mentioned above, a file named “bl-*.dat” 
will be saved by choosing “Save profile” Menu, 
“*”standing for the prefix of DXF file. 
 
2.6 Block data re-reading 
 
If edition of bl-*.dat file has been completed and the 
file was saved already, you can choose “Readblock (bl-
*.dat)” and edit data directly when re-edition is needed. 
 
3. DDA computation 
 
After the data file named “b1-*.dat” that is designed for 
the geometrical information was obtained, the DDA 
computation can be advanced by combining the other 
data file named ‘df*” specifying the other governing 
parameters. We can use “Df” Menu as shown in Fig. 2 
to adjust the values of rigidity of spring, load step, and 
minimum error tolerance. 
 
The “Calculate” Menu is used to control DDA analysis 
without excavation, however, the “Step df” Menu is for 
excavation case. The multi-step excavations of slope 
can be simulated by using the “Step df” Menu. 
 

 
 

Fig. 2: DDA Computation Menu 
 
4 Post-Procession Function Of DDA 
 
Based on the program DG originally developed Dr. Shi, 
a new Windows-based post-procession program has 
been developed, the main Menu “post” dealing with the 
post-procession function is illustrated in Fig.3, which 
includes: 
 
(1) The “Read dgdt file” Menu is used to input the post-
procession file. 
(2) The “Begin_step_plot” Menu is designed for 
reading the multi-stage excavation file. Using this 
Menu, we may display the movement status of blocks 
at step N. 
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Fig. 3: Post-procession Menu 

 
The Menu of “Color Dis” deals with color display 
mode for displacement vector. Currently, only four 
color modes are developed, that is 
 
(1) R-B transient color mode. This mode changes the 
color from blue to red. Blue stands for minimum 
displacement, and the red the maximum displacement.  
(2) RGB transient color mode. 
(3) RYB transient color mode. 
(4) BGY transient color mode. 
 
The Menu of “FOS-EXCEL” is used to display the 
factor of safety at each computation step. Firstly, the 
Menu reads out the factor of safety at each step from 
the DGDT file, saving these information to a FS.txt file. 
Secondly, the plot of safety against the iteration step 
can be drew by using EXCEL. 
 
The main Menu of “Displacement” is used to display 
the horizontal and vertical displacement, as shown in 
Fig. 4. 
 

 
Fig. 4: Displacement Menu 

 
The  main Menu “Stress” provides four modes for 
stress display, as shown in Fig. 5. The “Small principle 
stress” is used to  display minimum main stress; the 
“Big principle stress” maximum main stress; the “X 
string” the horizontal stress; and the “Y string” the 
vertical stress. 

 
Fig. 5: Stress Menu 

 
For each mode of stress display, four color modes are 
also available. similar to displacement. The 
displacement of a slope displayed by the R-B transient 
color mode is illustrated in Fig. 6. 

 
Fig. 6: Slope displacement displayed by the R-B 

transient color mode 
 
5. Application 
 
After re-development of Windows-based DDA program 
was completer, the deep-seated stability analysis of 
Xiangjiaba gravity dam was performed by using the 
new version of program.  
 
5.1 Background 
 
The Xiangjiaba hydropower project is the last stage 
hydropower station in the cascade exploitation of 
hydropower resource of Jinsha river. Xiangjiaba dam is 
a concrete gravity dam with a length of 897m, a height 
of 161m. This dam is built on Triassic sandy rock. As a 
main feature of engineering geology of the dam site, 
Limeiwan knee-like deflection zone with a width of 
100m stretches into the dam site from Limeiwan chase 
at North West corner and extends to South East corner 
of the dam site. Due to this deflection zone, the bedrock 
condition at the dam site becomes quite complicated 
and poor. In addition, 2 first-level and 10 second-level 
seams dipping at a intermediate angle were also found 
at the dam site. From failure mode analysis, these 
geological discontinuities probably form one part of 
slip surface. in addition, the rock mass at the 
downstream side displays considerable discontinuities 
dipping upstream. Therefore, at the Xiangjiaba dam site, 
a potential deep seated sliding of the dam exists, a 
stability analysis is necessary to perform. A typical 
cross section of Xiangjiaba dam along the foundation 
conditions is illustrated in Fig. 7. 
  
The DDA method is applied to investigate the deep 
seated stability analysis problem. 
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Fig. 7: typical cross section of Xiangjiaba dam 
 
 
5.2 DDA numerical modeling 
 
It is very easy to generate computation model using 
new pre-procession program, the main procedures for 
modeling are as follows: (1) to establish a new layer in 
CAD, and to re-plot the figure by lines or multi-lines, 
using different line color to specify different joint 
materials. (2) to close another layers when re-plotting 
was completed, and to copy the new figure to a new file, 
saving as a DXF file. (3) to open a new DDA program, 
inputting the DXF file to generate automatically all 
geometry data needed by MS.exe. (4) to execute 
MC.exe to generate a block file bl*.dat.  The DDA 
numerical model of No. 12 monolith generated 
automatically by the redeveloped DDA program is 
shown in Fig. 8. 
 
For complex geology model, numbering of block 
material is not sure to be right, because MC.exe will 
generate number of block according to number of joint 
material. Number of block and joint material can be 
edited in an interactive way. Different block materials 
and different lines will be shown using different colors. 
Since a geometry point in DDA program will stand for 
multi points, we can move the curse to verify whether 
or not this case was occurred. When the curse is  moved, 
the coordinate, element number, element material, 
adjacent joint, and joint number will be displayed at the 
up-left corner of screen. By careful checking whether 
the values appeared are correct, the validation of 
numerical model and accuracy of result can be achieved 
by careful check.  
 
Since the geometrical information was obtained 
automatically from the CAD file, the fixed and 
measuring points should still be set by using mouse. 
 
According to design criteria of hydraulic structure 
(DL5077-1997), uplift pressure used in analysis is 
illustrated in Fig. 7. The load case is normal impounded 
level with upstream water level 380.0m and 
downstream water level 265.8m. Water loads in many 
points are set by giving controlling point coordinates 
and load value in order.  

Load value and position on lines in block elements are 
calculated automatically and illustrated in figure as 
concentrate forcse. A DDA format load file is generated.  
The total procession of DDA model generation is in an 
automatic and interactive way. It is very fast and 
convenient. A typical DDA model generated is shown 
in Fig. 8. 
 

 
Fig. 8: A DDA numerical model for the Xiajiaba 
Project 
 
The strength parameters of Xiang Jia Ba gravity dam in 
DDA  is listed in Table 1. 
 
Table 1 strength parameters of Xiangjiaba gravity 
dam 

Rock 
and 

structure 
type 

Defor-
mation 

modulus
(Gpa) 

Poisson’s 
ratio 

Internal 
friction 
 angle 

(°) 

Cohesion 
force 
(Mpa) 

Tensile 
strength
(Mpa) 

Bulk 
density
(kN/m3)

RockⅡ 20 0.22 43.2 0.53 3 26 

RockⅢ1 11.75 0.25 37.4 0.38 2.35 26 

RockⅢ2 9.25 0.28 34.2 0.305 1.65 26 

Rock Ⅳ 4 0.3 27.2 0.17 1 26 

JC2 0.72 0.4 15.4 0.045 0 23 

Fault 1.28 0.4 16.7 0.06 0 23 

Concrete 20 0.167 56.3 2 1.85 24 

Interface 

between 

rock and 

concrete

  38.7 0.38 2.35  

 
5.3 Engineering computation 
 
Many weak zones, such as JC2, JC3 and JC4, exist in 
No. 12 section. Geological conditions are much 
complex. There are many potential sliding surfaces. 
How to determine the true minimum FOS and its 
corresponding slice surface is the key point of 
engineering analysis. It is advantageous that DDA 
method not only satisfies Newton’s Law, but also 
movement equation. In DDA, both load increment 
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method and reduced strength method may be applied to 
make the structure be a limit state, showing where the 
structure begins to damage, damage process and failure 
state. In the DDA analysis of Xiangjiaba dam, the load 
increment method is used, and having the horizontal 
load be increased several times to make the dam in a 
limit state, as shown in Fig 9. 
 
Besides gravity load, the loads in gravity dam include 
horizontal load at the upstream face of dam, and 
seepage forces in the bed rock. According to design 
criteria, uplifting pressure at bed rock is assumed to be 
distributed in fold lines. Seepage force at any point of 
bed rock is calculated based on the vertical height 
between the point and the seepage line.  
 
In order to explore the influence of seepage force on the 
dam stability, two load modes of water load in bed rock 
are introduced. One is that the water load was applied 
directly on specified sliding surface with same load 
value and inverse load direction. The factor of safety 
calculated is 2.390. The other load method is to apply 
water load on all joints in bed rock with the same load 
value and inverse load direction. The factor of safety 
calculated for this water load module is 2.419. It can be 
found from comparison that the factors of safety 
calculated water load modules are very close and both 
reasonable.  
 

 
Fig. 9: 
 
The values of the factor of safety during the iteration 
are recorded and saved to a single file named FS.txt. by 
the new DDA post-procession program. Convergence 
curve can be plotted by using EXCEL. By carefully 
checking whether this convergence curve displays a 
general relationship, whether the principal parameters 
used in DF program are reasonable can be analyzed. A 
typical convergence curve of the factor of safety is 
illustrated in Fig. 10. 
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Fig. 10:  Convergence curve of the factor of safety 
 
6. Conclusions 
 
Based on the Dos-based DDA program developed by 
Dr. shi, DC, DF and DF programs have been combined 
into a Windows-based program. The new-version of 
DDA program has been applied into deep seated 
stability analysis of Xiangjiaba gravity dam 
successfully. 
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On seismic dynamic stability of No.Ⅱ deformation body by Newmark Method for Laxiwa 

Hydropower Project  
 

SHI LI 
 

Northwest Hydro Consulting Engineers, CHECC, Xi’an, P. R. CHINA 
 

No.Ⅱ deformation body is located downstream to the left abutment for Laxiwa hydropower 
project, and its stability mainly affects the safety of left abutment and the zone of flood energy 
dissipation. The analysis of dynamic stability was made for No.Ⅱ  deformation body by 
Newmark method and the process safety coefficient and its displacement were obtained. The 
comparative analytic computations of the above results were carried out between conventional 
pseudo-static method and 3-D finite element method, and the feasibility and reliability in the 
analysis of earthquake dynamic stability of the slope by Newmark method was discussed. It is 
concluded that it can basically satisfy design standards of No.Ⅱ  deformation body under 
earthquake condition. 

Keywords: No.Ⅱ deformation body; Newmark method; Stability analysis; Permanent deformation 
 
 

1. Introduction 
 
The pseudo-static method is often used in the 
earthquake stability of the slope. The earthquake action 
is assumed to be applied on the slope as constant static 
load, and its magnitude will be determined by the 
earthquake intensity where it is located. In fact, the 
magnitude and direction of earthquake action will vary 
with time. So, the pseudo-static method does not 
objectively and truly reflect dynamic stability under 
earthquake condition. In virtue of latest NM (Newmark) 
analytic procedure provided by Dr. Shi Genhua (an 
international famous math dynamics and a rock 
engineering expert) and using process curve of seismic 
acceleration at Laxiwa dam site. Under the guidance of 
Dr. Shi Genhua, the earthquake dynamic stability of No.
Ⅱ deformation body for Laxiwa project was analyzed 
by Newmark method, and the process safety coefficient 
and its displacement were obtained. The comparative 
analytic computations of process results were carried 
out between conventional pseudo-static method and 3-
D finite element method, and the stability of No.Ⅱ 
deformation body under earthquake action was 
comprehensively assessed while the feasibility in the 
analysis of earthquake dynamic stability of large rock 
slope by Newmark method was verified.  
 
2. Geologic description of No.  Ⅱ deformation body 
 
Laxiwa hydropower project is situated on the main 
stream of Yellow River at the boundary of Guide and 
Guinan Counties. The project is composed of double 
curvature arch dam with log spiral, surface, deep and 
bottom outlets for discharging flood, plunge pool 
behind the dam, right-bank intake, and power intake 
system. The concrete double curvature arch dam is 
250m high in maximum, with a total reservoir capacity 

of 1.079 billion m3, and an installed capacity of 
4200MW that is the largest on the Yellow River.    
No.Ⅱ deformation body is located at the downstream 
of left abutment for Laxiwa hydropower project, with 
the minimum leading-edge elevation of 2395m and 
trailing-edge pull crack crest elevation of 2650m. The 
elevation of 2395m is 90m away from arch abutment 
and the crest elevation is 50m from arch abutment. The 
width is about 150m along the river and the length 
inward from the river-bank is about 200m, with an 
elevation difference of 255m and a total of excavated 
quantity of 181m3. The boundary is strictly controlled 
by soft structural plane (Table 1). The upstream tends 
to be mid-dip angle fault F29, the bottom slide plane is 
of low-angle fault Hf4, and the trailing-edge pull crack 
plane is of high dip-angle pull crack; the downstream is 
of steep dip-angle fissure L145 in SN direction, and its 
stability mainly affects the safety of left abutment and 
energy dissipation zone for flood discharge. 
In view of external features, the gentle slope is located 
at El.2395m~2450m, which the surface layer is 
collapsed, accumulated and covered, with structural 
loosening of rock mass. The steep slope is located at 
2450m~2650m with a dip of 50°~65°, and the rock 
mass of top slope is pulled along structural plane. The 
hanging wall rock mass at upstream side of fault F29 
indicates that the rock is obvious loose and broken. 
Besides the occurrence of main cracks (10~30cm wide) 
at trailing edge of pull crack, there still exists bunching 
in parallel with unloading tensile fissures, which will be 
spit into 20~30cm slate rock, and slate crushed rock has 
an evident outward slope tilting bending phenomenon. 
The deep rock mass has no distinct pullout 
phenomenon  
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Table 1 Boundary conditions and features of No.Ⅱ deformation body 

Structural plane  Overall occurrence Features of structural plane 

F29 Strike NE34°、 
Dip SE、Dip angle 36° 

Extending about 400m, the width of fracture zone is about 20~50cm 
at El. 2400~2680m. There are obvious staggered faults at both sides 
of rock mass, with its staggered fault Hf4 of 15~20cm.   

Hf4 Strike NW290°、 
Dip SW、Dip angle 14° 

The shallow fracture zone is about 25~50cm wide, and is 85cm wide 
at the intersection of fracture zone F29. It is 15~30cm wide at deep 
fracture zone, with interacted thickness of 8~10cm. There still exists 
red-reddish brown interlayer soil of 2~3cm besides broken rock and 
crushed zone, etc.   

LF1 Strike NE65~80°、 
Dip SE、Dip angle 70~80° 

Pull crack joints filled with clay and broken stone are 10~20cm 
wide, 100~150m deep.  

L145 Strike NW355°~NE4°、 
Dip NE or SE、Dip angle 80~88° 

The fracture plane is flatten, intermittent extension, bunching, filling 
kalk, and somewhat weathered.   

 
at the downstream L145, and this group of fissures is 
developed in parallel, with an intermittent extension. 
In view of internal features, the top is merely loose and 
pull crack, and the bottom is pull crack and shear 
crushing. The deformation of rock mass attenuates 
inward river-bank from the slope, and the local scratch 
(plunge direction of 205° and plunging angle of 21°) 
occurs at El.2395 platform (Hf4 lying wall plane). The 
loose deformation is gradually reduced from upstream 
to downstream, with many pull cracks upstream in a 
large scale. The pull-crack joints are decreased, 
diminished and disappeared from upstream to 
downstream boundary L145.  
The basic earthquake intensity is 7 degrees at Laxiwa 
dam site, with earthquake inertia force coefficient of 
F=0.14. The ground water line in the dam region is 
around El.2300m, and no effect will be formed to No.
Ⅱ  deformation body. Moreover, the top of No.Ⅱ 
deformation body has already been loosened and 
distorted and drainage effect itself is quite good. 
Therefore, the effect will not be considered in the 
analysis of earthquake dynamic stability.   
By geologic investigation and relevant research, it 
shows that No.Ⅱ deformation body has the creep and 
pull crack, and is presently in a stable condition by 
means of many monitoring. Moreover, owing to its 
important location, the study on the stability of No.Ⅱ 
deformation body has turned into the most key 
engineering geologic issue of high slope for Laxiwa 
hydropower project. 
 
3. Basic Principle of Newmark Method 
 
The essential philosophy of Newmark method will 
result in double integration of rock mass movement and 
acceleration at corresponding time interval, in order to 
solve the total displacement of the rock mass. 
 
3.1Fundamental assumption 
 

1. Effect of vertical earthquake force will be ignored, 
merely considering the displacement at result of 
horizontal earthquake force; 
2. Reduction of material strength under live load will 
not be considered; 
3. Earthquake acceleration will be uniformly distributed 
within the landslide.   
 
3.2Basic principle   
 
The fundamental principle of Newmark method is to 
perform double integration to obtain permanent 
deformation on the basis of the landslide of acceleration 
(a) movement at the time interval (t，t+ t△  ). Moreover, 
this integration will be calculated when the safety factor 
of the slope is less than one at that time interval. The 
integrations of all the time intervals being less than one 
shall be accumulated to acquire permanent deformation 
at result of the earthquake in the slope. 
In the time zone (t~t+ t△ ), the integration by Newmark 
method will be assumed as below:  

{ } { } { } { }t+ t t+ t[(1 ) ]t tu u u u tδ δΔ Δ= + − ⋅ + ⋅ ⋅Δ
（1） 

{ } { } { } ( ) { } { } 2
t+ t t t t t+ t1/ 2u u u t u u tα αΔ Δ= + ⋅Δ + − ⋅ + ⋅ ⋅Δ⎡ ⎤⎣ ⎦

（2） 
Where,  
Α and δ—— integral parameters; 
{ut}、{ut+△t}—— displacement vector; 

{ u t}、{ u t+△t}—— velocity vector; 
{ u t}、{ u  t+△t}—— acceleration vector. 
The solution of displacement at time (t+ t△ ) in 
Newmark method is achieved by satisfying the time 
(t+ t△ ) movement equation, that is,  

[ ] { } [ ] { } [ ] { } { }FuKuCuM =⋅+⋅+⋅                (3) 
Where, 
[M] —— structural mass matrix; 
[C] —— structural damping matrix; 
[K] —— structural rigidity matrix; 
{F} —— joint load vector. 
Thus, it is solved firstly from Equation (1): 
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{ } { } { }{ } { } { }t t t t t t t2

1 1 1( 1)
t t 2

u u u u u
α α α+Δ +Δ= ⋅ − − ⋅ − − ⋅
Δ Δ

&& & &&
  

(4) 
When the above equation is substituted into Equations 
(1) and (3), two-step recurrence formulae will be 
obtained from the calculation of {ut}、{ u& t}、{ u&& t}:   

{ } { } { }

{ } { } { }

t t t t t2 2

t t t

1 1 1 1[ ] [ ] [ ] {u {F [ ] ( 1)
t t t t 2

[ ] ( 1) ( 1) t
t 2

M C K M u u u

C u u u

δ
α α α α α

δ δ δ
α α α

+Δ
⎧ ⎫ ⎧ ⎫+ + }= }+ + + − +⎨ ⎬ ⎨ ⎬
Δ Δ Δ Δ⎩ ⎭ ⎩ ⎭

⎧ ⎫+ − + − Δ⎨ ⎬Δ⎩ ⎭

& &&

& &&

(5) 
（ Here, δ ≥0.50 ， α ≥0.25 （ 0.5+ δ ） 2 are 
required） 
 
4. Analyses by Newmark Method 
 
4.1 Analytical model 
 
In light of boundary control structural plane of No.Ⅱ 
deformation body, groups of F29, Hf4, LF1 and L145 
are generated via NB as shown in Fig.1. 

 
Fig.1 No.Ⅱ deformation body model 

 
4.2 Calculating results   
 
The stability analysis was made to the above model 
under earthquake action by adopting latest NM 
(Newmark) analytic procedure provided by Dr. Shi 
Genhua, and its calculating results are as follows:  
（1）Safety factors at time interval of 0～10s、10～
20s and 20～30s are shown in Figs. 2～4.   
（2）Displacements at time interval of 0～10s、10～
20s and 20～30s are shown in Figs. 5～7, of which 
abscissa is time (s), and ordinate is displacement. 
It can be known from the above calculating results: 
1) Between 13s and 16s, the safety factor is less than 
1.0, and is 1.05 lower than design value. At other time 
interval, it is larger than 1.0, and is generally around 1.5.   
2) There has no obvious displacement for No. Ⅱ 
deformation body under earth load action.    
 
5 .Analysis of Limit Equilibrium Method for rigid 
body 

 
5.1 Analytical model 
 

Hf42430

No.II deformation body

LF1

2395

 
Fig.8 Calculating model for single-face sliding 
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Fig.9 Calculating model for double-face sliding  
 

5.2 Standard for stability against sliding    
 
The design standard for slope engineering is not 
available in China for the time being. With reference to 
the existing hydropower projects (such as Lijiaxia, 
Longyangxia, etc.), the standard of stability against 
sliding is determined for No.Ⅱ  deformation body, 
which is shown in Table 2.   
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Fig.2  Safety factors at time interval of 0～10s 

   

 
Fig.3  Safety factors at time interval of 10～20s  

 
Fig.4  Safety factors at time interval of 20～30s 

 

 
Fig.5  Displacement at time interval of 0～10s  
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Fig.6  Displacement at time interval of 10～10s  

   

 
Fig.7  Displacement at time interval of 20～30s  

 
Table 2 Design standard of stability against sliding for No.Ⅱ deformation body 

Load combination Shearing Kc 
Basic combination (dead weight) 1.5 

Special combination (dead weight +earthquake) 1.05 

Table 3 Safety factor of stability against sliding for No.Ⅱ deformation body 

Load combination Shearing Kc Remarks 
Basic combination (dead weight) 1.82  

Special combination (dead weight + earthquake) 1.61  
Calculating model for 

double-face sliding 

Basic combination (dead weight) 1.58  

Special combination Intersecting earthquake 0.94  

（dead weight + earthquake） Transverse earthquake 1.00  

Calculating model for 
single-face sliding 

 
5.3 Calculating results 
 
The results checked by the limit equilibrium method for 
rigid body is indicated in Table 3.  It can be seen from 
Table 3 that the calculating results of double-face 
sliding can meet design requirements under various 
operating conditions, and the above results can meet 
operating conditions under basic combinations. 
However, the shearing is respectively 0.94 and 1.00 
under earthquake condition, less than design standard.   

 
6.  3-D finite element calculation    
 

The 3-D finite element calculation will be made by 
applying TFINE and FLAC3D procedures. 

The 3-D finite element calculation is made in the scope 
of nearly one time of dam height upstream, nearly two 
times of dam height downstream and 1.5 times of dam 
height at both sides of banks. In addition to simulating 
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main faults at dam site, it shall still simulate structural 
planes (F29, Hf4, L145, etc.) of No.Ⅱ  deformation 
body. The simulating depth of dam foundation is one 
time of dam height (500m), i.e. simulating elevation 
from the crest (El. 2460m) to the foundation (El. 1960m) 
below. The simulating calculation of thick joint unit is 
performed, and the result of 3-D finite element analysis 
is concluded as follows: 
1. Faults F29，Hf4 are in a transpression condition, 
and point safety degree is greater than 1.2 under normal 
load.   
2. Under normal load, No.Ⅱ deformation body has a 
little effect subject to dam thrust. As a whole, No.Ⅱ 
deformation body is deformed toward downstream and 
river bed, less than 20mm.  Water load has little 
influence, thus it is deemed that No.Ⅱ  deformation 
body is of self-stable structure.    
3. The safety degree of each structural plane is mostly 
above 1.2, and Faults F29，Hf4 close to upstream and 
leading edge are less than 1.2 without any yield. The 
safety degree of L145 is adequate.   
 
7. Analyses 
 
By calculation results of Newmark method in contrast 
to those of the limit equilibrium method for rigid body 
and 3-D finite element, it can be found that： 
1. Safety factors of Newmark method and limit 
equilibrium method for rigid body are consistent under 
earthquake action, i.e. safety factors are less than design 
standard values under this earthquake action. 
 
2. The displacement of No.Ⅱ deformation body under 
earthquake action is very small calculated by Newmark 
method, which is in conformity with simulating 
calculated results of 3-D finite element, that is, No.Ⅱ 
deformation body is deformed toward downstream and 
riverbed and its displacement is less than 20mm.    
3. The dynamic simulation of earthquake action is 
achieved by Newmark method, reflecting 
comparatively and truly the stable state of slope under 
earthquake action. This has advantages compared to the 
limit equilibrium method for rigid body.   
4. The permanent displacement value of the slope can 
be computed by Newmark method. However, there is 
no provision about maximum allowable displacement 
specified in Hydraulic Aseismic Code in China. 
Therefore, it is unable to balance the stable condition of 
slope by means of permanent displacement value, 
which is stipulated in the Cost Estimation Criteria of 
Hydropower Engineering prepared by the Hydropower 
Department of American Federal Energy Regulatory 
Commission. This clause is stated like this 

“Deformation calculation is only applicable to non-
liquefied stable disruption. Provided that the 
embankment is compacted densely with good 
construction quality, the peak acceleration is not larger 
than 0.2g, and the deformation will not be considered. 
Otherwise, the permanent deformation analysis must be 
executed. The analysis shall be made by Newmark 
permanent deformation method and simplified 
Newmark permanent deformation method. Generally, 
the maximum displacement value along the potential 
slip crack plane shall not exceed 2 inches (61cm) 
calculated by the above method. The greater 
deformation value may be accepted, which depends on 
freeboard, dam cracking healing capacity, etc.”    
This provision provides a reference for stable dynamic 
analysis of slope.  
 
8.Conclusion   
 
Based upon calculations of Newmark method, limit 
equilibrium method for rigid body and 3-D finite 
element, it will be known as below:   
1. The variation of safety factor in the time-interval of 
earthquake can be well simulated by Newmark method 
under earthquake action. Meantime, the permanent 
deformation value is also obtained, which can be 
utilized in the analysis of important slope.    
2. No.Ⅱ deformation body has met design standard, but 
the safety factor is less than one in local time interval 
under earthquake action. In consideration of its location 
importance, proper engineering treatment measures 
shall be conducted to ensure adequate safety margin.  
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